• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Doped Ions on Persistent Luminescence Materials: a Review①

    2022-03-12 07:43:50ZHANGLiuWeiSHENRuiChenTANJieYUANQuan
    結(jié)構(gòu)化學 2022年2期

    ZHANG Liu-Wei SHEN Rui-Chen TAN Jie YUAN Quan

    (Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China)

    ABSTRACT Persistent luminescence materials (PLMs) are potential luminescent materials which can remain emitting light after stopping the excitation. PLMs can avoid the autofluorescence of biological tissues, and play an important role in biosensing, targeted imaging and other fields. However, the applications of PLMs are often restricted by their weak persistent luminescence and short decay time after excitation. Doped ions will directly affect the luminescence centers and trap levels of PLMs, thereby leading to great differences in the optical performance of PLMs. Given this, the selection of doped ions to improve the optical performance of PLMs has become a fascinating research direction in recent years. At present, the published reviews mostly focus on the surface modifications and applications of PLMs. However, the influence of doped ions on the structure and optical performance of PLMs is seldom summarized. In this review, the influence of doped ions on the structure and optical performance of PLMs is introduced from three aspects: the type of doped ions, the number of types of doped ions, and the content of doped ions. Furthermore, we highlight recent achievements and mechanisms in the development of PLMs. Finally, we also propose and discuss the future opportunities and current challenges of ion-doped PLMs.

    Keywords: persistent luminescence, doped ions, structure and optical performance;

    1 INTRODUCTION

    Persistent luminescence materials (PLMs) can absorb excitation energy and continue to emit light after the excitation is stopped[1-7]. In ancient China, natural minerals with luminous properties were made into luminous cups and night pearls. In 1866, Sidot et al. first prepared the sulfide PLMs ZnS:Cu2+, making PLMs enter the vision of researchers[8]. In 1968, Pailil et al. observed the persistent luminescence of SrAl2O4:Eu2+, pushing the researches of PLMs into a new stage[9,10]. Subsequently, Matsuzawa et al.found that the phosphorescence intensity and phosphorescence time of SrAl2O4:Eu2+, Dy3+phosphors were more than ten times those of early PLMs[11]. Since then, many PLMs have been developed and widely used in transportation,military facilities, biosensing and other fields[12-15].

    The persistent luminescence inherence makes PLMs proper candidates in material applications. Given this, many researchers are devoted to finding ways to improve the phosphorescence intensity and phosphorescence time of PLMs. The introduction of doped ions provides a possibility to improve the optical performance of PLMs[16-23]. For example, Yamamoto et al. discovered that the phosphorescence intensity and phosphorescence time of the materials were improved after introducing Dy3+ion into SrAl2O4:Eu2+[11]. Liu et al. enhanced the phosphorescence intensity and prolonged the phosphorescence time exceeding 13 hours by adjusting the contents of Nd3+ion in Zn2Ga3-x-yGe0.75O8:Crx, Ndy[24]. Studying the mechanisms of ion doping to enhance the optical performance of PLMs can help design PLMs with stronger phosphorescence intensity and longer phosphorescence time, thereby expanding the applications of PLMs.

    Recently, reviews focus on synthesis methods, persistent luminescence mechanisms and applications of PLMs have been published. Li et al. systematically summarized the synthesis techniques, persistent luminescence mechanisms,characterizations and applications of PLMs[9]. Wang et al.summarized the persistent luminescence mechanisms,synthesis methods and biomedical applications of PLMs[25].Singh et al. outlined the surface modifications, bioimaging applications of PLMs, and future research directions[26].Doped ions play a vital role in improving the optical performance of PLMs. However, the influence of doped ions on the structure and optical performance of PLMs is seldom summarized. In this review, we mainly focus on how the optical performance of PLMs is affected by the type of doped ions, the number of types of doped ions, and the content of doped ions. Furthermore, the opportunities and challenges of PLMs in ion doping are also presented.

    2 INFLUENCE OF DOPED IONS ON THE STRUCTURE AND OPTICAL PERFORMANCE OF PLMs

    With the introduction of doped ions, different energy levels are produced in PLMs, resulting in different structures and optical performance. Herein, we classify and discuss how doped ions affect the structure and optical performance of PLMs based on the number of types of doped ions, the type of doped ions and the content of doped ions. To better demonstrate the influence of doped ions on PLMs, a

    summary of the main influence of doped ions on some common ion-doped PLMs is shown in Table 1.

    Table 1. Details of Host, Emitter, Co-dopants, Emission Region and Afterglow Decay of PLMs

    2. 1 Influence of doped ions type on the structure and optical performance of PLMs

    Due to the difference in the atomic structure and energy levels, various doped ions have different effects on the structure and optical performance of PLMs. Thus, the relationship between the type of doped ions and the structure and optical performance of PLMs is introduced in this section.

