• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Design and Property Prediction of High Density 4-Nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate Derivatives as the Potential High Energy Explosives①

    2022-03-12 07:43:40YANGJingPANGYuLIMinXinYANGGeFeiJIAJingXinMENGXingJunLIULiHuYANGXioChunGAOXioZhen
    結構化學 2022年2期

    YANG Jing PANG Yu LI Min-Xin YANG Ge-Fei JIA Jing-Xin MENG Xing-Jun LIU Li-Hu YANG Xio-Chun GAO Xio-Zhen

    a (Department of Chemistry, Tangshan Normal College, Tangshan 063000, China)

    b (School of Chemical Engineering and Light Industry,Guangdong University of Technology, Guangzhou 510006, China)

    c (Yangquan Municipal Key Laboratory of Quantum Manipulation,Shanxi Institute of Technology, Yangquan 045000, China)

    ABSTRACT To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability, twelve derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate (named A~L) are designed and analyzed by using density functional theory (DFT) calculations at the B3LYP/6-311G**level of theory. The molecular heats of formation (HOF), electronic structures, impact sensitivity (H50), oxygen balance (OB) and density (ρ) are investigated by isodesmic reaction method and physicochemical formulas.Furthermore, the detonation velocity (D) and detonation pressure (P) are calculated to study the detonation performance by Kamlet-Jacobs (K-J) equation. These results show that new molecule J (H50 = 36.9 cm, ρ = 1.90 g/cm3, Q = 1912.46 cal/g, P = 37.82 GPa, D = 9.22 km/s, OB = 0.00), compound A (H50 = 27.9 cm, ρ = 1.93 g/cm3,Q = 1612.93 cal/g, P = 38.90 GPa, D = 9.19 km/s) and compound H (H50 = 37.3 cm, ρ = 1.97 g/cm3, Q = 1505.06 cal/g, P = 37.20 GPa, D = 9.01 km/s) present promising effects that are far better RDX and HMX as the high energy density materials. Our calculations can provide useful information for the molecular synthesis of novel high energy density materials.

    Keywords: 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate, energetic materials, density functional theory, explosive; DOI: 10.14102/j.cnki.0254-5861.2011-3256

    1 INTRODUCTION

    The value of harnessing the power of energetic materials(EMs) has been realized for quite some time, resulting in their pervasive use in different commercial processes[1-3]. Advancements in energetic materials have also been driven by a need to find more powerful, stable, and reliable materials for military devices. These traditional energetic compounds are explored such as trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotrimethylenetrinitramine (RDX),cyclotetramethylene tetranitramine (HMX), 1,1-diamino-2,2-dinitroethylene (FOX-7) and triaminotrinitrobenzene(TATB). They consist of organic C-H-N-O molecules which combine both fuel (C-H backbone) and oxidizer (nitro (NO2)or nitrate (NO3)) groups within a single mole cule[4]. Afterwards, much work has been focused on the derivatives of these traditional high energy density materials (HEDMs).Although such investigations provide some important results,the demands of high energy and insensitivity are quite often contradictory to each other, making the development of novel HEDMs a challenging problem. Thus, systemic molecular design for high-nitrogen compound is still needed to explore novel insensitive HEDMs.

    As we all know that these compounds containing triazole ring, as an important class of high-energy density materials(HEDMs), have received vital attention both in military and civilian applications[5,6]. Recently, Yang research group conduct the study on synthesis of different neutral compounds consisting of 1,2,3-2H-triazole and 1,2,4-triazole rings carrying energetic moieties like amino, nitroimino, nitro as well as azo[7]. Unfortunately, their outstanding properties such as high density, high positive heat of formation (HOF) and excellent detonation properties seem to be contrary to the stability and sensitivity. Thus, in order to overcome this difficulty, one possible approach is to replace one hydrogen atom using different high-energy groups to design different derivatives. Thus, we choose excellent 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate among these synthetic organic molecules as the initial material to develop energetic materials. So, in our work, twelve kinds of energetic groups(NO2, NH2, NHNH2, NHNO2, NNH2NO2, NNO2NO2,N3,ONO2, NNO2ONO2, OH, NF2and C(NO2)3) are introduced to this framework using computer simulation, and generate a series of high energy materials. Computational studies can provide understanding relationships between molecular structure and property, and make it possible to screen candidate compounds.

