• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural and Magnetic Characterization of Two New Coordination Compounds Based on a Fluorene Derivative Ligand①

    2022-03-12 07:44:54YANGQingFengYUEKiWANGZhiHuiLAIXioYongWANGXioZhongQINLing
    結(jié)構(gòu)化學 2022年2期

    YANG Qing-Feng YUE Ki WANG Zhi-Hui LAI Xio-Yong WANG Xio-Zhong QIN Ling

    a (State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China)

    b (Chongqing Changfeng Chemical Industrial Co., Ltd., Chongqing 401220, China)

    ABSTRACT Two new coordination compounds [Co(FDC)2(H2O)2]n (1) and [Cu(FDC)2(2,2?-bpy)]·DMF·H2O(2) (HFDC = 9-fluorenone-4-carboxylic acid, bpy = 2,2?-bipyridine, DMF = N,N-dimethylformamide) were prepared by the reactions of corresponding metal salts with a fluorene derivative ligand of HFDC. Both compounds were thoroughly analyzed by X-ray single-crystal diffraction, elemental analysis, IR spectra, PXRD and thermal analysis. Compound 1 features a 1D structure. Via two kinds of O-H···O hydrogen bonds, such 1D chains self-assemble into a 3D supramolecular structure stabilized by the offset face-to-face π···π interactions.Compound 2 features a dinuclear structure which, via O-H···O and C-H···O hydrogen bonds, self-assembles into a 2D supramolecular layer strengthened by strong face-to-face π···π interactions. And variable-temperature magnetic susceptibilities of 1 and 2 indicate weak antiferromagnetic interactions between the Co(II) and Cu(II)metal ions.

    Keywords: low-dimensional coordination compounds, fluorene derivative, magnetic properties;

    1 INTRODUCTION

    Molecular magnetism is an interdisciplinary field of research that has attracted great attention for decades, with studies focusing on revealing the diverse magnetic phenomena in molecular systems, understanding the underlying physics, and constructing new magnetic materials with potential applications[1-3]. The most extensively studied systems are the metal coordination compounds in which paramagnetic metal ions are linked by short bridging groups into finite-sized polynuclear clusters or “infinite” coordination polymers[4-8]. The variety of the structures relies on the presence of suitable metal-ligand interactions and supramolecular contacts, which is directly related to the coordination characteristics of the components, such as the charge and radius of metal ions, the amount of dentate and steric hindrance of the ligands, etc[9,10].

    In general, the magnetic CPs are synthesizedviaa bottom-up approach using paramagnetic metal ions and/or metal clusters as building blocks linked by suitable bridging ligands, which can ef fi ciently transmit magnetic couplings between each metal ions[11,12]. The short bridging ligands,such as cyanide, carboxylate and azide, as ef fi cient magnetic transmitting ligands, are dominant in the literature[13-18].Thus, enormous efforts on magnetic CPs have been focused on the design of suitable organic ligands and the coordination tendencies of metal centers for the building of diversi fi ed extended networks with interesting magnetic properties. The N-heterocyclic ligands, such as triazole and tetrazole, are also receiving considerable attention for the preparation of new magnetic CPs[19,20].

    Fluorene is a rigid planar structure composed of two directional benzene rings connected through a C-C single bond and a bridged methylene group[21]. The acceptance of methylene group makes the two benzene rings coplanar,which increases their orbital overlap, and also increases the degree of conjugation of the entire system[22,23]. Fluorene has active sites at 2, 4, 5, and 7 positions, which are prone to electrophilic substitution reactions, thus making it easy to obtain a variety of derivatives with a wide range of applications[24-26]. By introducing interactions between heteroatoms andπ-conjugated systems, the electronic structure of plutonium can be changed, and the modifiability of plutonium structure can be increased. However, CPs based on the fluorene derivative have been rarely reported up to now.

    Herein, we report two new HFDC-based coordination compounds [Co(FDC)2(H2O)2]n(1) and [Cu(FDC)2(2,2?-bpy)]·DMF·H2O (2) prepared by solution-diffusion synthesis method, featuring 1D chain and dinuclear structures, respectively. Their preparation, spectroscopic and structural characterization together with their variable-temperature magnetic study are the subject of the present work.

    2 EXPERIMENTAL

    2. 1 Materials and physical measurements

    All chemicals were of reagent grade, obtained from commercial sources and used without further purification.Elemental analyses for C, H and N were performed with a Perkin-Elmer 2400 LS II element analyzer. The FT-IR spectra were recorded in the range of 400~4000 cm-1on a Perkin-Elmer Spectrum Two FT-IR spectrometer by the dry KBr disks. PXRD data were collected using a D8 Advance A25 diffractometer with Cu-Kαradiation (λ= 1.54060 ?).Thermogravimetric (TG) behaviour was investigated with a Setsys 16 instrument at a heating rate of 10 °C·min-1in air.Fluorescent data were obtained from a Hitachi F-7000 instrument at room temperature. Magnetic measurement was carried out with a SQUID-VSM magnetometer in a field of 1000 Oe.