    2. 1. 1 Cr3+-doped PLMs

    Cr3+ion is usually introduced into PLMs to obtain red or near-infrared persistent luminescence resulting from its unique electronic transitions. Among them, Cr3+-doped ZnGa2O4is one of the research hotspots in PLMs. The ZnGa2O4crystal exhibits a cubic spinel structure, in which the Zn2+ion occupies the A-sites of the tetrahedron, and the Ga3+ion the B-sites of the octahedron[27,28]. Cr3+ion tends to replace Ga3+ion in the distorted octahedral coordination for the reason that Cr3+ion has the same valence electron and ion radius as Ga3+ion, which makes the Cr3+-doped ZnGa2O4materials produce strong near-infrared phosphorescence at 696 nm[2,29,30]. Hao et al. found that the Cr3+-doped ZnGa2O4exhibits excellent optical performance, which can maintain phosphorescence for 10 hours after stopping the ultraviolet light irradiation[31]. Moreover, the author observed that the excitation spectrum of Cr3+-doped ZnGa2O4has three excitation bands of 250~350, 350~487, and 487~650 nm,which are caused by the host excitation band of ZnGa2O4, the charge transfer between ZnGa2O4and Cr3+ion, and the electronic transitions of Cr3+ion, respectively. Based on previous researches, Yan et al. further comprehensively studied the persistent luminescence mechanism of Zn2.94Ga1.96Ge2O10:Cr3+[19]. As shown in Fig. 1, after the Zn2.94Ga1.96Ge2O10absorbs incident photons, the electrons of Zn2.94Ga1.96Ge2O10move to the conduction band and are trapped by native defects by means of nonradiative relaxation.When the ultraviolet light excitation is finished, the combination of holes and electrons released by native defects produces short phosphorescence. Since the absorption spectrum of Cr3+ion fully overlaps with the emission spectrum of Zn2.94Ga1.96Ge2O10, the energy absorbed by Zn2.94Ga1.96Ge2O10is transferred to Cr3+ion by means of nonradiative energy[32]. The continuous energy transfer causes the electrons of Cr3+ion to transform into three different excited states. Then, the electrons are trapped by the shallow electron traps or deep electron traps by means of nonradiative relaxation[33]. At the same time, the electron (t2e) fills the energy-matched traps in the form of4T1and4T2through the tunneling process. When the continuous energy transfer is stopped, the electron traps release the electrons which recombine with Cr3+ion, thereby producing a strong or ultra-long phosphorescence[19].

    Fig. 1. Persistent energy transfer mechanism of Cr3+-doped ZnGa2O4 materials

    2. 1. 2 Mn2+-doped PLMs

    Mn2+ion has a typical 3d5electronic configuration. The energy transitions of Mn2+ions are quite sensitive to the ligand/crystal field due to the participation of thedshell.Mn2+ions surrounded by anions can have different geometric structures, such as linear, octahedron, spherical, tetrahedron,or square plane. The environment of Mn2+ion at different crystal fields leads to different emission energy distributions and produces an emission band of 450~750 nm. For example, tetrahedral coordination of Mn2+ion produces green emission[34], while octahedral coordination of Mn2+ion produces orange to red emission[35,36]. Tan et al. researched the size, crystal structure and optical performance of Mn2+-doped ZnGa2O4with a typical rod-shaped structure in different environments[21]. The size of Mn2+-doped ZnGa2O4rapidly decreases as the pH increases from 6 to 7.5. In comparison, when the pH further increases to 9.5, the size of the Mn2+-doped ZnGa2O4materials slightly increases to 80 nm. The detailed crystal structure of the Mn2+-doped ZnGa2O4shows that the materials have lattice fringe (110)parallel to the direction of the crystal rod and lattice fringe(113) at an angle of 66° to the direction of the crystal rod[37].Their interplanar spacing is 0.71 and 0.29 nm, indicating that the Mn2+-doped ZnGa2O4grows along thecaxis[38]. The optical performance of ZnGa2O4:Mn2+materials was further researched by researchers[39]. The photoluminescence spectrum of Mn2+-doped ZnGa2O4materials shows that two emission peaks are detected at 450 and 480 nm, which are resulted from the native defects, for example, interstitial Zn and oxygen vacancies (Fig. 2a). When the pH is below 7.0,the intrinsic luminescence of the materials and the emission of Mn2+ions have a serious overlap. As the pH increases, the intrinsic luminescence intensity gradually decreases, and the emission band intensity of the Mn2+ion increases. The intrinsic luminescence almost disappears and is dominated by the green emission band of Mn2+when the pH increases to 9.5. In this case, the phosphorescence time of Mn2+-doped ZnGa2O4materials exhibits more than 100 s (Fig. 2b).According to the above results, a possible persistent luminescence mechanism of Mn2+-doped ZnGa2O4materials is proposed (Fig. 2c)[40,41]. The excited electrons and holes produced under ultraviolet light excitation are trapped by electron traps and hole traps, respectively[42]. Then, some electrons get away from the electron traps under thermal stimulation and transfer to native defects, thereby resulting in the formation of emission peaks from ZnGa2O4materials[43].The other part of the electrons escape and transfer to the excitation level of the Mn2+ion[44]. Subsequently, the recombination of holes and electrons causes Mn2+ion to emit green light[45].

    Fig. 2. (a) Photoluminescence spectrum, (b) phosphorescence decay curve,(c) persistent energy transfer mechanism of ZnGa2O4:Mn2+ materials

    2. 1. 3 Eu2+-doped PLMs

    Eu2+ion is a common doped ion in PLMs. The introduction of Eu2+ion usually produces yellow, orange and red emissions for the reason that the crystal field reduces the emission energy of 4f65d1electron configuration of Eu2+ion[46]. Yang et al. researched the structure and optical performance of Eu2+-doped SrAl2O4materials[4]. It is found that the crystal phase of the Eu2+-doped SrAl2O4materials corresponds to the standard pattern, indicating that the structure of the SrAl2O4materials has not obviously changed after the introduction of Eu2+ion. Moreover, Eu2+-doped SrAl2O4shows a strong emission band of 450~700 nm and exhibits a phosphorescence time that exceeds 2 hours.Considering the structure and characteristics of SrAl2O4:Eu2+,a possible persistent luminescence mechanism of SrAl2O4:Eu2+is deduced. The SrAl2O4material as the host lattice absorbs the soft X-ray photon energy and stores it in electron traps. Then, the energy gets away from the electron traps and transfers to the 4f65d1energy level in the Eu2+ion,which causes the Eu2+ion to produce radioactive transition luminescence.