    2 CALCULATION METHODS

    Numerous researches have shown that the DFT-B3LYP method in combination with 6-311G** basis set can give accurate energies, molecular structures and physicochemical properties especially for the high energy density materials(HEDMs)[8-11]. Thus, the Gaussian 09 package[12]of theoretical chemistry was used in this paper under B3LYP/6-311G** level of theory to conduct our work. In our study, we used isodesmic reactions for calculating the HOF of the title molecules at 298 K as follows[8]:

    Where R is NO2, NH2, NHNH2, NHNO2, NNH2NO2,NNO2NO2,N3, ONO2, NNO2ONO2, OH, NF2, C(NO2)3(See Fig. 1). For isodesmic reaction, gas-phase HOF at 298 K can be written as the following formula:

    Table1.Calculated Methodsforthe Valuesof N,,and Qof ExplosiveCaHbOcNd.isthe MolecularWeight ing/molandtheSolid PhaseHOF inkcal/mol

    Table1.Calculated Methodsforthe Valuesof N,,and Qof ExplosiveCaHbOcNd.isthe MolecularWeight ing/molandtheSolid PhaseHOF inkcal/mol

    Parameters Explosives components conditions c≥2a + b/2 2a + b/2>c≥b/2 b/2>cimages/BZ_139_423_2985_464_3026.png (b + 2c + 2d)/4M (b + 2c + 2d)/4M (b + d)/2Mimages/BZ_139_423_3040_468_3081.png4M/(b + 2c + 2d) (56d + 88c-8b)/(b + 2c + 2d) (2b + 28d + 32c)/(b + d)Q×10-3 (28.9b + 94.05a+ 0.239images/BZ_139_752_3159_831_3207.png(57.8c + 0.239)/M)/M[28.9b + 94.05(c/2-b/4)+ 0.239images/BZ_139_1214_3158_1296_3208.png]/M images/BZ_139_1806_3116_1896_3169.png

    Fig. 1. All molecular structures of the title derivatives

    3 RESULTS AND DISCUSSION

    3. 1 Heats of formation

    The basic structures are presented in Fig. 1. For the sake of discussion, all derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate are named A~L in sequence. Heat of formation (HOF) is a significant factor to reflect the energy content of a compound and molecular stability. High and positive HOF means high energy but less stability. The value of HOF (kJ/mol) is calculated based on formulas (2), (3) and(4), and the ultimate results are listed in Table 2. At the same time, Table 2 also lists the total energies (E0, a.u), zero-point energies (ZPE, a.u) and thermal corrections (HT, a.u) in the isodesmic reactions at the B3LYP/6-311G** level of theory.Besides, Table 2 presents the data of traditional energetic materials to compare our results in this section.

    Table 2. Calculated Total Energies (E0, a.u.), Zero-point Energies (ZPE, a. u.), Thermal Corrections (HT, a. u.), and Solid Phase Heats of Formation (HOFs, Solid, kJ/mol) of Twelve New High Explosives Compared to Traditional Explosives

    As shown in Table 2, all derivatives of the title compound have positive HOFs, which is one of the requirements for energetic materials[20]. It is worth noting that not only all derivatives exhibit excellent HOFs but also all the corresponding values (326.75~1341.05 kJ/mol) are higher compared with TNT (-63.12 kJ/mol), RDX (79.00 kJ/mol),HMX (75.24 kJ/mol) and FOX-7 (-133.70 kJ/mol)[15,21].These values, especially for compound G, meet most military and civilian requirements. The HOFs decrease to the lowest value (326.75 kJ/mol) when about three nitroso groups are present on the substitution site. The HOFs then obtain maximum (1341.05 kJ/mol) as additional -N3group is added to the original skeleton because abundant N-N bonds also have positive effect for increasing the HOFs value. When the substituent is NO2, NH2, NHNH2, NHNO2, NNH2NO2or N3,an increase HOF value of its substituted compounds is large when compared with the unsubstituted case. While the substituent is NNO2NO2, ONO2, NNO2ONO2, OH, NF2or C(NO2)3, the case is quite different. As expected, the introduction of nitrogen rich groups (NO2, NH2, NHNH2,NHNO2, NNH2NO2, N3) results in higher heats of formation than their parent (559.59 kJ/mol), which means these designed materials are promising to apply in the future. This change trend of HOF can be arranged in the sequence G > C > E > B > D > A > F > K > J > I > H > L.

    3. 2 Molecular structures and electronic properties

    Our method to design new high energy density materials on years of experience is coupled with interdisciplinary computational way in this field. There are three concrete standards that a newly-designed energetic explosive should meet: (i) stable five-membered heterocyclic rings obtained in our designed structures in order to stop abrupt dissociation/decomposition of these rings, (ii) a relatively-high number of nitrogen and oxygen atoms to guarantee lower oxygen balance (OB) and higher heat of formation (HOF), (iii)a combination of amino and nitro groups to improve stability to mechanical impact and thermal stability of the final materials. What’s more, one advantage of these compounds designed by us is that each new organic molecule contains two heterocycles, which greatly improves the stability of the materials.