    2. 2 Syntheses of compounds 1 and 2

    [Co(FDC)2(H2O)2]n1. Organic ligand HFDC (22 mg, 0.1 mmol) was completely dissolved in N,N-dimethylformamide(DMF) (4 mL) and put on the bottom of a test tube. Then,ethanol solution (v/v = 1:1, 6 mL) was layered on the former.Finally, Co(NO3)2·6H2O (30 mg, 0.1 mmol) was dissolved in ethanol (4 mL), and carefully layered on the top. It was then allowed to stand at room temperature over three weeks. After being washed with distilled water at ambient temperature,orange crystals were obtained in a yield of 47.6% based on Co. Analysis calcd. (%) for C28H18CoO8(Mr= 541.35): C,62.07; H, 3.33. Found (%): C, 61.72; H, 3.17. IR (cm-1):3387 (br., m), 1704 (s), 1610 (s), 1589 (s), 1570 (s), 1468(m), 1455 (w), 1405 (s), 1307 (w), 1250 (w), 1126 (s), 959(m), 871 (w), 802 (w), 770 (w), 731 (s), 618 (m), 455(w).

    [Cu(FDC)2(2,2?-bpy)]·DMF·H2O 2. Compound 2 was synthesized by a method similar to that of 1, except that bpy(16 mg, 0.1 mmol) was also added into DMF. It was then kept at room temperature over three weeks, and green crystals were obtained. Green crystals were obtained in a yield of 48.7% based on Cu after washing with distilled water at ambient temperature. Analysis calcd. (%) for C41H31CuN3O8(Mr= 757.26): C, 64.97; H, 4.09; N, 5.55.Found (%): C, 64.71; H, 3.83; N, 5.31. IR (cm-1): 3426 (br.,m), 1710 (s), 1665 (m), 1602 (m), 1445 (m), 1373 (w), 1352(w), 1303 (w), 1165 (w), 960 (w), 872 (w), 638 (w), 618 (w),488 (w), 482 (w), 474 (w).

    2. 3 X-ray crystal structure determination

    All data of 1 and 2 were collected at 293 K with a Rigaku R-AXIS RAPID IP diffractometer (MoKα,λ= 0.71073 ?).With the SHELXTL program[27], the structures of 1 and 2 were solved by direct methods and refined by full-matrix least-squares techniques[28]. All the non-hydrogen atoms were refined anisotropically. For 1, all the hydrogen atoms of FDC-and O(2W) were generated geometrically, while those of O(1W) were located from the difference Fourier maps. The hydrogen atoms of 2 were generated geometrically. The relevant crystallographic data of compounds 1 and 2 are listed in Table 1. Selected bond lengths and bond angles are given in Table 2.

    Table 1. Crystallographic Data for Compounds 1 and 2

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for Compounds 1 and 2

    3 RESULTS AND DISCUSSION

    3. 1 Structural description of compounds 1 and 2

    The single-crystal X-ray diffraction analyses reveal that 1 crystallizes in the triclinic system withPspace group. The asymmetric unit consists of two Co2+ions (Co(1) and Co(2);occupancy ratio: 0.5 for each), two FDC-ligands and two coordinating water molecules. As shown in Fig. 1a, both Co(1) and Co(2) are located in a six-coordinated octahedral coordination environment. Co(1) is surrounded by four carboxylate O atoms from two FDC-ligands (O(4), O(4)#1,O(5), O(5)#1, symmetry code: #1: 1-x, 1-y, 1+z) and two water molecules (O(1W), O(1W)#1), while Co(2) is surrounded by two carboxylate O atoms (O(3), O(3)#1) and four water molecules (O(1W), O(1W)#2, O(2W), O(2W)#2,symmetry code: #2: -x, 1-y, 1-z). The Co-O distances change from 1.908(9) to 2.392(1) ? falling in a normal range[29]. As shown in Fig. 1b, the adjacent Co2+ions are linked into an infinite 1D chain along theaaxis through two O atoms (O(4), O(3)) of one FDC-ligand and one coordinating water (O1W). A detailed structural analysis reveals the neighboring 1D chains are further connected into 2D supramolecular layers parallel to theacplane through O(2W)-H(1W)···O(1) hydrogen bonds (O(2W)···O(1)#3 =2.8260(9) ?, O(2W)-H(1W)···O(1)#3 = 166°, symmetry code: #3: -x, 1-y, 2-z) andπ···πstacking interaction with the distance of 3.507 ? (Fig. 1c, Tables 3 and 4). Finally, the adjacent layers are further connected to be a 3D supramolecular structure (Fig. 3)viaO(1W)-H(3W)···O(2) hydrogen bonds (O(1W)···O(2)#2 = 2.7426(7) ?, O(1W)-H(3W)···O(2)#2 = 178°, symmetry code: #4:x, 1+y,z)(Table 3). It is worth noting that there exist two kinds ofπ···πstacking interactions between intermolecular FDCligands with the distances of 3.405 and 3.492 ?,respectively, which strengthen the 3D supramolecular structure of 1 (Table 4).