    2. 1. 4 B3+-doped PLMs

    2. 2 Influence of the number of types of doped ions on the structure and optical performance of PLMs

    As above mentioned, the structure and optical performance of PLMs are closely related to the type of doped ions. Most PLMs used in practical applications need to be doped with multiple ions to enhance optical performance. The simultaneous introduction of multiple ions will affect not only the host of PLMs, but also the interaction among different ions.Therefore, we introduce the influence of the number of types of doped ions on the structure and optical performance of PLMs in this section.

    2. 2. 1 Ge4+ and Cr3+ co-doped PLMs

    The introduction of Ge4+ion will change the width of the material bandgap due to its unique electronic structure. Thus,the change of structure and optical performance of Ge4+, Cr3+co-doped PLMs is discussed[5]. Wang et al. found that the crystal phases of the Cr3+-doped ZnGa1.995O4and Ge4+, Cr3+co-doped ZnGa1.995O4materials are corresponding to the standard pattern, indicating that the structure of the materials has not obviously changed after Ge4+, Cr3+co-doping. In addition, the emission spectra of ZnGa1.995O4:Cr3+and Zn1.25Ga1.5Ge0.25O4:Cr3+both present a near-infrared emission band of 650~900 nm[49,50]. The phosphorescence decay curves show that the optical performance of Zn1.25Ga1.5Ge0.25O4:Cr3+is better than that of ZnGa1.995O4:Cr3+[5]. Based on the above results, the introduction of Ge4+improves the filling efficiency of electron traps,thus increasing the phosphorescence time of the materials[23].

    2. 2. 2 Pr3+, Cr3+ co-doped PLMs

    The number and depth of the trap energy levels of PLMs are changed after the introduction of Pr3+ion because of the special 4f5delectronic structure and abundant electronic transition types of Pr3+ion. Therefore, the changes in structure and optical performance of Zn2.94Ga1.96Ge2O10after the introduction of Pr3+and Cr3+ions are discussed[19]. By analyzing the XRD pattern, the structure of Zn2.94Ga1.96Ge2O10:Cr3+, Pr3+has not obviously changed, and the pure spinel phase is still maintained. Later, the author does in-depth studies on the optical performance of Zn2.94Ga1.96Ge2O10:Pr3+, Cr3+. The electrons recombine with holes in the natural defects, thereby leading to a wide emission band of 350~660 nm. In addition, the Cr3+ion provides a near-infrared emission band of 695 nm through the2E→4A2transition[27], while the Pr3+ion increases the phosphorescence time by adjusting the depth and density of traps based on the energy levels of 4felectron configurations[51-55]. Similarly, Yu et al. did further research on the persistent luminescence mechanisms of Zn3Ga2GeO8:Cr3+, Pr3+to clarify the function of Pr3+ion[56].The introduction of Pr3+ion deepens the trap energy level and increases the number of traps. Given this, a possible persistent luminescence mechanism of Zn3Ga2GeO8:Cr3+,Pr3+is proposed (Fig. 3). TrapAforms more traps than trapA'by introducing Pr3+ion, thereby improving the phosphorescence intensity and the phosphorescence time of Zn3Ga2GeO8:Cr3+, Pr3+materials.

    Fig. 3. Persistent luminescence mechanism of Zn2.94Ga1.96Ge2O10:Pr3+, Cr3+ materials

    2. 2. 3 Yb3+, Er3+, Cr3+ co-doped PLMs

    Yb3+ion and Er3+ion are rare earth element ions used as luminescence centers, which are usually introduced into PLMs to change the density and depth of the trap levels resulting from their unique electronic structure. Consequently,the structure and optical performance of Zn1.25Ga1.5Ge0.25O4:Yb3+, Er3+, Cr3+(ZGGO:Cr3+, Yb3+, Er3+)with a pure spinel phase is discussed[23]. Yan et al. found that the structure of Zn1.25Ga1.5Ge0.25O4has not obviously changed after doping with Yb3+, Er3+and Cr3+ion. Moreover,ZGGO:Cr3+, Yb3+, Er3presents an excellent optical performance, and the phosphorescence time exceeds 20 days. Later,the author studied the persistent luminescence mechanism of ZGGO:Yb3+, Er3+, Cr3+(Fig. 4). The excited electrons are captured by electron traps under ultraviolet light irradiation,and then moves to deep traps by means of nonradiative relaxation. Subsequently, the combination of the excited electrons and the Cr3+ion leads to the formation of a persistent phosphorescence signal after the ultraviolet radiation is stopped. The introduction of Yb3+and Er3+ions can not only provide the materials with additional electrons and energy levels, but also adjust the density and depth of traps[51,57,58]. The excited electrons are trapped in the deepest 4fenergy levels of Yb3+and Er3+ions, thereby extending the time for the trapped electrons to return to the2E energy level of Cr3+ion (Fig. 4a, b)[58], which also obviously prolongs the phosphorescence time of materials.

    Fig. 4. Persistent luminescence mechanism of (a) ZGGO:Cr3+, (b) ZGGO:Cr3+,Yb3+,Er3+,(c) ZGO:Cr3+,Yb3+,Er3+. ZGO refers to a zinc gallate matrix

    2. 2. 4 Eu3+, Ti4+ and Mg2+ co-doped PLMs

    Viana et al. researched the structure and optical performance of Eu3+, Ti4+, Mg2+co-doped Gd2O2S materials with a pure hexagonal Gd2O2S phase[20]. The study found that Ti4+and Mg2+ions are trapping centers, and Eu3+ions are the emission centers. The Gd2O2S:Eu3+, Ti4+, Mg2+has an emission band of 580~720 nm due to the electronic transitions of Eu3+ion. Therefore, it can be inferred that the Eu3+ion plays the role of the luminescence center in the materials. Moreover, Gd2O2S: Eu3+, Ti4+, Mg2+has a longer phosphorescence time compared with Gd2O2S: Eu3+for the reason that Ti4+and Mg2+ions play an important in improving the density of trap energy levels. However, the particle size and crystal structure of Gd2O2S materials have not obviously changed after the introduction of Eu3+, Ti4+and Mg2+ions.