    The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) are called frontier molecular orbitals (FMOs). The energy gap() between HOMO and LUMO reflects the chemical reactivity, kinetic stability and optical polarizability of the compounds. The molecular frontier orbital energy levels and their gaps are contained in Table 3. It is obvious to see from Table 3 that HOMO energies vary from -0.3027 to-0.3438 a.u. and LUMO from -0.1106 to -0.1602 a.u. for all new designed derivatives, and the frontier orbital energies differ from different compounds. Except for compound J, it is noteworthy that all the investigated molecules have higher energy gap than their parent and compound K with a NF2group has the maximum value. Thus, the contributions of the NF2group to the derivatives improve the stability of the compound and reduce their chemical activity. As shown in Table 3, the value of the investigated molecule J is less than the parent, indicating that the new designed molecule may be more sensitive than the parent. The differences predict that the chemical activity of the title compounds decreases in the following order: K > C > F > D > A > I > E > L > H > B >G > J. The low value ofmeans this electron transfer is easy from HOMO to LUMO. In other words, these molecules are more sensitive and chemically active and less stable.

    Table 3. Frontier Orbital Energies and Their Differences of Title Compounds at the B3LYP/6-311G** Level of Theory

    3. 3 Impact sensitivity

    Apart from the energies and structures, the sensitivity of energetic materials is also a key study of keen interest to researchers in the research area of high energy density materials. Here, we use characteristic height (H50) to evaluate the sensitivity of molecules. Theoretical prediction of impact sensitivity for energetic materials has long been considered a difficult study, because the sensitivity of organic compounds is relevant to their decomposition kinetics and thermodynamics, which is very complicated. Actually, a calculation using crystal volume factors to assess impact sensitivities of nitramine energetic is proposed by Politzer and co-workers,which give acceptable accuracy[18]. So, the impact sensitivities of new organic derivatives were also computed by using model 1 forH50values. Besides, according to previous study,some researchers found that the compounds are stabilized by the delocalization of electronic charge. The impact sensitivity can be relevant to the degree of charge separation and the presence of strongly positive electrostatic potential maxima on the molecular surface[19]. Thus, in order to further discuss whether our system fits the relevant models, we also calculate theH50values of the other four models in this work. TheH50values of all five models are listed in Table 4. We can clearly see a big vary between the values of different models, which may be caused by the different influence factors considered by each formula. Because these designed molecules have no specific experimental values forH50, we only compare these values using four models with the experimental values of parent compound. For the experimental value ofH50, the parent is 24 cm; for the theoretical value, model 1 is 39.1,model 2 is 126.1 cm, model 3 is 60.98 cm, model 4 is 1.49 cm,and model 5 is 0.13 cm. These results support model 1 is significant in predicting impact sensitivities for our system,and the factors of other models may be minor. So next, we will focus on model 1 because its prediction results are more accurate than those of other models in our system.

    In Table 4, these molecules haveH50values between 19.7 and 37.5 cm. Compound L with C(NO2)3group has the lowestH50, which means it is more sensitive, but compound B with the largest value is more stable. A NH2group appears in compound B, which may provide additional hydrogen bond interactions. Thereby, there is a significant increase inH50in this impact sensitivity. The impact sensitivityH50of these new molecules was nearly above 26 cm, and most of them were comparable with that of common explosives, RDX (26 cm)and HMX (29 cm)[22,23]. Besides, theH50values of all derivatives are higher than CL-20. The sensitivity increased with the number of oxygen atoms in different new groups. The phenomenon may result from oxides that have a strong power to attract electrons, thus reducing their impact sensitivity to some extent. However, owing to the complexity of assessing impact sensitivity, these views could be single rather than conclusive.

    Table 4. Calculated Impact Sensitivity (H50) of the Investigated Molecules and RDX, HMX and CL-20

    3. 4 Detonation performance

    Detonation velocity (D) and detonation pressure (P) are two key explosive parameters for a high energy density material. These parameters can be calculated by the Kamlet Jacobs empirical equations on the basis of the theoretical density (ρ) and heat of detonation (Q) of the energetic materials. TheQandρvalues of synthetic molecules can be measured experimentally, but for some new organic materials,they are very difficult to obtain experimentally. Thus, these twovalues of designed new compounds have to be shown firstly to gain key parameters. Therefore, the calculated densities (ρ), heats of detonation (Q), detonation velocities (D)and detonation pressures (P) of the designed molecules are shown in Table 5. At the same time, the experimental detonation performances of traditional energetic materials are listed in Table 5 for an intuitive comparison.