    Fig. 1. a) Coordination environment of the Co2+ in 1; b) 1D chain structure of 1; c) 2D layer of 1 formed via intermolecular O(2W)-H(1W)···O(1) hydrogen bonds and π···π interaction

    Single-crystal X-ray diffraction analysis reveals that compound 2 crystallizes in the triclinic system withPspace group. The asymmetric unit is composed of one Cu2+ion, two FDC-ligands and one bpy. As shown in Fig. 2a, a centrosymmetric dinuclear structure appears. The Cu(1)center adopts a distorted square pyramidal geometry con fi guration, completed by three oxygen atoms (O(4), O(6),O(4)#1 and O(6)#1 from two different FDC-ligands,symmetry code: #1, 1-x, 1-y, -z) and two nitrogen atoms(N(2) and N(3) from a bpy ligand). The Cu-O bond lengths are observed in the range of 1.985(18)~2.420(19) ? within the normal range[30], and Cu(1)-N(2) is 2.009(2) ? and Cu(1)-N(3) is 2.019(2) ?. And Cu(1) and Cu(1)#1 are bridged by O(6) and O(6)#1 atoms from different ligands in the dinuclear structure unit. As shown in Fig. 2b, the adjacent dinuclear structure units are linked into a 1D chain along theaaxis through intermolecular hydrogen bonds(O(1W)···O(5) = 2.8700(9) ?, O(1W)-H(1W)···O(5) =174°, O(1W)···O(7) = 3.0072(7) ?, O(1W)-H(1W)···O(7)#1 = 173°, #1: -1+x,y,z). It is worthy of note that there existπ···πstacking interactions between intermolecular bpy with distance of 3.288 ?, which stabilizes the 1D chain. AndviaC(41)-H(41)···O(1W) and C(39W)-H(39)···O(2) (C(41)···O(1W)#2 = 3.5704(12) ?,C(41)-H(41)···O(1W)#2 = 162°, C(39)···O(2) = 3.3192(10)?, C(39)-H(39)···O(2) = 132°, #2: 2-x, 2-y, 1-z) hydrogen bonds, the neighboring 1D chains are connected into a 2D supramolecular layer.

    Fig. 2. a) Molecular structure of compound 2; b) 1D chain of compound 2 along the a axis formed via O(1W)-H(1Wb)···O(7) hydrogen bond;c) 2D supramolecular layer of compound 2 parallel to the ab plane formed via C(41)-H(41)···O(1W) and C(39)-H(39)···O(2) hydrogen bonds

    Fig. 3. 3D supramolecular structure of 2 formed via O(1W)-H(3W)···O(2) hydrogen bonds and π···π interactions

    Table 3. Hydrogen-bonded Parameters for Compounds 1 and 2

    Table 4. Selected π···π Interaction Arrangement for 1 (Plane-to-plane Distance (d), Dihedral Angles (α), Centroid Distance (c))

    Table 5. Selected π···π Interactions Arrangement for 2 (Plane-to-plane Distance (d), Dihedral Angles (α), Centroid Distance (c))

    4 CHARACTERIZATION

    4. 1 Infrared (IR) spectroscopy and powder X-ray diffraction (PXRD)

    As shown in Fig. 4, the shapes of the IR spectra of compounds 1 and 2 are roughly similar. The IR spectra of compound 1 and 2 showed strong peaks positioned at 1707 cm-1, which can be attributed to the stretching vibration peak ofv(CO) in the HFDC ligand, indicating that the carboxyl group of the HFDC ligand is coordinated with the metal ion.The peak of the compounds at about 3430 cm-1can be due to the loss of hydrogen ion of the -COOH group of the HFDC ligand, which leads to the weakening of the stretching vibration peak of the O-H bond. The infrared peaks around 1445 and 872 cm-1in compound 2 are attributed to the stretching vibration peak of the C=C double bond and the out-of-plane bending vibration peak of the C-H bond of 2,2?-bpy, indicating this 2,2?-bpy is coordinated with Cu2+ions.

    To confirm the phase purity of compounds 1 and 2, PXRD experiments have been carried out at room temperature. As shown in Fig. 5, the experimental PXRD pattern for each compound is in accord with the simulated one generated based on structural data, demonstrating the phase purity of 1 and 2.