    2. 3 Influence of the content of doped ions on the structure and optical performance of PLMs

    As mentioned above, some doped ions play the role of the emission center of PLMs, while other doped ions will affect the number and depth of trap levels. Therefore, it is of great necessity to understand how the content of doped ions influences the structure and optical performance of PLMs.This section will discuss how the content of doped ions affects the structure and optical performance of PLMs.

    2. 3. 1 Pr3+, Cr3+ co-doped PLMs

    Normally, Cr3+ion serves as the luminescence center of PLMs, while Pr3+ion affects the number and depth of trap levels. Yan et al. studied how the contents of Pr3+and Cr3+ions influence the structure and optical performance of PLMs.It is found that the increase of Cr3+content promotes the energy release of Zn2.94Ga1.96Ge2O10:Cr3+, Pr3+. Therefore, as the amount of Cr3+ion doping increases, the phosphorescence intensity and phosphorescence time of the material decrease[19,27,59]. Similarly, Zhang et al. studied the changes in particle size of Pr3+, Cr3+co-doped Zn2Ga2.98-xGe0.75O8materials with different Pr3+contents[22]. It is found that the average size of the materials decreases with the increase of Pr3+contents. Considering that the doped ions can strongly affect the crystal growth rate through surface charge modification[60], the size reduction of Zn2Ga2.98-xGe0.75O8:Cr3+, Pr3+may be related to the influence of Pr3+ion on the surface charge of the material. Specifically,the surface charge distribution of the materials will be changed when the Pr3+ion is introduced into the materials,thereby reducing the growth rate. Subsequently, the optical performance of Pr3+, Cr3+co-doped Zn2Ga2.98-xGe0.75O8materials is researched. As shown in Fig. 5a, the phosphorescence intensity and the phosphorescence time of the materials increase as the increase of Pr3+doping contents due to the changes in the trap levels of the materials caused by the introduction of Pr3+ion (Fig. 5b). When the content of Pr3+ion is too high, the luminescence performance will decrease due to the concentration quenching effect.

    Fig. 5. (a) Phosphorescence decay curves of Pr3+, Cr3+ co-doped Zn2Ga2.98-xGe0.75O8 materials with different Pr3+ doping contents.The inset presents the phosphorescence intensity of the materials after the ultraviolet light irradiation is stopped,(b) Thermo-luminescence spectra of Pr3+, Cr3+ co-doped Zn2Ga2.98-xGe0.75O8 materials with different Pr3+ doping contents

    2. 3. 2 Bi3+, Cr3+ co-doped PLMs

    Bi3+ion can significantly reduce the bandgap energy of PLMs and improve the efficiency of electron trap filling resulting from its unique 6sorbital. Tuerdi et al. researched the influence of crystalline structure, emission peak wavelength and phosphorescence time of ZnGa2O4:Bi3+, Cr3+materials with different Bi3+doping contents[16]. The Bi3+ion tends to replace Ga3+ion in ZnGa2O4with a similar ion radius, which makes the material produce higher periodic lattice distortion, thereby making the materials exhibit a longer phosphorescence time. When the doped ratio of Bi3+ion is low, the crystal phase of Cr3+, Bi3+co-doped ZnGa2O4materials corresponds to its standard spectrum, indicating that the structure of ZnGa2O4materials has not obviously changed after the introduction of Bi3+ion. However, when the doped ratio of Bi3+ion increases to 0.03, a strong peak related to the rhombohedral Bi3+structure at 28.01° is observed in the XRD pattern (Fig. 6a), illustrating that the original crystal structure of the materials is destroyed. Correspondingly, its optical performance is also reduced. The phosphorescence emission spectrum of ZnGa2O4:Bi3+, Cr3+materials with different Bi3+doping contents shows a red-shift of emission peak wavelength, which indicates that Bi3+ion reduces the crystal field intensity of the Cr3+ion (Fig. 6b).

    Fig. 6. (a) XRD patterns of ZnGa2O4, ZnGa2O4:Cr3+ and ZnGa2O4:Cr3+, Bi3+,(b)Phosphorescence spectra of ZnGa2O4, ZnGa2O4:Cr3+ and ZnGa2O4:Cr3+, Bi3+

    2. 3. 3 B3+, Cr3+ co-doped PLMs

    As mentioned above, the introduction of B3+ion can improve the optical performance of ZnGa2O4. On this basis,the researchers studied the influence of doped ion content on PLMs. For example, Yan et al. synthesized ZnGa2O4:B3+,Cr3+materials by hydrothermal method, and studied the optical performance of ZnGa2O4:Cr3+with different B3+doping contents[17]. The XRD pattern presents that the structure of the material has not obviously changed after doping with the B3+and Cr3+ions. Besides, the emission wavelength of the materials has not obviously changed when the B3+ion is introduced into the materials, which indicates that the B3+ion does not play the role of luminescence center in the materials. At the same time, the improvement of the optical performance of materials shows that the introduction of B3+ion injects new electron traps into the materials and increases the content of electron traps.