    From the table, we can see that values ofρ,Q,DandPare from 1.76 g/cm3(L) to 1.97 g/cm3(H), from 1011.45 cal/g (G)to 2083.31 cal/g (C), from 7.47 km/s (G) to 9.19 km/s (A),and from 24.28 GPa (G) to 38.9 GPa (A), respectively. By comparing theρvalue of parent and these new title compounds, we found that the density of most of the molecules is much higher than the density of parent. Besides,theρvalue of the parent is close to that of compound E.Further work was focused on improving the detonation performance of the title compounds by introducing energetic groups which resulted in the second-generation of agent defeat weapons. The introduction of NF2is a successful strategy, with the molecular density rising from 1.86 g/cm3(parent) to 1.98 g/cm3(K), which is better than that of TNT(1.64 g/cm3), RDX (1.80 g/cm3), HMX (1.90 g/cm3), and FOX-7 (1.89 g/cm3)[24]. As we know, a molecular density close to 2.0 g/cm3is desirable until now in the field of explosive. Thus, molecule K is glamorous from the viewpoint of density. As expected, the introduction of nitrogen rich groups leads to higher density than these common explosives have. Compounds A (1.93 g/cm3), F (1.92 g/cm3), H (1.97 g/cm3) and I (1.96 g/cm3) also show better density. After evaluating the physicochemical properties of the title compounds, including density and HOF, our attention has been turned to their detonation properties. As shown in Table 4, the calculated detonation velocity and detonation pressure of compound A are 9.19 km/s and 38.9 GPa, respectively,which are much superior to those of TATB (8.11 km/s and 32.4 GPa), TNT (6.95 km/s and 19.00 GPa) and RDX (8.75 km/s and 34.7 GPa)[24]. The detonation velocity and pressure of all compounds are also superior to those of TNT. But compound G (24.28 GPa) has lower detonation pressure than HMX (39.2 GPa), FOX-7 (35.9 GPa), and RDX (34.9 GPa)[24].

    Furthermore, oxygen balance (OB) is also an important parameter for energetic materials to determine whether the compounds are oxygen-enriched or oxygen-poor. Here, for a compound with molecular formula CaHbOcNd, the oxygen balance can be represented as equation (9)[25]:

    Table 5. Calculated Detonation Properties and Nitrogen Content of theTitle Compounds and Reference Compounds TNT, RDX, HMX, FOX-7 and CL-20

    4 CONCLUSION

    A family of new organic molecules of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate are designed. The molecular structures, electronic properties, heat of formation(HOF), impact sensitivity (H50), density (ρ), detonation velocity (D) and detonation pressure (P) of all new compounds are completely characterized by theoretical calculation at the B3LYP/6-311G** level of theory. Besides,oxygen balance (OB) and nitrogen content for all compounds are discussed in this paper. It is noteworthy that all title compounds have excellent HOFs and higherDandPvalues than TNT. Eight of them (A, C, D, E, F, H, I, J) have higherPvalues than RDX (34.70 GPa) and FOX-7 (34.00 GPa), and three of them (A, E, J) have higherDvalues than HMX (9.10 km/s). The good detonation performances of these compounds are caused by outstanding density. Surprisingly, more than half of these derivatives have higher density over 1.80 g/cm3.

    Based on the above results, we can see that new molecule J(H50= 36.9 cm,ρ= 1.90 g/cm3,Q= 1912.46 cal/g,P= 37.82 GPa,D= 9.22 km/s, OB = 0.00), compound A (H50= 27.9 cm,ρ= 1.93 g/cm3,Q= 1612.93 cal/g,P= 38.90 GPa,D= 9.19 km/s) and compound H (H50= 37.3 cm,ρ=1.97 g/cm3,Q=1505.06 cal/g,P= 37.20 GPa,D= 9.01 km/s) can be considered as potential candidates in terms of the energetic material. Especially for compound J, the good balance of detonation performance and sensitivity, plus the environmental oxygen balance, contribute to its practical application as a promising primary explosive. It is a green and powerful alternative to the toxic and sensitive explosives.