    Fig. 4. IR spectra of compounds 1 and 2

    Fig. 5. Experimental (red) and simulated (blue) powder XRD patterns for compounds 1 and 2

    4. 2 Thermal stability analysis

    To estimate the thermostability of compounds 1 and 2,thermogravimetric (TG) analyses in purified air were performed and the TG curves are listed in Fig. 6.Compounds 1 and 2 both underwent two steps of weight loss.From the TG curve of compound 1, the first step of weight loss of 6.65% in the range of 30~266 °C is ascribed to the departure of two coordinated water molecules (calcd. 6.66%)per formula unit. The second loss above 266 °C is attributable to the collapse of the whole structure, and the remaining weight of 14.30% corresponds to the percentage (13.84%) of Co and O components, indicating that the final residue may be CoO. The TG curve of compound 2 shows weight loss of 11.49% (calcd. 12.01%) in the range of 30~185 °C due to the loss of one water molecule and one DMF molecule, and then no obvious weight loss is observed until the collapse of the framework at 531 °C, indicating its good thermal stability. The TG curves show that compounds 1 and 2 possess good thermal stability.

    Fig. 6. TGA curves of compounds 1 and 2

    4. 3 Magnetic properties of compounds 1 and 2

    The temperature-dependent magnetic susceptibility was investigated for the crystalline samples of compounds 1 and 2 in the range of 2~300 K with a 1000 Oe applied field. Fig. 7 shows the χMTvs.T and χM-1vs. T curves of compounds 1 and 2. For 1, the χMT value is 0.00316 cm3mol-1K at 300 K,which is smaller than the expected value for two uncoupled high-spin Co(II) ions. As the temperature decreases, the χMT value increases slightly until a maximum value of 0.00302 cm3·mol-1appears at 123.9 K, and then suddenly decreases to 0.00177 cm3·mol-1at 8 K (Fig. 7a). The χMT value decrease with a decreasing temperature indicates the presence of antiferromagnetic interaction between the Co2+ions in compound 1. As shown in Fig. 7b, the observed χMT value of compound 2 at room temperature is 1.0169 cm3·mol-1·K,which is smaller than the expected spin-only value of 1.88 cm3·mol-1·K. Upon cooling, the value of χMT decreases smoothly to a value of 0.8248 cm3·mol-1·K at 60 K. And with further cooling, the sample undergoes a rapid decrease in χMT, reaching 0.4464 cm3·mol-1·K at 2 K. This is a classical magnetic behavior with an antiferromagnetic order,which indicates the antiferromagnetic interactions between the Cu(II) ions. As shown in Fig. 7, The magnetic susceptibilities (χM-1) are well fitted by the Curie-Weiss law in the temperature range of 2~300 K for 1 and 2, thus giving a negative Weiss constantθ= -14.6 K and C = 0.00335 emu·mol-1·K for 1 andθ= -0.099 K and C = 0.101 emu·mol-1·K for 2, confirming the overall intracluster antiferromagnetic interactions again in compounds 1 and 2.

    Fig. 7. Temperature dependence of the χMT vs. T and χM-1 vs. T values of compounds 1 and 2 (The red solid lines are the Curie-Weiss law)

    5 CONCLUSION

    Two coordination compounds based on HFDC ligand with different structures have been synthesized and structurally characterized. Their structures, thermal stabilities and magnetism have been investigated. X-ray single-crystal diffraction analysis reveals that compound 1 features 1D chain structures which further extend into a 3D supramolecular network through hydrogen bonds andπ···πinteractions; compound 2 exhibits dinuclear structures which are connected into a 2D layerviahydrogen bonds andπ···πinteractions. The research on magnetic properties shows that there exist antiferromagnetic interactions between Co(II) and Cu(II) metal ions. Furthermore, the successful syntheses of these two new compounds may provide a useful method to the design and synthesis of novel low-dimensional magnetic CPs.