    2. 3. 4 Eu3+, Ti4+ and Mg2+ co-doped PLMs

    Eu3+, Ti4+and Mg2+ions will act as luminescence centers or trap levels to affect the optical performance of the material.Therefore, studying the optical performance of Gd2O2S:Eu3+,Ti4+and Mg2+materials with different doping contents will help us better understand the role of these ions in the material[20]. The study found that Eu3+ion provides trap levels for electron-hole recombination, and Ti4+ion provides electron traps to achieve the formation of the phosphorescence signal. Since Ti4+ion replaces Gd3+ion and destroys the charge conservation of the materials, it is necessary to introduce Mg2+ion to maintain charge balance.In addition, as the doping contents of Mg2+ion increase, the phosphorescence intensity of the material increases. This indicates that the introduction of Mg2+ion can induce the formation of intermediate trap levels in the material, which prolongs the storage time of the carriers in the material, thus realizing the improvement of the persistent performance of the materials[61].

    Apart from the ion-doped PLMs mentioned above, other doped ions also have an impact on the structure and optical performance. For example, Li2ZnGeO4:Mn2+[62],SrAl2O4:Eu2+, Dy3+[63], GdAlO3:Mn4+, Ge4+[64], LaAlO3:Mn4+,Ge4+[65], CaMgSi2O6:Eu2+, Dy3+, Mn2+[66], Y3Al5-xGaxO12:Ce3+,Bi3+(x= 0~4)[67], MgGeO3:Mn2+, Bi3+[68],Y3Sc2Ga3O12:Ce3+[69], Ca9Bi(PO4)7:Ce3+, Tb3+, Mn2+[70],Ca2BO3Cl:Eu2+, Dy3+[71], Lu2O3:Tb3+, Ca2+[72], KY3F10:Tb3+[73]and AlN:Mn2+[74].

    3 CONCLUSION

    In this review, we mainly focus on the impact of the type of doped ions, the number of types of doped ions, and the content of doped ions on the structure and optical performance of PLMs. In the past decade, although various doped ions have been widely used to improve the optical performance of PLMs, there is still much work to do in the future. First, in the actual preparation process, the optical performance of PLMs will be affected by the symmetry of matrix lattice, the radius of activated ions, and the electronegativity and distribution of external electron cloud.This should be paid more attention to by researchers. Second,exploring the relationship between doped ions and the host lattice and investigating the influence of the defects caused by doped ions on the storage time of the carriers. At present,these issues still have no exact quantitative relationship, and further researches are needed. Third, understanding the role of trap types, trap contents and probability of trapping electrons in the researches of the persistent luminescence mechanisms. Forth, exploring new doped ions and substrates.For example, most current PLMs are based on aluminates,gallates and silicates matrices. It is necessary to find new matrices with excellent properties. Collectively, with the deepening research of PLMs, ion-doped PLMs with higher luminescence intensity and phosphorescence lifetime will have a broad development prospect.

    欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| 国产精品香港三级国产av潘金莲| 久久国产精品男人的天堂亚洲| 男女午夜视频在线观看| 此物有八面人人有两片| 久久狼人影院| 久久精品国产亚洲av香蕉五月| 最好的美女福利视频网| 午夜福利一区二区在线看| 美女免费视频网站| 欧美激情 高清一区二区三区| 亚洲全国av大片| 亚洲第一电影网av| 欧美色欧美亚洲另类二区 | 亚洲 欧美一区二区三区| 性欧美人与动物交配| 亚洲成a人片在线一区二区| 99久久精品国产亚洲精品| 又大又爽又粗| 免费在线观看视频国产中文字幕亚洲| 成人欧美大片| 精品卡一卡二卡四卡免费| 香蕉久久夜色| 欧美日本视频| 亚洲午夜理论影院| 国产乱人伦免费视频| 美女国产高潮福利片在线看| 亚洲人成网站在线播放欧美日韩| 亚洲 欧美 日韩 在线 免费| 少妇 在线观看| 日韩国内少妇激情av| 中文字幕av电影在线播放| 久久人人爽av亚洲精品天堂| 精品福利观看| 国产一卡二卡三卡精品| 国产av又大| 国产在线精品亚洲第一网站| 亚洲国产欧美日韩在线播放| videosex国产| 首页视频小说图片口味搜索| 丝袜美足系列| 搡老岳熟女国产| 丝袜美腿诱惑在线| 亚洲人成电影免费在线| 色播在线永久视频| 亚洲国产精品999在线| 天天添夜夜摸| 黄色片一级片一级黄色片| 9色porny在线观看| 亚洲一区二区三区色噜噜| 亚洲男人天堂网一区| 欧美成人一区二区免费高清观看 | 亚洲全国av大片| 欧美日本中文国产一区发布| 亚洲人成伊人成综合网2020| 免费一级毛片在线播放高清视频 | 首页视频小说图片口味搜索| 免费无遮挡裸体视频| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯| 亚洲精品国产一区二区精华液| 色老头精品视频在线观看| 久久国产精品男人的天堂亚洲| 满18在线观看网站| 午夜久久久久精精品| 九色亚洲精品在线播放| 91精品三级在线观看| 欧美乱妇无乱码| 我的亚洲天堂| 大型黄色视频在线免费观看| 国产亚洲欧美在线一区二区| 波多野结衣一区麻豆| 亚洲色图综合在线观看| 91成人精品电影| 亚洲九九香蕉| 久久伊人香网站| 午夜激情av网站| 少妇被粗大的猛进出69影院| 国产色视频综合| 精品国产乱子伦一区二区三区| 国产成人欧美| 大陆偷拍与自拍| 亚洲成国产人片在线观看| 国产精品乱码一区二三区的特点 | 最近最新中文字幕大全电影3 | 国产欧美日韩一区二区三区在线| 久久久精品欧美日韩精品| aaaaa片日本免费| 黑人操中国人逼视频| 午夜免费成人在线视频| 99国产精品一区二区蜜桃av| √禁漫天堂资源中文www| 国产精品1区2区在线观看.| 国产精品久久久久久精品电影 | 亚洲天堂国产精品一区在线| 国产精品综合久久久久久久免费 | 亚洲情色 制服丝袜| 亚洲 欧美 日韩 在线 免费| 亚洲久久久国产精品| 69精品国产乱码久久久| 欧美 亚洲 国产 日韩一| 一a级毛片在线观看| 母亲3免费完整高清在线观看| 欧美成人免费av一区二区三区| 亚洲色图av天堂| av视频免费观看在线观看| 亚洲人成电影观看| 亚洲色图综合在线观看| 丁香欧美五月| 给我免费播放毛片高清在线观看| 一级毛片女人18水好多| 男女午夜视频在线观看| 亚洲精华国产精华精| 久久热在线av| 91成人精品电影| 两个人视频免费观看高清| 国产激情久久老熟女| 一边摸一边做爽爽视频免费| 亚洲av电影在线进入| 亚洲一区高清亚洲精品| 黄色成人免费大全| 女性生殖器流出的白浆| 美女扒开内裤让男人捅视频| 99久久久亚洲精品蜜臀av| 亚洲av日韩精品久久久久久密| 97超级碰碰碰精品色视频在线观看| 不卡av一区二区三区| 两个人免费观看高清视频| 亚洲五月天丁香| 久久热在线av| 久久人人97超碰香蕉20202| 精品久久久久久久毛片微露脸| 国产成人欧美在线观看| 国产亚洲精品久久久久久毛片| 国产一区二区三区综合在线观看| 老司机午夜十八禁免费视频| 不卡av一区二区三区| 少妇 在线观看| 身体一侧抽搐| 亚洲五月婷婷丁香| 精品欧美国产一区二区三| 老司机午夜十八禁免费视频| www国产在线视频色| 亚洲情色 制服丝袜| 好看av亚洲va欧美ⅴa在| 久热爱精品视频在线9| 12—13女人毛片做爰片一| 美女大奶头视频| 国产精品一区二区三区四区久久 | 亚洲 欧美 日韩 在线 免费| 免费少妇av软件| 亚洲熟妇中文字幕五十中出| 亚洲国产精品成人综合色| 欧美日韩亚洲国产一区二区在线观看| 国产99白浆流出| 亚洲人成77777在线视频| 精品久久蜜臀av无| 国产精品亚洲一级av第二区| av有码第一页| 高清在线国产一区| 人人妻人人澡欧美一区二区 | 国产精品亚洲一级av第二区| 国产精品精品国产色婷婷| 午夜久久久在线观看| 亚洲精品国产区一区二| 满18在线观看网站| 国产1区2区3区精品| 亚洲国产精品999在线| 这个男人来自地球电影免费观看| 亚洲av成人一区二区三| 久久婷婷人人爽人人干人人爱 | 免费看a级黄色片| 国产精品久久久久久人妻精品电影| xxx96com| 97人妻精品一区二区三区麻豆 | 无人区码免费观看不卡| 在线观看免费视频日本深夜| 午夜福利免费观看在线| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 亚洲av熟女| 91老司机精品| 欧美日本亚洲视频在线播放| 成年人黄色毛片网站| av电影中文网址| 午夜免费观看网址| 少妇的丰满在线观看| 亚洲三区欧美一区| 日韩视频一区二区在线观看| 亚洲精品国产色婷婷电影| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 男男h啪啪无遮挡| 美女午夜性视频免费| 给我免费播放毛片高清在线观看| 天天一区二区日本电影三级 | 亚洲av片天天在线观看| 精品乱码久久久久久99久播| 国产区一区二久久| 久久婷婷成人综合色麻豆| 久久人妻熟女aⅴ| 黄色a级毛片大全视频| 嫩草影视91久久| 亚洲人成77777在线视频| 操美女的视频在线观看| 精品一区二区三区av网在线观看| 亚洲av日韩精品久久久久久密| 在线观看日韩欧美| 一本大道久久a久久精品| 亚洲欧美日韩无卡精品| 日韩三级视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区 | 