• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and DNA-Binding Property of a New Cu(II) Complex Based on 4-(Trifluoro-methyl)nicotinic Acid①

    2022-03-12 07:44:52SHANFengLinSONGHuanGAOXueZhiLIBingMAXiaoXia
    結(jié)構(gòu)化學(xué) 2022年2期

    SHAN Feng-Lin SONG Huan GAO Xue-Zhi LI Bing MA Xiao-Xia②

    a (State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China)

    b (Department of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China)

    ABSTRACT A new complex [Cu1.5(tfc)3(H2O)4]·3H2O (1, Htfc = 4-(trifluoro-methyl) nicotinic acid) has been synthesized and characterized by X-ray single-crystal diffraction, elemental analysis, IR spectra and thermogravimetric analysis. 1 belongs to orthorhombic system, space group Pccn with a = 44.507(2), b = 10.7710(6), c =11.7544(7) ?, V = 5634.9(6) ?3, Z = 1, Dc = 1.803 mg·cm-3, F(000) = 3068, μ = 1.266 mm-1, the final R = 0.0488 and wR = 0.1103 with I > 2σ(I). The Cu(II) ion is coordinated by two N and two O atoms from different Htfc as well as two O atoms from two coordinated water molecules, forming a 0D motif with distorted octahedral geometry.The adjacent 0D units are linked into 2D structures through bridge connection coordination mode. In addition, the binding properties of the complex with CT-DNA were investigated by fluorescence and ultraviolet spectra. UV spectra indicate classical intercalation between the complex and CT-DNA. Moreover, the interactions between the ligand and the complex with CT-DNA were studied by EtBr fluorescence probe, which proved that these compounds bind to CT-DNA through an intercalation mode. The binding constants were 0.76 and 1.15 for Htfc and complex 1, which means 1 has stronger interaction with CT-DNA than Htfc.

    Keywords: 4-(trifluoro-methyl) nicotinic acid, crystal structure, DNA;

    1 INTRODUCTION

    Compounds composed of central metal ions and various multi-functional organic ligands have received increasing attention owing to their unique structural features and potential application in promising bioactive agents[1-3].Complexes have been widely used in DNA structural probes[4,5],molecular optical opening of DNA[6], footprint reagents of DNA[7]and fracture reagents of DNA[8,9]. In addition, it has been widely accepted that DNA is the primary biological targets of many drugs in vivo[10]. Studies of the interaction between Cu(II) complexes and DNA have attracted great interest, because complexes with different crystal structures have different binding effects on DNA[11]. So far, a large number of Cu(II) compounds have been studied on their structures as well as physical and chemical properties[12,13].However, its relationships between structures and DNA interactions are still not particularly clear.

    As one of the heterocycles, pyridine derivatives exhibit significant pharmacological activities like anticancer[14]and antibacteria[15]which are good ligand candidates. What’s more, complexes constructed by fluorinated pyridine carboxylic acid ligands have already attracted much interest due to their extensive biological activity[16,17]. They show a number of different coordination modes due to dual functionality of donor N atom which is a stabilizer of transition metal ions at lower oxidation state and O atom that is a stabilizer for transition metal in their higher oxidation states[18]. The introduction of fluorine could significantly enhance the chemical stability and bioactivity of the compounds[19-21]. So, 4-(trifluoro-methyl) nicotinic acid (Htfc)was chosen by us as a ligand, which can be regarded as an excellent building block for the construction of new coordination compounds[22].

    In this work, a new complex [Cu1.5(tfc)3(H2O)4]·3H2O has been synthesized and characterized by X-ray single-crystal diffraction, elemental analysis and infrared spectra. The intercalation of the complex with CT-DNA was also studied by fluorescence and ultraviolet spectra methods which showed the reference value to the design of new drugs as well.

    2 EXPERIMENTAL

    2. 1 Materials and general methods

    All chemicals were commercially available and used as purchased. Calf Thymus DNA (CT-DNA) and ethidium bromide (EB) were purchased from Sigma-Aldrich Co.Tris-HCl buffer solution (C = 0.1 mol·L-1, pH = 7.4) was used for fluorescence spectrum. The concentration of CT-DNA was 200 g·mL-1and stored at 4 ℃. The interactions between compounds and CT-DNA are measured using literature method[23]. Elemental analyses (C, H and N) were performed on a Vario EL III analyzer. Infrared spectra were obtained from KBr pellets on a BEQ VZNDX 550 FTIR instrument within the 400~4000 cm-1region. Thermogravimetric analysis was carried out on a TA Instrument NETZSCH STA 449 C simultaneous TGA at a heating rate of 10 ℃·min-1under hydrostatic air. Fluorescent data were obtained from a Hitachi F-7000 instrument. UV-vis spectral measurements for the synthesized complexes were made using a TU-1800 beam recording spectrophotometer.