    老司机亚洲免费影院| 日韩中文字幕视频在线看片| 国产精品一区二区免费欧美 | 欧美日韩亚洲高清精品| 国产精品二区激情视频| 中国美女看黄片| 少妇的丰满在线观看| 啦啦啦在线免费观看视频4| 亚洲精品成人av观看孕妇| 国产免费又黄又爽又色| 在线看a的网站| 少妇人妻久久综合中文| 日日摸夜夜添夜夜爱| 亚洲欧美一区二区三区国产| 老汉色av国产亚洲站长工具| 亚洲av日韩在线播放| 桃花免费在线播放| 午夜福利影视在线免费观看| 国产成人系列免费观看| 久久精品国产亚洲av高清一级| 视频区图区小说| 人人妻人人添人人爽欧美一区卜| 欧美成人精品欧美一级黄| 精品亚洲乱码少妇综合久久| 丁香六月天网| 十八禁高潮呻吟视频| 国产淫语在线视频| 午夜福利,免费看| 大陆偷拍与自拍| 丝袜美腿诱惑在线| 国产精品人妻久久久影院| 王馨瑶露胸无遮挡在线观看| 悠悠久久av| 亚洲专区国产一区二区| 真人做人爱边吃奶动态| 亚洲成国产人片在线观看| 成人国产av品久久久| 男女午夜视频在线观看| 国产精品.久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色毛片三级朝国网站| 精品人妻1区二区| 亚洲男人天堂网一区| 精品人妻1区二区| 美女午夜性视频免费| 久热这里只有精品99| 中文字幕人妻丝袜一区二区| 国产精品av久久久久免费| 欧美亚洲 丝袜 人妻 在线| 男女国产视频网站| 久久久久久免费高清国产稀缺| 蜜桃在线观看..| 男女边摸边吃奶| www.精华液| 美女国产高潮福利片在线看| 久久精品熟女亚洲av麻豆精品| 亚洲av日韩在线播放| 色综合欧美亚洲国产小说| 婷婷色综合www| 韩国精品一区二区三区| 男女免费视频国产| 久久ye,这里只有精品| 久久国产精品影院| 亚洲久久久国产精品| 久久性视频一级片| 国精品久久久久久国模美| 丝袜在线中文字幕| 国产高清不卡午夜福利| 十分钟在线观看高清视频www| 亚洲国产最新在线播放| 男女无遮挡免费网站观看| 日本a在线网址| 少妇人妻 视频| 国产成人a∨麻豆精品| 婷婷色av中文字幕| 国产视频一区二区在线看| 一级黄色大片毛片| 飞空精品影院首页| 精品亚洲成国产av| 国产91精品成人一区二区三区 | av片东京热男人的天堂| 亚洲精品国产av成人精品| 亚洲国产成人一精品久久久| 午夜福利免费观看在线| bbb黄色大片| 成人影院久久| 国产精品 欧美亚洲| 欧美少妇被猛烈插入视频| xxxhd国产人妻xxx| 91九色精品人成在线观看| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 国产淫语在线视频| 国产精品.久久久| 日韩av在线免费看完整版不卡| 观看av在线不卡| 久久久久精品国产欧美久久久 | 久久久久久久精品精品| 国产爽快片一区二区三区| 久久鲁丝午夜福利片| 嫁个100分男人电影在线观看 | a级片在线免费高清观看视频| 欧美日韩成人在线一区二区| 99久久精品国产亚洲精品| 日本vs欧美在线观看视频| 少妇人妻久久综合中文| 一级片'在线观看视频| 久久99热这里只频精品6学生| 婷婷色综合www| 亚洲国产欧美日韩在线播放| av欧美777| 国产成人欧美| 啦啦啦中文免费视频观看日本| 91精品伊人久久大香线蕉| 国产精品99久久99久久久不卡| 亚洲国产欧美日韩在线播放| 亚洲成人免费av在线播放| 亚洲精品一二三| 成在线人永久免费视频| 日韩中文字幕视频在线看片| 老司机影院成人| 搡老岳熟女国产| 51午夜福利影视在线观看| www.精华液| 亚洲欧美激情在线| 亚洲人成77777在线视频| 免费不卡黄色视频| 国产精品一区二区精品视频观看| 国产视频一区二区在线看| 国产欧美日韩一区二区三 | 别揉我奶头~嗯~啊~动态视频 | 久久精品久久久久久久性| 亚洲国产日韩一区二区| 久久久久久亚洲精品国产蜜桃av| 一边摸一边做爽爽视频免费| 国产精品.久久久| 18禁裸乳无遮挡动漫免费视频| 女性被躁到高潮视频| 国产精品久久久人人做人人爽| 亚洲五月婷婷丁香| 人妻人人澡人人爽人人| 国产91精品成人一区二区三区 | 免费人妻精品一区二区三区视频| 天天躁日日躁夜夜躁夜夜| 国产精品香港三级国产av潘金莲 | www.