久久国产精品人妻蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人精品中文字幕电影| 美女高潮喷水抽搐中文字幕| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9| 搡老熟女国产l中国老女人| 久久婷婷成人综合色麻豆| 亚洲熟妇中文字幕五十中出| 欧美乱妇无乱码| 正在播放国产对白刺激| 岛国在线观看网站| 国产成人系列免费观看| 亚洲人成77777在线视频| 老司机午夜十八禁免费视频| 人妻丰满熟妇av一区二区三区| 变态另类成人亚洲欧美熟女 | 欧美中文日本在线观看视频| 久久精品国产综合久久久| 日韩免费av在线播放| 露出奶头的视频| 性欧美人与动物交配| 国产一区二区三区视频了| 国产成人精品久久二区二区91| 可以在线观看毛片的网站| 在线观看免费视频网站a站| 精品国产一区二区久久| 亚洲熟女毛片儿| 国内毛片毛片毛片毛片毛片| 欧美一级a爱片免费观看看 | 亚洲精品在线观看二区| 久久久久九九精品影院| 人妻丰满熟妇av一区二区三区| 欧美乱色亚洲激情| 操出白浆在线播放| 亚洲精品国产色婷婷电影| 国产精品乱码一区二三区的特点 | 国产高清有码在线观看视频 | 亚洲国产高清在线一区二区三 | 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 1024视频免费在线观看| 亚洲av电影不卡..在线观看| 国产乱人伦免费视频| 日韩欧美一区二区三区在线观看| 久久久久国内视频| 男人操女人黄网站| 日本五十路高清| 人人妻人人爽人人添夜夜欢视频| tocl精华| 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡| 国产男靠女视频免费网站| 大陆偷拍与自拍| 美女 人体艺术 gogo| 人人澡人人妻人| 国产精品99久久99久久久不卡| 丁香欧美五月| 99国产精品一区二区蜜桃av| 色av中文字幕| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 色播亚洲综合网| 少妇的丰满在线观看| 国产免费男女视频| 国产精品久久久人人做人人爽| 日韩大码丰满熟妇| 欧美性长视频在线观看| 午夜福利免费观看在线| 中文字幕av电影在线播放| 免费av毛片视频| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻,人人澡人人爽秒播| 亚洲色图 男人天堂 中文字幕| 国产精品1区2区在线观看.| 国产av精品麻豆| 窝窝影院91人妻| 国产精品,欧美在线| 色综合欧美亚洲国产小说| 乱人伦中国视频| 免费女性裸体啪啪无遮挡网站| 亚洲avbb在线观看| 人人妻,人人澡人人爽秒播| 黄片大片在线免费观看| 国产亚洲av高清不卡| 亚洲狠狠婷婷综合久久图片| 亚洲成国产人片在线观看| 精品一区二区三区视频在线观看免费| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| 午夜视频精品福利| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 亚洲av熟女| 午夜福利影视在线免费观看| 免费看美女性在线毛片视频| 男男h啪啪无遮挡| 亚洲av成人av| 最近最新中文字幕大全电影3 | 波多野结衣av一区二区av| 午夜老司机福利片| 午夜精品国产一区二区电影| 欧美日韩福利视频一区二区| 午夜福利高清视频| 久久香蕉激情| 国产欧美日韩一区二区三区在线| 一级作爱视频免费观看| 欧美一区二区精品小视频在线| 给我免费播放毛片高清在线观看| 国产午夜福利久久久久久| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| 色播亚洲综合网| 日韩国内少妇激情av| 大陆偷拍与自拍| 精品久久久久久久人妻蜜臀av | 欧美日韩亚洲国产一区二区在线观看| 一级a爱片免费观看的视频| 精品国产一区二区久久| 神马国产精品三级电影在线观看 | 最近最新中文字幕大全免费视频| 免费在线观看视频国产中文字幕亚洲| 91av网站免费观看| 欧美绝顶高潮抽搐喷水| 亚洲精品中文字幕一二三四区| 搡老熟女国产l中国老女人| 琪琪午夜伦伦电影理论片6080| 欧美一级a爱片免费观看看 | 神马国产精品三级电影在线观看 | 国产成人影院久久av| 欧美激情久久久久久爽电影 | 激情在线观看视频在线高清| 宅男免费午夜| 免费高清在线观看日韩| 国内毛片毛片毛片毛片毛片| 国产成人av教育| 精品少妇一区二区三区视频日本电影| 99国产综合亚洲精品| 首页视频小说图片口味搜索| 黄色成人免费大全| 久久精品影院6| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女| 精品欧美一区二区三区在线| 一级毛片精品| 亚洲在线自拍视频| 波多野结衣高清无吗| 日日干狠狠操夜夜爽| 亚洲第一电影网av| 91字幕亚洲| 亚洲av熟女| 久久青草综合色| 无遮挡黄片免费观看| 大香蕉久久成人网| 男男h啪啪无遮挡| 婷婷六月久久综合丁香| 99香蕉大伊视频| 色婷婷久久久亚洲欧美| 十八禁网站免费在线| 亚洲第一欧美日韩一区二区三区| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 欧美大码av| 女人高潮潮喷娇喘18禁视频| 视频在线观看一区二区三区| 91在线观看av| 欧美午夜高清在线| 在线观看免费午夜福利视频| 在线播放国产精品三级| 老司机午夜福利在线观看视频| 又黄又爽又免费观看的视频| 国产精品,欧美在线| 国产极品粉嫩免费观看在线| 亚洲av五月六月丁香网| 久久久久久国产a免费观看| 国产激情久久老熟女| 男人舔女人的私密视频| 久久久久久久精品吃奶| 人人澡人人妻人| 日韩 欧美 亚洲 中文字幕| 欧美人与性动交α欧美精品济南到| 搞女人的毛片| 变态另类丝袜制服| 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 久久精品91无色码中文字幕| 国产伦一二天堂av在线观看| 国产成年人精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 少妇粗大呻吟视频| 国产精品久久久久久人妻精品电影| 巨乳人妻的诱惑在线观看| 午夜福利成人在线免费观看| 亚洲视频免费观看视频| 