    亚洲精品色激情综合| 亚洲国产欧美一区二区综合| 成人午夜高清在线视频| 两个人视频免费观看高清| 在线观看日韩欧美| 美女扒开内裤让男人捅视频| 男男h啪啪无遮挡| 色老头精品视频在线观看| 午夜两性在线视频| 午夜福利18| 久久国产乱子伦精品免费另类| 日韩精品青青久久久久久| 欧美在线黄色| 俄罗斯特黄特色一大片| 禁无遮挡网站| 成人三级做爰电影| 日韩国内少妇激情av| 成人av一区二区三区在线看| 岛国视频午夜一区免费看| 欧美在线一区亚洲| 夜夜夜夜夜久久久久| 国内精品久久久久精免费| 国产精品98久久久久久宅男小说| 日韩 欧美 亚洲 中文字幕| 久久久久久大精品| 在线观看日韩欧美| 啦啦啦韩国在线观看视频| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 极品教师在线免费播放| 大型av网站在线播放| 国产成人精品无人区| 母亲3免费完整高清在线观看| 母亲3免费完整高清在线观看| 最近最新中文字幕大全免费视频| 一个人免费在线观看电影 | 亚洲中文字幕日韩| 日本黄色视频三级网站网址| www.自偷自拍.com| 国内揄拍国产精品人妻在线| 国产精品久久久人人做人人爽| 久久中文看片网| 老汉色av国产亚洲站长工具| 搡老妇女老女人老熟妇| av免费在线观看网站| 99久久国产精品久久久| 禁无遮挡网站| 久久这里只有精品中国| 不卡av一区二区三区| 麻豆久久精品国产亚洲av| 色在线成人网| 亚洲精品美女久久久久99蜜臀| 琪琪午夜伦伦电影理论片6080| 香蕉av资源在线| www日本黄色视频网| av在线播放免费不卡| 日本五十路高清| av中文乱码字幕在线| 老熟妇仑乱视频hdxx| 亚洲午夜理论影院| 一级毛片女人18水好多| 亚洲欧洲精品一区二区精品久久久| 亚洲男人的天堂狠狠| 99久久综合精品五月天人人| x7x7x7水蜜桃| 狂野欧美白嫩少妇大欣赏| 久久精品成人免费网站| 中亚洲国语对白在线视频| 亚洲欧美一区二区三区黑人| 一夜夜www| 亚洲人成77777在线视频| 国产一区二区三区在线臀色熟女| 日本精品一区二区三区蜜桃| 亚洲成人国产一区在线观看| 久久99热这里只有精品18| 99热只有精品国产| 他把我摸到了高潮在线观看| 久久精品国产清高在天天线| 亚洲片人在线观看| 伊人久久大香线蕉亚洲五| 婷婷精品国产亚洲av| 淫妇啪啪啪对白视频| 观看免费一级毛片| 啦啦啦韩国在线观看视频| 在线观看舔阴道视频| 亚洲中文字幕日韩| 久久精品人妻少妇| 好男人电影高清在线观看| 神马国产精品三级电影在线观看 | 嫩草影院精品99| 俄罗斯特黄特色一大片| 日日干狠狠操夜夜爽| 久久人妻福利社区极品人妻图片| 久久中文字幕人妻熟女| 亚洲av第一区精品v没综合| 老鸭窝网址在线观看| a级毛片在线看网站| 99在线视频只有这里精品首页| 亚洲五月天丁香| 成人手机av| 免费在线观看亚洲国产| 亚洲第一电影网av| 在线观看舔阴道视频| 国产精品99久久99久久久不卡| 嫩草影视91久久| 亚洲成人精品中文字幕电影| 亚洲专区国产一区二区| 亚洲国产看品久久| 丰满人妻一区二区三区视频av | 免费看日本二区| 校园春色视频在线观看| 国产日本99.免费观看| 99久久精品国产亚洲精品| 国产99久久九九免费精品| 亚洲自偷自拍图片 自拍| 老汉色∧v一级毛片| 男女午夜视频在线观看| 男女做爰动态图高潮gif福利片| 亚洲av成人av| av视频在线观看入口| 欧美乱妇无乱码| 久久精品国产99精品国产亚洲性色| 淫妇啪啪啪对白视频| 亚洲国产日韩欧美精品在线观看 | 岛国视频午夜一区免费看| 国产精品精品国产色婷婷| 欧美一区二区国产精品久久精品 | 亚洲成a人片在线一区二区| 热99re8久久精品国产| 精品午夜福利视频在线观看一区| 久久人妻av系列| 精品久久蜜臀av无| 国产视频内射| 国产成人啪精品午夜网站| 精品国产乱子伦一区二区三区| 欧美乱码精品一区二区三区| 国产精品99久久99久久久不卡| 亚洲一区二区三区色噜噜| 午夜视频精品福利| 国产真人三级小视频在线观看| 国产精品,欧美在线| 精品免费久久久久久久清纯| bbb黄色大片| 欧美另类亚洲清纯唯美| 亚洲欧美日韩高清在线视频| 国产精品1区2区在线观看.