自偷自拍.com| cao死你这个sao货| 久久久久精品国产欧美久久久 | 少妇人妻 视频| 国产一区二区在线观看av| 中国国产av一级| 夜夜骑夜夜射夜夜干| 日韩制服丝袜自拍偷拍| 欧美人与善性xxx| 香蕉国产在线看| 国产精品一区二区免费欧美 | 国产男女超爽视频在线观看| 日本猛色少妇xxxxx猛交久久| 黄网站色视频无遮挡免费观看| 岛国毛片在线播放| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 岛国毛片在线播放| 亚洲精品乱久久久久久| 丝袜在线中文字幕| 母亲3免费完整高清在线观看| 欧美日韩视频高清一区二区三区二| 亚洲精品一区蜜桃| 汤姆久久久久久久影院中文字幕| 欧美精品av麻豆av| 国产亚洲av高清不卡| av在线老鸭窝| 五月开心婷婷网| 免费观看a级毛片全部| 91老司机精品| 久久人人爽人人片av| h视频一区二区三区| 亚洲国产精品一区二区三区在线| 久久99热这里只频精品6学生| 丁香六月天网| 国产熟女午夜一区二区三区| 中文乱码字字幕精品一区二区三区| 亚洲成人国产一区在线观看 | 久久精品aⅴ一区二区三区四区| 亚洲熟女精品中文字幕| 国产在视频线精品| 老汉色av国产亚洲站长工具| 国产亚洲午夜精品一区二区久久| 中文字幕制服av| 最近最新中文字幕大全免费视频 | 99精国产麻豆久久婷婷| 国产高清videossex| 国产无遮挡羞羞视频在线观看| 亚洲九九香蕉| 高潮久久久久久久久久久不卡| 国产亚洲精品第一综合不卡| 制服诱惑二区| 亚洲国产精品成人久久小说| 国产精品一区二区在线观看99| 久久久精品94久久精品| 涩涩av久久男人的天堂| 婷婷色综合大香蕉| 一边摸一边做爽爽视频免费| 国产成人精品久久久久久| 欧美精品av麻豆av| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 国产日韩欧美视频二区| 亚洲欧美精品自产自拍| 男男h啪啪无遮挡| 赤兔流量卡办理| 国产一区二区在线观看av| 亚洲专区国产一区二区| 亚洲欧美一区二区三区黑人| 久久国产精品人妻蜜桃| 精品一区二区三卡| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久精品古装| 欧美激情高清一区二区三区| 久久国产亚洲av麻豆专区| 日韩 欧美 亚洲 中文字幕| 午夜av观看不卡| 亚洲天堂av无毛| 少妇人妻 视频| 亚洲成人手机| 亚洲欧美日韩另类电影网站| 国产不卡av网站在线观看| 母亲3免费完整高清在线观看| 国产男女内射视频| 日韩 亚洲 欧美在线| 亚洲人成网站在线观看播放| 亚洲黑人精品在线| 国产成人免费观看mmmm| 日日爽夜夜爽网站| 韩国精品一区二区三区| 香蕉丝袜av| 国产精品秋霞免费鲁丝片| 日日夜夜操网爽| 自线自在国产av| 人体艺术视频欧美日本| 菩萨蛮人人尽说江南好唐韦庄| 国产在视频线精品| 女人久久www免费人成看片| 可以免费在线观看a视频的电影网站| 亚洲欧美清纯卡通| 日本五十路高清| 亚洲,欧美,日韩| 国产色视频综合| 国产高清国产精品国产三级| 国产亚洲一区二区精品| 免费观看人在逋| 看免费av毛片| 亚洲av美国av| 成人国语在线视频| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 午夜久久久在线观看| 欧美+亚洲+日韩+国产| 久久天躁狠狠躁夜夜2o2o | 免费观看人在逋| av网站在线播放免费| 亚洲欧美精品综合一区二区三区| 亚洲成人免费av在线播放| 男女下面插进去视频免费观看| 亚洲欧洲精品一区二区精品久久久| 免费在线观看日本一区| 99久久人妻综合| 国产有黄有色有爽视频| 性少妇av在线| 王馨瑶露胸无遮挡在线观看| 亚洲精品一二三| 国产一区二区在线观看av| 韩国高清视频一区二区三区| 精品免费久久久久久久清纯 | 国产精品欧美亚洲77777| 亚洲自偷自拍图片 自拍| 欧美日韩黄片免| 国产精品.久久久| 精品一区在线观看国产| 少妇精品久久久久久久| 欧美日韩成人在线一区二区| 日日夜夜操网爽| 丰满饥渴人妻一区二区三| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 国产片内射在线| 男女国产视频网站| 一级黄片播放器| 在线精品无人区一区二区三| 成人国产av品久久久| 脱女人内裤的视频| www.999成人在线观看| 桃花免费在线播放| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻熟女乱码| 女人被躁到高潮嗷嗷叫费观| 久久九九热精品免费| a级毛片黄视频| 亚洲人成77777在线视频| 啦啦啦中文免费视频观看日本| 免费看不卡的av| 久久久国产一区二区| 国产日韩欧美亚洲二区| 亚洲av男天堂| 国产深夜福利视频在线观看| 