    2. 2 X-ray crystallography

    Bruker Siemens Smart Apex II CCD diffractometer with graphite-monochromated MoKαradiation (λ= 0.71073 ?) at 293(2) K. Cell parameters were retrieved using SMART software and refined using SAINTPLUS for all observed reflections. Data reduction and correction forLpand decay were performed with the SAINTPLUS[24]software.Absorption corrections were applied using SADABS. All structures were solved by direct methods using SHELXS-97[25]and refined with full-matrix least-squares refinement based onF2using SHELXL-97[26]. For compound 1, a total of 6471 reflections were collected in the range of 2.90≤θ≤27.52°, of which 4570 were independent (Rint = 0.0669). The finalR=0.0488 andwR= 0.1103 withI> 2σ(I). The selected bond distances and bond angles are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Complex 1

    2. 3 Synthesis of [Cu1.5(tfc)3(H2O)4]·3H2O

    A water solution (5 mL) of Cu(NO3)2·2H2O (24.16 mg, 0.1 mmol) was added to a solution of Htfc (9.50 mg, 0.05 mmol)in CH3OH (10 mL) and water (5 mL). The pH of the mixture was adjusted to 9 by adding sodium hydroxide (0.5 mol·L-1)with stirring. Afterca. 30 min of vigorous mixing, the resulting solution was filtered and left to stand under ambient conditions. Upon slow evaporation of the solvents, blue transparent block crystals of complex were obtained afterca.8 days in a yield of 68% (based on Htfc). Anal. calcd. for C21H17Cu1.5F9N3O10: C, 19.22; H, 1.11; N, 2.94%. Found: C,19.20; H, 1.13; N, 2.96%. IR (KBr, cm-1): 3431(w), 1633(s),1375(s), 1281(m), 1193(w), 948(w), 848(w), 687(w), 470(w).

    3 RESULTS AND DISCUSSION

    3. 1 Structural description

    Single-crystal X-ray diffraction analysis reveals that complex [Cu1.5(tfc)3(H2O)4]·3H2O crystallizes in the orthrohombic system, space groupPccn. As shown in Fig. 1, Cu(II)ion is six-coordinated with two carboxylate oxygen atoms(O(1), O(3)) and two nitrogen atoms (N(1), N(2)) from the tfcligands as well as two oxygen atoms of coordination water molecules (O(7), O(8)), which resemble a slightly distorted octahedral geometry. Two carboxylate oxygen atoms and two oxygen atoms from the coordination water molecule are in the equatorial plane (O(1), O(3), O(7) and O(8)). N(1) and N(2)from pyridine ring occupy the axial positions. As shown in Table 1, the Cu-O bond lengths range from 2.001(11) to 2.430(11) ?, while the distance of Cu-N(1) is 2.002(3) ?,which all fall in normal ranges[27]. The O-Cu-O bond angles vary from 89.95(10)° to 180.00(14)° and the N(1)-Cu(1)-N(2)bond angle is 176.16(11)°.

    In this structure, the carboxylic groups and nitrogen atom in adjacent tfc-ligands are linked to the Cu(II) ion, forming a 1D zigzag chain. Then, such 1D chains are connected into a 2D plain from tfc-ligands with alternant 24-membered rings(Fig. 2).

    Fig. 1. Coordination environment of complex 1 (hydrogen atoms are omitted for clarity)

    Fig. 2. 2D structure diagram in complex 1

    3. 2 IR spectra

    IR measurement has been performed between 400~4000 cm-1. The IR spectrum of 1 shows a broad absorption band at 3431 cm-1, corresponding to the O-H stretching of coordinated water molecules in the complex[28]. The C-N absorption peaks of pyridine can be observed at 1320 cm-1.Thevasym(COO-) andνsym(COO-) absorption can be observed as strong bands at 1633 and 1375 cm-1, respectively. The Δ(vasym(COO-) -νsym(COO-)) for 1 is 258 cm-1, indicating that the coordination of carboxylate groups is closer to monodentate rather than to bidentate mode[29]. This result is in agreement with the crystal structure. These indicate that the carboxylic acid groups were converted into carboxylate anions due to the formation of the stable complex[30].