| 人妻夜夜爽99麻豆av| 欧美丝袜亚洲另类 | 亚洲国产精品成人综合色| 青草久久国产| svipshipincom国产片| 白带黄色成豆腐渣| 国产精品免费视频内射| 午夜福利在线在线| 午夜两性在线视频| 免费在线观看成人毛片| 午夜久久久久精精品| 中文资源天堂在线| 婷婷亚洲欧美| 好男人电影高清在线观看| 久久久水蜜桃国产精品网| 亚洲av第一区精品v没综合| 可以在线观看的亚洲视频| 99热这里只有精品一区 | 国产亚洲精品av在线| 国产精品一区二区精品视频观看| 搡老岳熟女国产| 中文字幕av在线有码专区| 高潮久久久久久久久久久不卡| 亚洲精品一卡2卡三卡4卡5卡| 亚洲全国av大片| 两个人免费观看高清视频| 免费高清视频大片| 露出奶头的视频| 亚洲熟妇中文字幕五十中出| 亚洲国产精品成人综合色| 日韩有码中文字幕| 久久国产精品人妻蜜桃| 欧美高清成人免费视频www| 亚洲 国产 在线| 国产欧美日韩精品亚洲av| 90打野战视频偷拍视频| x7x7x7水蜜桃| 国产精品野战在线观看| 亚洲av中文字字幕乱码综合| www.自偷自拍.com| 丰满的人妻完整版| 国产精品av久久久久免费| 成人手机av| 欧美成人免费av一区二区三区| 亚洲国产欧美网| ponron亚洲| 久久香蕉国产精品| 久久午夜亚洲精品久久| 久久人妻av系列| 黑人巨大精品欧美一区二区mp4| 此物有八面人人有两片| 长腿黑丝高跟| 亚洲国产欧美一区二区综合| 久久久久性生活片| 国产片内射在线| 亚洲av五月六月丁香网| 亚洲国产看品久久| 国产高清有码在线观看视频 | 超碰成人久久| 亚洲国产精品sss在线观看| 久久久久久国产a免费观看| 欧美乱妇无乱码| 97超级碰碰碰精品色视频在线观看| 中出人妻视频一区二区| 曰老女人黄片| 亚洲国产看品久久| 亚洲五月天丁香| 久久人妻av系列| 精品国产超薄肉色丝袜足j| 亚洲,欧美精品.| 亚洲九九香蕉| 国产高清有码在线观看视频 | 欧美在线一区亚洲| 成年人黄色毛片网站| 午夜激情福利司机影院| 性欧美人与动物交配| 脱女人内裤的视频| 亚洲中文字幕一区二区三区有码在线看 | 国产又黄又爽又无遮挡在线| 午夜激情av网站| 午夜免费成人在线视频| 国产精品精品国产色婷婷| 欧美成狂野欧美在线观看| 国产精品永久免费网站| 亚洲av片天天在线观看| 999精品在线视频| 美女午夜性视频免费| 亚洲一码二码三码区别大吗| 给我免费播放毛片高清在线观看| 国内久久婷婷六月综合欲色啪| 亚洲熟女毛片儿| 五月伊人婷婷丁香| 久久久精品欧美日韩精品| 色播亚洲综合网| 丰满人妻熟妇乱又伦精品不卡| 女人爽到高潮嗷嗷叫在线视频| 曰老女人黄片| 午夜免费成人在线视频| 88av欧美| 久久久久久久精品吃奶| 亚洲欧美日韩高清专用| 精品一区二区三区av网在线观看| 午夜激情av网站| 国产不卡一卡二| 国产一区二区三区在线臀色熟女| 国产成人av教育| 亚洲 欧美一区二区三区| 91字幕亚洲| 国产一区二区在线av高清观看| 在线观看日韩欧美| 男男h啪啪无遮挡| 亚洲真实伦在线观看| 99热只有精品国产| 好男人在线观看高清免费视频| 男女那种视频在线观看| 一二三四在线观看免费中文在| 精华霜和精华液先用哪个| 精品国产乱码久久久久久男人| 久久久久性生活片| 国产亚洲精品av在线| 国产99白浆流出| 日韩欧美精品v在线| www日本黄色视频网| av超薄肉色丝袜交足视频| 成人三级做爰电影| 成年版毛片免费区| 亚洲成人国产一区在线观看| 成人av在线播放网站| 91九色精品人成在线观看| av天堂在线播放| 香蕉丝袜av| 国产成人av教育| 国产1区2区3区精品| 日本免费一区二区三区高清不卡| 美女免费视频网站| 叶爱在线成人免费视频播放| 女人被狂操c到高潮| 精品福利观看| av欧美777| 亚洲狠狠婷婷综合久久图片| 后天国语完整版免费观看| 窝窝影院91人妻| 久久欧美精品欧美久久欧美| av在线天堂中文字幕| 欧美中文综合在线视频| 不卡av一区二区三区| 亚洲av美国av| tocl精华| 怎么达到女性高潮| 嫩草影视91久久| 少妇裸体淫交视频免费看高清 | 欧美精品啪啪一区二区三区| 国产精品久久久人人做人人爽| 久久久国产成人免费| 真人做人爱边吃奶动态| 国产男靠女视频免费网站| 狠狠狠狠99中文字幕| 伦理电影免费视频| 亚洲成人久久性| 两个人免费观看高清视频| 香蕉国产在线看| 亚洲av片天天在线观看| 国产精品香港三级国产av潘金莲| 俺也久久电影网| 欧美成人免费av一区二区三区| 麻豆一二三区av精品| 久久久久久久午夜电影| 成年女人毛片免费观看观看9| 国产乱人伦免费视频| 黄片小视频在线播放| 黄色片一级片一级黄色片| 