黄色片一级片一级黄色片| 国产亚洲一区二区精品| 国产黄频视频在线观看| 水蜜桃什么品种好| 美女大奶头黄色视频| av不卡在线播放| videosex国产| 亚洲欧美日韩高清在线视频 | 男人添女人高潮全过程视频| 国产成人欧美在线观看 | 国产精品欧美亚洲77777| 午夜影院在线不卡| 精品欧美一区二区三区在线| 国产免费又黄又爽又色| 777米奇影视久久| 久久精品国产a三级三级三级| 两性夫妻黄色片| 秋霞在线观看毛片| 麻豆av在线久日| 国产精品熟女久久久久浪| 国产男女超爽视频在线观看| 亚洲欧美一区二区三区久久| videosex国产| av国产久精品久网站免费入址| 九草在线视频观看| 日日爽夜夜爽网站| 欧美激情极品国产一区二区三区| 中文字幕av电影在线播放| 久久精品国产亚洲av涩爱| 久久ye,这里只有精品| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 国产精品香港三级国产av潘金莲 | 欧美人与善性xxx| 国产日韩一区二区三区精品不卡| 亚洲第一青青草原| 欧美久久黑人一区二区| 免费在线观看完整版高清| 久久ye,这里只有精品| 考比视频在线观看| 在线观看国产h片| 久久久欧美国产精品| 国产精品 欧美亚洲| 在线观看免费视频网站a站| 一级片'在线观看视频| 亚洲第一av免费看| 777米奇影视久久| 国产在线观看jvid| 午夜激情久久久久久久| 一区福利在线观看| 美女扒开内裤让男人捅视频| 日韩欧美一区视频在线观看| 免费av中文字幕在线| 国产精品香港三级国产av潘金莲 | 一二三四社区在线视频社区8| 搡老乐熟女国产| 成人午夜精彩视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 美女中出高潮动态图| 可以免费在线观看a视频的电影网站| 免费黄频网站在线观看国产| 久久久久视频综合| 成年动漫av网址| 亚洲国产中文字幕在线视频| 久久久精品免费免费高清| svipshipincom国产片| 国产av一区二区精品久久| 欧美中文综合在线视频| av视频免费观看在线观看| 黑人猛操日本美女一级片| 午夜福利一区二区在线看| 男女边吃奶边做爰视频| a级片在线免费高清观看视频| 搡老乐熟女国产| 亚洲第一青青草原| 国产99久久九九免费精品| 91精品三级在线观看| 看免费av毛片| 亚洲人成77777在线视频| 久久精品国产综合久久久| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 日韩av在线免费看完整版不卡| 国产片特级美女逼逼视频| 国产精品久久久久久人妻精品电影 | 亚洲欧美日韩另类电影网站| 久久性视频一级片| 午夜精品国产一区二区电影| 亚洲av男天堂| 国产淫语在线视频| 中国国产av一级| 亚洲久久久国产精品| 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| 亚洲欧美清纯卡通| 伊人亚洲综合成人网| 午夜激情av网站| 18在线观看网站| 在线观看www视频免费| 男人操女人黄网站| 乱人伦中国视频| 欧美黄色淫秽网站| 久久精品熟女亚洲av麻豆精品| 国产精品 欧美亚洲| a级片在线免费高清观看视频| 天堂8中文在线网| 亚洲精品美女久久久久99蜜臀 | 大型av网站在线播放| 国产精品久久久久成人av| 日韩,欧美,国产一区二区三区| 久久99热这里只频精品6学生| 国产一区二区激情短视频 | 亚洲成人免费av在线播放| 777米奇影视久久| 两个人免费观看高清视频| 国产精品三级大全| 亚洲,欧美,日韩| 久久 成人 亚洲| 人体艺术视频欧美日本| 精品福利观看| 十八禁人妻一区二区| 国产无遮挡羞羞视频在线观看| 操出白浆在线播放| 亚洲国产精品国产精品| 高清av免费在线| 午夜福利一区二区在线看| 欧美久久黑人一区二区| 国产三级黄色录像| 欧美 亚洲 国产 日韩一| 老鸭窝网址在线观看| 校园人妻丝袜中文字幕| 亚洲国产日韩一区二区| 一本久久精品| 欧美精品人与动牲交sv欧美| 久久精品久久久久久久性| 免费在线观看黄色视频的| 乱人伦中国视频| 婷婷丁香在线五月| 亚洲,欧美精品.