    3. 3 Thermogravimetric analysis

    Thermogravimetric experiments were conducted to study the thermal stability of 1, which is an important parameter for metal-organic framework materials. As shown in Fig. 4, the first weight loss of 7.6% in the range of 132.7~201.6 ℃corresponds to the complete loss of four coordinated water molecules and three unbound water (calcd.: 8.2%). The main framework remains intact until heated to 338.5 ℃, and then releases all the ligands completely from 338.5 to 501.7 ℃,giving CuO as the final decomposition product with the residue percent of 14.3% (calcd.: 14.5%). The residual sample was characterized by X-ray powder diffraction (XRPD) at room temperature. As shown in Fig. 5, all diffraction peaks are in good agreement with the standard diffraction data for CuO (JCPDS card file No. 45-0937).

    Fig. 4. TG curve of complex 1

    Fig. 5. XPRD patterns of the residual and CuO

    3. 4 UV spectra

    The UV-vis spectra are used to study the interactions of compounds with CT-DNA. As exhibited in Fig. 6, the absorption spectra were recorded at room temperature at 200~300 nm by keeping the concentration of complex (1 ×10-5) while varying the CT-DNA concentration from 0, 2, 4, 6,8 and 10 mol·L-1. The absorbance of the complexes decreases obviously at 225 nm due to theπ-π* transition of the pyridine ring[31]. With increasing the concentration of CT-DNA, a red-shift and hypochromic effect could be observed in the absorption of complexes, which may be attributed to accumulation ofπelectrons with the base pairs in the DNA structure, resulting in the subtractive effect and red shift of the absorption spectra[32]. Therefore, these changes indicate the classical intercalation mode between the complex and CT-DNA[33].

    Fig. 6. Complex 1 of CT-DNA under UV spectra at different concentrations(compounds = 1 × 10-5 mol·L-1; 10-5 CDNA/(mol·L-1) 1~6: 0, 2, 4, 6, 8, 10)

    3. 5 EB-DNA binding study by fluorescence spectrum

    Fluorescence spectroscopy has been used to investigate the interaction between the complex and DNA using ethidium bromide (EB) as a probe. EB is often used as a probe for spectroscopy studies of interactions between DNA and potentially embedded species[34]. Competitive binding of the complex to DNA and EB will result in the displacement of bound EB and a decrease in the fluorescence intensity. This property can be used to monitor the binding mode by the ability of a compound to prevent the intercalation of EB from DNA. For the fluorescence quenching experiments of the ligand and complex 1, the EB solution was added to the prepared buffer solution of CT-DNA for 1 h and then added to the solution of the ligand and complex 1 from 0 to 10.3 μ mol·L-1. An excitation wavelength of 520 nm was used and the emission spectra were recorded at 520~700 nm range. The peaks of ligand and complex were at 615 and 617 nm,respectively. Fig. 7 shows the effects of the ligand and complex 1 by steady state fluorescence emission experiments.The fluorescence intensity of EB-DNA system is weakening along with increasing the concentration of the ligand and complex 1. It suggests that the compounds displaced EB from the CT-DNA-EB systems, and inserted into CT-DNA. In addition, the red shift of EB-DNA fluorescence peak occurred.It is caused by EB from the hydrophobic environment into hydrophilic, which further indicates that the tested compounds have intercalation with DNA[35].

    The classicalStern-Volmerequation is used to quantitatively determine the magnitude of the binding strength of the complex with CT-DNA[36]:

    I0/I=1 +Ksq R

    WhereKsqis a linear Stern-Volmer quenching constant andris the concentration ratio of the quencher to CT-DNA , andI0andIrepresent the fluorescence intensities in the absence and presence of the quencher, respectively. The binding constants (Ksq) reveal the strength of the interaction between CT-DNA and the compounds. In the quenching plots ofI0/Iversusr, theKsqvalues were given by slopes. Usually, a bigger binding constant means a greater binding affinity to the CT-DNA. Thus, theKsqvalue of complex 1 was 1.15, which is much higher than the ligand (0.76). The results show that the interactions of complex 1 with CT-DNA are stronger than the ligand probably due to the structure rigidity and metal-ligand synergism effect of 1[37]. In addition, the introduction of trifluoromethyl group enhances the water solubility and lipophilicity of complex 1, thereby heightening its biological activity[38].