韩国av一区二区三区四区| 国产亚洲精品第一综合不卡| 最近最新免费中文字幕在线| 久久久精品大字幕| 男女午夜视频在线观看| 毛片女人毛片| 天天一区二区日本电影三级| 老汉色av国产亚洲站长工具| 久久九九热精品免费| 中文字幕高清在线视频| 97人妻精品一区二区三区麻豆| 丝袜人妻中文字幕| 可以在线观看毛片的网站| 美女午夜性视频免费| 久久午夜亚洲精品久久| 欧美乱色亚洲激情| 美女高潮喷水抽搐中文字幕| 禁无遮挡网站| 国产伦在线观看视频一区| 99re在线观看精品视频| 日本一区二区免费在线视频| 国产成+人综合+亚洲专区| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影免费在线| 无限看片的www在线观看| 午夜福利18| 久久久久九九精品影院| 日本熟妇午夜| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 欧美日韩瑟瑟在线播放| 国产精品一区二区三区四区久久| 别揉我奶头~嗯~啊~动态视频| 99精品在免费线老司机午夜| 最好的美女福利视频网| 91成年电影在线观看| 成人18禁在线播放| 嫩草影视91久久| 99riav亚洲国产免费| 精品国内亚洲2022精品成人| 男女午夜视频在线观看| 毛片女人毛片| 老司机深夜福利视频在线观看| 亚洲精品美女久久久久99蜜臀| 两人在一起打扑克的视频| 悠悠久久av| 久久亚洲真实| 中文资源天堂在线| 19禁男女啪啪无遮挡网站| 级片在线观看| 久久国产乱子伦精品免费另类| 久久九九热精品免费| 91在线观看av| 宅男免费午夜| 精品午夜福利视频在线观看一区| 亚洲 国产 在线| 黄片大片在线免费观看| 黄色毛片三级朝国网站| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 妹子高潮喷水视频| 免费观看人在逋| 日日爽夜夜爽网站| 婷婷六月久久综合丁香| 国产精华一区二区三区| 少妇熟女aⅴ在线视频| 久久婷婷人人爽人人干人人爱| 亚洲欧美激情综合另类| 久久精品91蜜桃| 亚洲欧美一区二区三区黑人| 国产激情偷乱视频一区二区| 国产私拍福利视频在线观看| 欧美中文日本在线观看视频| 我的老师免费观看完整版| 久久天躁狠狠躁夜夜2o2o| 特级一级黄色大片| 欧美黑人欧美精品刺激| 中出人妻视频一区二区| 亚洲 国产 在线| 18美女黄网站色大片免费观看| 久久精品国产综合久久久| 88av欧美| 亚洲国产精品久久男人天堂| 在线视频色国产色| 女警被强在线播放| 麻豆久久精品国产亚洲av| 一级片免费观看大全| 中文资源天堂在线| 九九热线精品视视频播放| 黑人欧美特级aaaaaa片| 美女午夜性视频免费| 国产区一区二久久| 一区二区三区高清视频在线| 高清毛片免费观看视频网站| 成人国产综合亚洲| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 亚洲第一欧美日韩一区二区三区| 欧美精品啪啪一区二区三区| 亚洲熟妇熟女久久| 精品日产1卡2卡| 精品人妻1区二区| 香蕉国产在线看| 中文资源天堂在线| 国产欧美日韩精品亚洲av| 成人三级做爰电影| 99久久久亚洲精品蜜臀av| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频| 精品久久久久久,| 一本一本综合久久| 国产伦一二天堂av在线观看| 久久久久久久久久黄片| 精品午夜福利视频在线观看一区| 18禁观看日本| 十八禁网站免费在线| 久久伊人香网站| 国产男靠女视频免费网站| 亚洲欧美日韩高清专用| 激情在线观看视频在线高清| 亚洲狠狠婷婷综合久久图片| 一级毛片女人18水好多| 他把我摸到了高潮在线观看| 欧美一级毛片孕妇| 91字幕亚洲| 一本一本综合久久| 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| 真人做人爱边吃奶动态| 五月玫瑰六月丁香| 欧美另类亚洲清纯唯美| 老汉色∧v一级毛片| 淫秽高清视频在线观看| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| 69av精品久久久久久| 可以在线观看毛片的网站| 丁香欧美五月| 一边摸一边抽搐一进一小说| 国产伦一二天堂av在线观看| 亚洲九九香蕉| 亚洲中文日韩欧美视频| videosex国产| 久久 成人 亚洲| 国产精品九九99| 成人av一区二区三区在线看| 欧美乱色亚洲激情| 国产精品日韩av在线免费观看| www.