国内精品久久久久精免费| 啦啦啦 在线观看视频| 一级毛片高清免费大全| 国产一区二区三区在线臀色熟女| 超碰成人久久| 色精品久久人妻99蜜桃| 精品国产超薄肉色丝袜足j| 后天国语完整版免费观看| 久久久久久人人人人人| 97超级碰碰碰精品色视频在线观看| 亚洲自拍偷在线| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 国内精品久久久久精免费| 国产一区二区在线av高清观看| 精品久久久久久久人妻蜜臀av | 禁无遮挡网站| 亚洲全国av大片| 欧美色欧美亚洲另类二区 | √禁漫天堂资源中文www| 午夜日韩欧美国产| 日韩欧美在线二视频| 国产精品98久久久久久宅男小说| 亚洲精品美女久久久久99蜜臀| 欧洲精品卡2卡3卡4卡5卡区| 欧美av亚洲av综合av国产av| 黄色片一级片一级黄色片| 亚洲 欧美 日韩 在线 免费| 少妇裸体淫交视频免费看高清 | 神马国产精品三级电影在线观看 | 人人妻人人澡欧美一区二区 | 国产欧美日韩一区二区三区在线| 久久九九热精品免费| 黄色 视频免费看| 国产精品秋霞免费鲁丝片| 精品久久久久久,| 精品久久久久久成人av| 日本精品一区二区三区蜜桃| 精品高清国产在线一区| 国产亚洲精品久久久久5区| 9热在线视频观看99| 桃红色精品国产亚洲av| 自线自在国产av| 久久久国产成人精品二区| 欧美黑人精品巨大| 国内精品久久久久精免费| 午夜福利免费观看在线| 欧美国产精品va在线观看不卡| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看 | 久久精品国产99精品国产亚洲性色 | 亚洲精品粉嫩美女一区| 两性午夜刺激爽爽歪歪视频在线观看 | 成人三级黄色视频| 国内久久婷婷六月综合欲色啪| 日本精品一区二区三区蜜桃| 精品国产国语对白av| 高清黄色对白视频在线免费看| 黑人巨大精品欧美一区二区mp4| 午夜精品久久久久久毛片777| 男女午夜视频在线观看| 久久久久精品国产欧美久久久| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美三级三区| 亚洲专区国产一区二区| 日本a在线网址| 国产精品亚洲美女久久久| 亚洲国产欧美一区二区综合| 一进一出抽搐gif免费好疼| 国产熟女午夜一区二区三区| 18禁观看日本| 精品久久久久久成人av| 国产一区二区三区综合在线观看| 国产免费男女视频| 午夜福利视频1000在线观看 | 欧美色视频一区免费| 人人妻人人澡欧美一区二区 | 变态另类丝袜制服| 欧美国产精品va在线观看不卡| 十八禁人妻一区二区| 亚洲 国产 在线| 成人亚洲精品av一区二区| 99热只有精品国产| 女人爽到高潮嗷嗷叫在线视频| 色精品久久人妻99蜜桃| 伊人久久大香线蕉亚洲五| 午夜福利成人在线免费观看| 老汉色av国产亚洲站长工具| 欧美性长视频在线观看| 久久午夜亚洲精品久久| 成人三级黄色视频| 人人澡人人妻人| 叶爱在线成人免费视频播放| 国产亚洲精品久久久久久毛片| 久久这里只有精品19| 国产主播在线观看一区二区| 国产1区2区3区精品| 99国产精品一区二区蜜桃av| 女人被躁到高潮嗷嗷叫费观| 成人三级做爰电影| 国产黄a三级三级三级人| 欧美国产精品va在线观看不卡| 午夜福利视频1000在线观看 | 亚洲精品国产色婷婷电影| 亚洲av日韩精品久久久久久密| 亚洲午夜精品一区,二区,三区| 亚洲色图 男人天堂 中文字幕| 日韩成人在线观看一区二区三区| 黄片播放在线免费| 久久人妻熟女aⅴ| 妹子高潮喷水视频| 狂野欧美激情性xxxx| 88av欧美| 欧美性长视频在线观看| 波多野结衣一区麻豆| 搡老岳熟女国产| 午夜免费鲁丝| 满18在线观看网站| ponron亚洲| 熟女少妇亚洲综合色aaa.| 在线天堂中文资源库| 色老头精品视频在线观看| 欧美人与性动交α欧美精品济南到| 国产又爽黄色视频| 精品国内亚洲2022精品成人| 亚洲aⅴ乱码一区二区在线播放 | 在线观看www视频免费| 成人国产综合亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 国产不卡一卡二| 窝窝影院91人妻| 免费搜索国产男女视频| 韩国精品一区二区三区| 正在播放国产对白刺激| 丝袜美腿诱惑在线| 国产一级毛片七仙女欲春2 | 老司机在亚洲福利影院| bbb黄色大片| 日韩欧美一区二区三区在线观看| 黑人操中国人逼视频| 高清毛片免费观看视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 看免费av毛片| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美国产在线观看| 精品国产乱码久久久久久男人| 国产一区二区三区视频了| 精品午夜福利视频在线观看一区| 欧美激情极品国产一区二区三区| 国产精品1区2区在线观看.| 亚洲欧美激情综合另类| 亚洲,欧美精品.| 99国产精品一区二区三区| 一级作爱视频免费观看| 婷婷六月久久综合丁香| 精品久久久精品久久久| 国产av又大| 亚洲精品久久成人aⅴ小说| 色播在线永久视频| 大香蕉久久成人网| 美女午夜性视频免费| 精品久久久久久久人妻蜜臀av | 欧美激情久久久久久爽电影 | 久久亚洲精品不卡| 9191精品国产免费久久| 两性夫妻黄色片| 亚洲色图av天堂| 非洲黑人性xxxx精品又粗又长| 亚洲成人国产一区在线观看| 日韩国内少妇激情av| 操出白浆在线播放| 91麻豆精品激情在线观看国产| 老司机深夜福利视频在线观看| 中文字幕人妻熟女乱码| 丰满的人妻完整版| 又黄又粗又硬又大视频| 欧美日韩福利视频一区二区| 久久天堂一区二区三区四区| 欧美 亚洲 国产 日韩一| 操出白浆在线播放| 18禁国产床啪视频网站| 亚洲最大成人中文| 久久久精品国产亚洲av高清涩受| 岛国视频午夜一区免费看| 激情在线观看视频在线高清| 亚洲人成伊人成综合网2020| 亚洲成av片中文字幕在线观看| 免费无遮挡裸体视频| 桃色一区二区三区在线观看| 国产一区二区三区综合在线观看| 久热爱精品视频在线9| 国产成人欧美在线观看| 美女高潮到喷水免费观看| 中文亚洲av片在线观看爽| 人妻久久中文字幕网| 嫩草影院精品99| 麻豆久久精品国产亚洲av| 在线播放国产精品三级| 精品免费久久久久久久清纯| 好男人电影高清在线观看| xxx96com| 电影成人av| 欧美av亚洲av综合av国产av| 波多野结衣巨乳人妻|