| 丁香六月欧美| 香蕉丝袜av| 97人妻天天添夜夜摸| 国产成人影院久久av| 蜜桃国产av成人99| 国产成人91sexporn| 午夜影院在线不卡| 成人18禁高潮啪啪吃奶动态图| 久久鲁丝午夜福利片| 欧美乱码精品一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲成人免费电影在线观看 | 中文欧美无线码| 丰满人妻熟妇乱又伦精品不卡| 天天影视国产精品| 亚洲免费av在线视频| 晚上一个人看的免费电影| 欧美亚洲 丝袜 人妻 在线| 又紧又爽又黄一区二区| 一级毛片黄色毛片免费观看视频| 中文字幕人妻丝袜制服| 97精品久久久久久久久久精品| 男人操女人黄网站| 免费黄频网站在线观看国产| 国产高清videossex| 久久鲁丝午夜福利片| 天天躁日日躁夜夜躁夜夜| 亚洲黑人精品在线| 飞空精品影院首页| 精品久久蜜臀av无| 亚洲av美国av| 91九色精品人成在线观看| 男的添女的下面高潮视频| 国产亚洲一区二区精品| 99热网站在线观看| 亚洲人成网站在线观看播放| 久久 成人 亚洲| 欧美xxⅹ黑人| 精品国产超薄肉色丝袜足j| 亚洲av成人精品一二三区| 美女午夜性视频免费| 黑人欧美特级aaaaaa片| 国产一区二区三区综合在线观看| 一本久久精品| 久久精品成人免费网站| 999久久久国产精品视频| av又黄又爽大尺度在线免费看| 亚洲成人国产一区在线观看 | 人体艺术视频欧美日本| 国产视频一区二区在线看| 视频区图区小说| 亚洲国产看品久久| 久久久久久久久免费视频了| 香蕉丝袜av| 欧美成人午夜精品| 亚洲av成人精品一二三区| 久久精品熟女亚洲av麻豆精品| 色视频在线一区二区三区| 大陆偷拍与自拍| 久久久久国产精品人妻一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 搡老岳熟女国产| 天堂8中文在线网| 香蕉丝袜av| 黄网站色视频无遮挡免费观看| 观看av在线不卡| 成人国产一区最新在线观看 | 狠狠精品人妻久久久久久综合| 波野结衣二区三区在线| 真人做人爱边吃奶动态| 性高湖久久久久久久久免费观看| 日日爽夜夜爽网站| 国产三级黄色录像| 99国产精品99久久久久| 90打野战视频偷拍视频| 一区二区三区乱码不卡18| 免费观看av网站的网址| 精品国产超薄肉色丝袜足j| 99久久精品国产亚洲精品| 免费看不卡的av| 午夜日韩欧美国产| 久久天躁狠狠躁夜夜2o2o | √禁漫天堂资源中文www| 日韩,欧美,国产一区二区三区| 老司机亚洲免费影院| 男人操女人黄网站| 欧美在线黄色| 国精品久久久久久国模美| 亚洲黑人精品在线| 自线自在国产av| 欧美另类一区| 天天添夜夜摸| 国产亚洲av高清不卡| 99久久精品国产亚洲精品| 亚洲精品一二三| 人妻人人澡人人爽人人| 成年人黄色毛片网站| 搡老岳熟女国产| 免费在线观看日本一区| 天天操日日干夜夜撸| 免费在线观看影片大全网站 | 国产亚洲精品第一综合不卡| 国产一区二区 视频在线| 中文字幕人妻丝袜制服| 丝袜在线中文字幕| 国产精品免费大片| 性高湖久久久久久久久免费观看| 亚洲专区国产一区二区| 两人在一起打扑克的视频| 欧美激情 高清一区二区三区| 最近手机中文字幕大全| 亚洲色图 男人天堂 中文字幕| 日韩制服丝袜自拍偷拍| 欧美黄色淫秽网站| 国产精品香港三级国产av潘金莲 | 人妻 亚洲 视频| 成人18禁高潮啪啪吃奶动态图| 老汉色av国产亚洲站长工具| 午夜日韩欧美国产| 欧美xxⅹ黑人| 亚洲五月色婷婷综合| 一区在线观看完整版| 久久久久久人人人人人| 夫妻午夜视频| 久久国产精品大桥未久av| 一级黄片播放器| 亚洲成国产人片在线观看| 久久久久精品人妻al黑| 精品福利观看| 色婷婷av一区二区三区视频| 尾随美女入室| 在线 av 中文字幕| 精品国产一区二区久久| 国产欧美日韩一区二区三 | 一区二区三区激情视频| 欧美黄色淫秽网站| 国产一区二区三区综合在线观看| 水蜜桃什么品种好| 女人精品久久久久毛片| 精品人妻熟女毛片av久久网站| 亚洲欧美中文字幕日韩二区| 亚洲av成人精品一二三区| 18禁国产床啪视频网站| 国产精品久久久久成人av| 精品熟女少妇八av免费久了| 国产又色又爽无遮挡免| 无限看片的www在线观看| 美女主播在线视频| 国产av一区二区精品久久| 午夜福利影视在线免费观看| 69精品国产乱码久久久| 成人午夜精彩视频在线观看| 一本综合久久免费| 日本午夜av视频| 午夜福利乱码中文字幕| 女人爽到高潮嗷嗷叫在线视频| 中文欧美无线码| 午夜免费观看性视频| 一区二区三区乱码不卡18| 久9热在线精品视频| 久久毛片免费看一区二区三区| 亚洲自偷自拍图片 自拍| 久久精品久久久久久噜噜老黄| 国产91精品成人一区二区三区 | 一级毛片我不卡| 美女主播在线视频| kizo精华| 美女国产高潮福利片在线看| 99久久精品国产亚洲精品| 欧美日本中文国产一区发布| 精品少妇一区二区三区视频日本电影|