    4 CONCLUSION

    In conclusion, a new complex [Cu1.5(tfc)3(H2O)4]·3H2O has been successfully synthesized from a novel picolinic acid ligand of Htfc = (4-(trifluoromethyl) nicotinic acid). The structure was characterized by X-ray single-crystal diffraction,elemental analysis, IR spectra and thermogravimetric analysis.The neighboring 1D chains are connected into a 2D structure through bridge connection from the tfc-ligands. In addition,the interactions of the ligand and 1 with CT-DNA have been investigated through fluorescence and ultraviolet spectra,which declared the intercalation mode of CT-DNA by the ligand and 1. The results were expected to give some significant insight into the interactions of transition metal complexes and CT-DNA, which show great reference value for a model of application for drug design.

    日本欧美国产在线视频| 久久ye,这里只有精品| 国内少妇人妻偷人精品xxx网站| 一级毛片aaaaaa免费看小| 久久久久网色| 一级a做视频免费观看| 国产精品国产三级专区第一集| 内射极品少妇av片p| av黄色大香蕉| 亚洲最大成人手机在线| 亚洲av电影在线观看一区二区三区 | 欧美日韩综合久久久久久| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| 少妇人妻 视频| 欧美日韩综合久久久久久| 精品视频人人做人人爽| 国产成人a∨麻豆精品| 亚洲性久久影院| 狂野欧美激情性bbbbbb| 国产欧美另类精品又又久久亚洲欧美| 国产老妇女一区| 欧美成人a在线观看| 97人妻精品一区二区三区麻豆| 国产老妇女一区| 亚洲不卡免费看| 禁无遮挡网站| 成人漫画全彩无遮挡| 国产精品av视频在线免费观看| 欧美激情国产日韩精品一区| 男人狂女人下面高潮的视频| 亚洲av.av天堂| 美女脱内裤让男人舔精品视频| 免费黄频网站在线观看国产| 色播亚洲综合网| 欧美精品国产亚洲| 久久久午夜欧美精品| 内射极品少妇av片p| 高清视频免费观看一区二区| 精品亚洲乱码少妇综合久久| 最后的刺客免费高清国语| 国产一区二区亚洲精品在线观看| 九草在线视频观看| 国产爽快片一区二区三区| 日本av手机在线免费观看| 五月伊人婷婷丁香| 人妻制服诱惑在线中文字幕| 欧美3d第一页| 国产高清国产精品国产三级 | 国产精品国产三级国产专区5o| 日韩强制内射视频| 人体艺术视频欧美日本| 成人美女网站在线观看视频| 18禁在线无遮挡免费观看视频| 精品久久久久久久久av| 美女主播在线视频| 插逼视频在线观看| 99热6这里只有精品| 国产亚洲最大av| 日日啪夜夜撸| 80岁老熟妇乱子伦牲交| 麻豆乱淫一区二区| 久久久久久久精品精品| 国产精品久久久久久精品电影| 国产成人精品久久久久久| 国产精品国产av在线观看| 狠狠精品人妻久久久久久综合| 亚洲精品成人av观看孕妇| 色哟哟·www| 久久久午夜欧美精品| 久久精品国产亚洲av涩爱| 晚上一个人看的免费电影| 亚洲aⅴ乱码一区二区在线播放| 