熟女人妻精品国产| av在线播放免费不卡| 免费看日本二区| 欧美又色又爽又黄视频| 国产精品美女特级片免费视频播放器 | 两性夫妻黄色片| 国产免费男女视频| 91成年电影在线观看| 中文字幕高清在线视频| 日本 av在线| 亚洲男人的天堂狠狠| 99热只有精品国产| 亚洲国产日韩欧美精品在线观看 | 国产精品av久久久久免费| 亚洲色图av天堂| tocl精华| 亚洲国产精品sss在线观看| 精品久久久久久久久久久久久| 久久久水蜜桃国产精品网| 久久精品亚洲精品国产色婷小说| 99riav亚洲国产免费| 又粗又爽又猛毛片免费看| 亚洲第一欧美日韩一区二区三区| 精品乱码久久久久久99久播| 在线国产一区二区在线| 亚洲国产欧美一区二区综合| 精品电影一区二区在线| 校园春色视频在线观看| 亚洲熟妇熟女久久| 成人高潮视频无遮挡免费网站| 久久精品成人免费网站| 久久精品人妻少妇| 国产激情久久老熟女| 国产av不卡久久| 熟妇人妻久久中文字幕3abv| 国产精华一区二区三区| 亚洲美女黄片视频| 久久人妻av系列| 天天添夜夜摸| 一二三四在线观看免费中文在| 久99久视频精品免费| 欧美在线黄色| 国产探花在线观看一区二区| 男女之事视频高清在线观看| 999久久久精品免费观看国产| 亚洲成a人片在线一区二区| 日韩欧美一区二区三区在线观看| 看黄色毛片网站| 舔av片在线| 韩国av一区二区三区四区| 免费观看人在逋| 免费在线观看视频国产中文字幕亚洲| 国产一区二区在线av高清观看| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 老司机靠b影院| 亚洲欧美激情综合另类| 久久国产乱子伦精品免费另类| 桃色一区二区三区在线观看| 亚洲成人中文字幕在线播放| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 黑人欧美特级aaaaaa片| 国产亚洲欧美在线一区二区| 国产免费男女视频| 国产精品 国内视频| 亚洲专区国产一区二区| 成人手机av| 日本黄大片高清| av福利片在线| 18禁观看日本| 首页视频小说图片口味搜索| 国产一区在线观看成人免费| 制服人妻中文乱码| 一进一出好大好爽视频| 啦啦啦观看免费观看视频高清| videosex国产| 99国产精品一区二区三区| 18美女黄网站色大片免费观看| 身体一侧抽搐| e午夜精品久久久久久久| 国产精品久久久av美女十八| 午夜成年电影在线免费观看| 国产不卡一卡二| 国产aⅴ精品一区二区三区波| АⅤ资源中文在线天堂| 国产亚洲精品综合一区在线观看 | 高潮久久久久久久久久久不卡| 国产精品一区二区三区四区久久| 亚洲欧洲精品一区二区精品久久久| 国产91精品成人一区二区三区| 最新美女视频免费是黄的| 国产高清视频在线观看网站| 国产激情欧美一区二区| 舔av片在线| 成年版毛片免费区| 日本一二三区视频观看| 精品一区二区三区视频在线观看免费| 成人av在线播放网站| 女人高潮潮喷娇喘18禁视频| 桃色一区二区三区在线观看| 男人舔女人下体高潮全视频| 天堂影院成人在线观看| 哪里可以看免费的av片| 国产熟女xx| 亚洲五月天丁香| 久久久久久免费高清国产稀缺| 久久久精品国产亚洲av高清涩受| 久久精品国产清高在天天线| 欧美绝顶高潮抽搐喷水| av福利片在线| 久久天堂一区二区三区四区| 一本大道久久a久久精品| 久久午夜亚洲精品久久| avwww免费| netflix在线观看网站| 给我免费播放毛片高清在线观看| 色噜噜av男人的天堂激情| 看黄色毛片网站| 亚洲五月婷婷丁香| 午夜福利欧美成人| 亚洲av成人一区二区三| 香蕉国产在线看| 亚洲专区国产一区二区| 桃色一区二区三区在线观看| 一二三四社区在线视频社区8| 欧美日韩精品网址| 国产区一区二久久| 变态另类丝袜制服| 日本成人三级电影网站| 成年女人毛片免费观看观看9| 国产午夜精品久久久久久| 久热爱精品视频在线9| 性欧美人与动物交配| 国产午夜精品久久久久久| 女同久久另类99精品国产91| 精品久久蜜臀av无| 九九热线精品视视频播放| 成年版毛片免费区| 夜夜夜夜夜久久久久| 亚洲精品色激情综合| 国产黄片美女视频| 两人在一起打扑克的视频| АⅤ资源中文在线天堂| 在线a可以看的网站| 老司机午夜福利在线观看视频| 久久精品综合一区二区三区| 欧美三级亚洲精品|