亚洲av成人精品一二三区| 岛国毛片在线播放| 日本一本二区三区精品| 国产精品蜜桃在线观看| 国产精品99久久99久久久不卡 | 亚洲不卡免费看| 欧美另类一区| 午夜日本视频在线| 欧美潮喷喷水| 狂野欧美激情性bbbbbb| 成人漫画全彩无遮挡| 3wmmmm亚洲av在线观看| 白带黄色成豆腐渣| 老师上课跳d突然被开到最大视频| 国产精品嫩草影院av在线观看| 综合色av麻豆| 亚洲自拍偷在线| 久久久久久久久久久免费av| 涩涩av久久男人的天堂| 熟女人妻精品中文字幕| 色视频在线一区二区三区| av免费在线看不卡| 九九在线视频观看精品| 国产精品不卡视频一区二区| 日韩欧美一区视频在线观看 | 美女xxoo啪啪120秒动态图| 久久久亚洲精品成人影院| 色视频www国产| 一级毛片久久久久久久久女| 国产亚洲5aaaaa淫片| 国产高清不卡午夜福利| 久久久精品免费免费高清| 午夜爱爱视频在线播放| a级毛片免费高清观看在线播放| 精品久久久久久电影网| 日韩在线高清观看一区二区三区| 国产精品熟女久久久久浪| 久久综合国产亚洲精品| 国产精品久久久久久精品电影小说 | 亚洲人与动物交配视频| 一本久久精品| 91精品伊人久久大香线蕉| 亚洲成人精品中文字幕电影| 看十八女毛片水多多多| 亚洲人成网站高清观看| 国产精品一区www在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲成人av在线免费| 日本一本二区三区精品| 在线免费观看不下载黄p国产| 亚洲色图综合在线观看| 2018国产大陆天天弄谢| 国产精品秋霞免费鲁丝片| 神马国产精品三级电影在线观看| 大香蕉久久网| 别揉我奶头 嗯啊视频| 国产 精品1| 嫩草影院新地址| 精品午夜福利在线看| 国产真实伦视频高清在线观看| 夜夜看夜夜爽夜夜摸| 在线播放无遮挡| 九九爱精品视频在线观看| 色婷婷久久久亚洲欧美| 欧美成人a在线观看| 亚洲av.av天堂| 国产亚洲5aaaaa淫片| 亚洲色图av天堂| 日韩欧美一区视频在线观看 | 日韩一区二区三区影片| 日日摸夜夜添夜夜爱| 狂野欧美激情性xxxx在线观看| 久久精品国产自在天天线| 肉色欧美久久久久久久蜜桃 | 日本wwww免费看| 亚洲精品自拍成人| 伦理电影大哥的女人| 欧美老熟妇乱子伦牲交| 免费黄网站久久成人精品| 五月天丁香电影| 高清日韩中文字幕在线| 国产黄色免费在线视频| 国产白丝娇喘喷水9色精品| 亚洲av成人精品一区久久| 少妇 在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲激情五月婷婷啪啪| 国产伦理片在线播放av一区| 中文在线观看免费www的网站| 建设人人有责人人尽责人人享有的 | 国产精品久久久久久精品古装| 久久久精品94久久精品| 亚洲美女视频黄频| 国产精品无大码| 人人妻人人澡人人爽人人夜夜| 国产精品伦人一区二区| 少妇的逼好多水| 美女脱内裤让男人舔精品视频| 直男gayav资源| 精品久久久久久久久av| 免费观看av网站的网址| 新久久久久国产一级毛片| 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 国产 精品1| 亚洲欧洲国产日韩| 80岁老熟妇乱子伦牲交| 亚洲高清免费不卡视频| 日韩人妻高清精品专区| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx在线观看| 又大又黄又爽视频免费| 国产男女超爽视频在线观看| 免费看不卡的av| 91狼人影院| 国产精品国产av在线观看| 日韩一区二区视频免费看| 在线亚洲精品国产二区图片欧美 | 91狼人影院| 成年女人在线观看亚洲视频 | 国产成人精品久久久久久| .国产精品久久| 欧美激情国产日韩精品一区| 精品一区二区三卡| 黄色欧美视频在线观看| 国产精品伦人一区二区| 简卡轻食公司| 久久国内精品自在自线图片| 69av精品久久久久久| 一级毛片电影观看| 亚州av有码| 亚洲欧美成人综合另类久久久| 欧美亚洲 丝袜 人妻 在线| 精品国产一区二区三区久久久樱花 | 亚洲,欧美,日韩| 大又大粗又爽又黄少妇毛片口| 99久久人妻综合| 国产精品久久久久久久久免| 欧美xxxx性猛交bbbb| 婷婷色综合www| 性色avwww在线观看| 99九九线精品视频在线观看视频| av在线天堂中文字幕| 观看美女的网站| 男男h啪啪无遮挡| 日本爱情动作片www.在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕av成人在线电影| 中国美白少妇内射xxxbb| 女人久久www免费人成看片| 日韩,欧美,国产一区二区三区| 国产精品99久久久久久久久| 人妻 亚洲 视频| 青春草视频在线免费观看| 国产成人午夜福利电影在线观看| 日韩在线高清观看一区二区三区| 秋霞伦理黄片| 一级毛片aaaaaa免费看小| 亚洲,欧美,日韩| 国产成人一区二区在线| 亚洲欧美成人精品一区二区| av专区在线播放| 一个人看视频在线观看www免费| 99久久九九国产精品国产免费| 亚洲一区二区三区欧美精品 | 在线天堂最新版资源| 22中文网久久字幕| av播播在线观看一区| 免费av毛片视频| 自拍欧美九色日韩亚洲蝌蚪91 | 好男人视频免费观看在线| 午夜激情久久久久久久| 欧美日韩视频高清一区二区三区二| 中国国产av一级| 国产av国产精品国产| 观看美女的网站| 国产淫片久久久久久久久| av女优亚洲男人天堂| 下体分泌物呈黄色| 大片免费播放器 马上看| 一区二区三区乱码不卡18| 丰满少妇做爰视频| 最近2019中文字幕mv第一页| 国产精品国产三级国产专区5o| 免费看日本二区| 别揉我奶头 嗯啊视频| 乱码一卡2卡4卡精品| 美女被艹到高潮喷水动态| 在线播放无遮挡| 内射极品少妇av片p| 国产熟女欧美一区二区| 国产有黄有色有爽视频| 只有这里有精品99| 草草在线视频免费看| 天天躁夜夜躁狠狠久久av| 亚洲精品久久久久久婷婷小说| 亚洲精品成人久久久久久| 国产成年人精品一区二区| 青春草亚洲视频在线观看| 大片免费播放器 马上看| 在线免费十八禁| 久久国内精品自在自线图片| 亚洲精品国产av成人精品| 婷婷色综合www| 一级毛片久久久久久久久女| 97热精品久久久久久| 成人亚洲精品av一区二区| 国产成人一区二区在线| 久久热精品热| 一级毛片 在线播放| 综合色丁香网| 韩国高清视频一区二区三区| 午夜视频国产福利| 国产有黄有色有爽视频| 国产精品av视频在线免费观看| 色哟哟·www| 插阴视频在线观看视频| 日韩亚洲欧美综合| 禁无遮挡网站| 中文乱码字字幕精品一区二区三区| 国产精品熟女久久久久浪| 亚洲欧美中文字幕日韩二区| 水蜜桃什么品种好| 久久人人爽人人片av| 亚洲成人一二三区av| 中文乱码字字幕精品一区二区三区| 国产 精品1| 欧美丝袜亚洲另类| 亚洲欧美日韩另类电影网站 | 另类亚洲欧美激情| 一级毛片黄色毛片免费观看视频| 日韩伦理黄色片| 亚洲自偷自拍三级| 国产亚洲午夜精品一区二区久久 | 人妻系列 视频| 亚洲欧美一区二区三区国产| 超碰97精品在线观看| 蜜桃久久精品国产亚洲av| 亚洲欧美清纯卡通| 嫩草影院新地址| 国产成人免费无遮挡视频| 一级二级三级毛片免费看| 一区二区av电影网| 亚洲精品视频女| 男女边摸边吃奶| 日韩人妻高清精品专区| av在线蜜桃| 国内精品美女久久久久久| 久久女婷五月综合色啪小说 | 欧美成人精品欧美一级黄| 成人亚洲精品av一区二区| 老司机影院成人| 欧美xxxx黑人xx丫x性爽| 欧美zozozo另类| 18禁在线播放成人免费| 亚洲精品国产成人久久av| 国产一区二区亚洲精品在线观看| 九色成人免费人妻av| 美女xxoo啪啪120秒动态图| 噜噜噜噜噜久久久久久91| 国产精品爽爽va在线观看网站| 一区二区三区乱码不卡18| 精品久久久噜噜| 欧美xxⅹ黑人| 国产亚洲午夜精品一区二区久久 | 在线播放无遮挡| 亚洲av中文av极速乱| 亚洲av电影在线观看一区二区三区 | 又爽又黄无遮挡网站| 秋霞伦理黄片| 少妇人妻一区二区三区视频| 久久久久久久午夜电影| 久久久色成人| 别揉我奶头 嗯啊视频| 夫妻性生交免费视频一级片| 少妇丰满av| 欧美日韩视频高清一区二区三区二| 人妻少妇偷人精品九色| 真实男女啪啪啪动态图| 我的老师免费观看完整版| 少妇的逼好多水| 王馨瑶露胸无遮挡在线观看| 国产精品蜜桃在线观看| 色5月婷婷丁香| 汤姆久久久久久久影院中文字幕| 国产高清国产精品国产三级 | 国产精品久久久久久精品电影| 成人无遮挡网站| 国产综合懂色| 国产精品一区二区在线观看99| 亚洲精品成人久久久久久| 亚洲精品久久午夜乱码| 乱码一卡2卡4卡精品| 成人毛片60女人毛片免费| 亚洲欧美精品专区久久| 日本猛色少妇xxxxx猛交久久| 男人爽女人下面视频在线观看| 成年女人在线观看亚洲视频 | 青青草视频在线视频观看| 日韩一区二区三区影片| 欧美激情国产日韩精品一区| 少妇丰满av| 亚洲av免费高清在线观看| 成年女人在线观看亚洲视频 | 日韩av在线免费看完整版不卡| 少妇被粗大猛烈的视频| 久久久精品94久久精品| 国产中年淑女户外野战色| 黄色欧美视频在线观看| 噜噜噜噜噜久久久久久91| 色播亚洲综合网| 日本黄色片子视频| 国产美女午夜福利| 久久精品国产鲁丝片午夜精品| 三级男女做爰猛烈吃奶摸视频| 日本wwww免费看| 精品少妇久久久久久888优播| 国产亚洲av嫩草精品影院| 久久99热6这里只有精品| 又爽又黄无遮挡网站| 精品亚洲乱码少妇综合久久| 人妻 亚洲 视频| 欧美最新免费一区二区三区| 色网站视频免费| 男女边摸边吃奶| 精品久久久久久久久亚洲| 日韩中字成人| 亚洲国产欧美人成| 嫩草影院入口| 亚洲精品成人av观看孕妇| 久久久久久久亚洲中文字幕| 黄色配什么色好看| 汤姆久久久久久久影院中文字幕| 国产一区亚洲一区在线观看| 亚洲欧美清纯卡通| 亚洲国产精品国产精品| 日韩,欧美,国产一区二区三区| 国产一区二区三区av在线| 听说在线观看完整版免费高清| 久久久色成人| 直男gayav资源| 精品视频人人做人人爽| 国产黄a三级三级三级人| 高清av免费在线| 深爱激情五月婷婷| 综合色丁香网| av女优亚洲男人天堂| 小蜜桃在线观看免费完整版高清| 亚洲经典国产精华液单| 欧美精品一区二区大全| 五月伊人婷婷丁香| 亚洲av一区综合| 少妇熟女欧美另类| 熟女av电影| av.在线天堂| 久久久成人免费电影| 免费观看性生交大片5| 国产精品一区www在线观看| 国产欧美日韩精品一区二区| 成人亚洲精品一区在线观看 | 日韩一本色道免费dvd| 亚洲av福利一区| 国产免费视频播放在线视频| 建设人人有责人人尽责人人享有的 | 亚洲在线观看片| 国产高清不卡午夜福利| 亚洲国产精品专区欧美| 91久久精品国产一区二区成人| 亚洲久久久久久中文字幕| 欧美老熟妇乱子伦牲交| av在线观看视频网站免费| 两个人的视频大全免费| 欧美精品国产亚洲| 老司机影院成人| 国产成人精品一,二区| 日日啪夜夜撸| 婷婷色综合www| 高清视频免费观看一区二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲一级一片aⅴ在线观看| av在线观看视频网站免费| 亚洲美女视频黄频| 久久久久久伊人网av| 自拍欧美九色日韩亚洲蝌蚪91 | 插逼视频在线观看| 亚洲欧美精品自产自拍| 日韩av不卡免费在线播放| av在线观看视频网站免费| 亚洲成人中文字幕在线播放| av一本久久久久| 少妇 在线观看| 美女被艹到高潮喷水动态| 天天躁夜夜躁狠狠久久av| 亚洲内射少妇av| 少妇人妻精品综合一区二区| 人人妻人人爽人人添夜夜欢视频 | 女人十人毛片免费观看3o分钟| 日日啪夜夜爽| 永久免费av网站大全| 精品久久久久久久末码| 蜜桃亚洲精品一区二区三区| 99精国产麻豆久久婷婷| 久久精品综合一区二区三区| 简卡轻食公司| 十八禁网站网址无遮挡 | 午夜免费观看性视频| 两个人的视频大全免费| 九色成人免费人妻av| 简卡轻食公司| 小蜜桃在线观看免费完整版高清| 久久精品人妻少妇| 搡老乐熟女国产| 超碰97精品在线观看| 搞女人的毛片| 久久久久久伊人网av| 精品一区二区三区视频在线| 午夜视频国产福利| 久久99精品国语久久久| 舔av片在线| 国产v大片淫在线免费观看| 久久久久久久久久人人人人人人| 国国产精品蜜臀av免费| 国产爽快片一区二区三区| 久久人人爽人人片av| av在线亚洲专区| 久久精品国产自在天天线| 国产淫片久久久久久久久| 久久精品国产亚洲av涩爱| 亚洲国产欧美人成| 少妇裸体淫交视频免费看高清| 特大巨黑吊av在线直播| av.在线天堂| 国产成人免费无遮挡视频| 青春草视频在线免费观看| 精品久久久久久电影网| 久久久久性生活片| 三级男女做爰猛烈吃奶摸视频| 精品一区在线观看国产| 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| 一级毛片久久久久久久久女| 国产精品麻豆人妻色哟哟久久| 午夜福利在线在线| 婷婷色综合www| 成人免费观看视频高清| 久久精品综合一区二区三区| 国产乱人偷精品视频| 中文欧美无线码| 97精品久久久久久久久久精品| 99视频精品全部免费 在线| 亚洲av一区综合| 成人欧美大片| 国产精品人妻久久久影院| 国产欧美日韩一区二区三区在线 | 美女高潮的动态| 亚洲精品日韩在线中文字幕| 成人美女网站在线观看视频| 精品国产露脸久久av麻豆| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 2021天堂中文幕一二区在线观| 在线 av 中文字幕| 亚洲va在线va天堂va国产| 亚洲不卡免费看| 少妇被粗大猛烈的视频| 国产精品一二三区在线看| 国产免费一级a男人的天堂| 欧美成人一区二区免费高清观看| 特级一级黄色大片| 亚洲精品国产成人久久av| 久久这里有精品视频免费| 777米奇影视久久| 国产色爽女视频免费观看| 少妇人妻 视频| 亚洲精品国产av蜜桃| 深夜a级毛片| 水蜜桃什么品种好| 在线看a的网站| 插阴视频在线观看视频| 老司机影院毛片| 欧美激情在线99| 成人高潮视频无遮挡免费网站| 欧美性猛交╳xxx乱大交人| 日韩电影二区| 亚洲内射少妇av| 国产色婷婷99| 国产日韩欧美亚洲二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人爽女人下面视频在线观看| 人人妻人人澡人人爽人人夜夜| 美女xxoo啪啪120秒动态图| 高清视频免费观看一区二区| 嫩草影院精品99| 亚洲人成网站在线观看播放| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱久久久久久| 99久久人妻综合| 国产黄频视频在线观看| 国产精品一区www在线观看| 一个人看的www免费观看视频| 超碰av人人做人人爽久久| 欧美潮喷喷水| 日日撸夜夜添| 99热这里只有精品一区| 午夜福利在线在线| 最近的中文字幕免费完整| 亚洲电影在线观看av| 午夜老司机福利剧场| 看十八女毛片水多多多| 欧美性感艳星| 久久这里有精品视频免费| 国产男女内射视频| 国产淫语在线视频| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 国产伦精品一区二区三区视频9| 亚洲成人一二三区av| 男女边摸边吃奶| 日本欧美国产在线视频| 国产精品一区二区性色av| 国产亚洲av嫩草精品影院| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 欧美xxⅹ黑人| 日本色播在线视频| av在线天堂中文字幕| 特级一级黄色大片| 69av精品久久久久久| 精品国产露脸久久av麻豆| 久久国内精品自在自线图片| 伊人久久精品亚洲午夜| freevideosex欧美| 国产视频内射| 亚洲成人中文字幕在线播放| 国产精品久久久久久久久免| av国产免费在线观看| 内地一区二区视频在线| 九九久久精品国产亚洲av麻豆| 新久久久久国产一级毛片| 国产精品人妻久久久影院| 青春草视频在线免费观看|