• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Fluorination on the Crystal Structure, Stability and Gas Adsorption Property in Zinc(II)Metal-organic Frameworks①

    2022-03-12 07:43:50ZHANGXinCHENZhenXiaYANGYongTaiDENGMingLiWENGLinHong
    結(jié)構(gòu)化學(xué) 2022年2期

    ZHANG Xin CHEN Zhen-Xia YANG Yong-Tai DENG Ming-Li WENG Lin-Hong

    (Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,Department of Chemistry, Fudan University, Shanghai 200433, China)

    ABSTRACT Three zinc(II) metal-organic frameworks (xF-MAC-3) have been synthesized by using Zn(II) salts,3,5-dimethyl-1H-1,2,4-triazole (Hdmtrz) and different fluorination degree carboxylate ligands, which are analogic structures and can be described as (6,6)-connected pcu-b net. We find that the fluorine atoms have structural regulation effect on xF-MAC-3, which can not only enlarge the torsion angle φ of carboxylate ligands but also elevate the space group of structures. Besides, the CO2-273 K uptake increased from 23.21 cm3·g-1 (MAC-3) to 36.13 cm3·g-1 (4F-MAC-3) and H2-77 K uptake increased from 24.33 cm3·g-1 (MAC-3) to 59.79 cm3·g-1(4F-MAC-3), which means fluorination can enhance the gas adsorption uptake of xF-MAC-3 analogues.Furthermore, the results of fluorination in xF-MAC-3 analogues offer a potential way to study the ligand pre-functionalization effect on the structures and properties of MOFs analogues.

    Keywords: metal-organic frameworks, fluorine functionalization, X-ray crystallography, gas adsorption;

    1 INTRODUCTION

    Metal-organic frameworks (MOFs) are porous crystalline materials which are constructed by secondary building units(SBUs) and organic ligands[1-3]. In the last two decades, due to their permanent porosity, structural stability and easily functionalization, MOFs have been widely studied in the fields of applications such as gas adsorption and purification[4-6], catalysis[7-9], molecule sensing and recognition[10-12].

    Since fluorine atoms have the strongest electronegativity and small electron polarization, introducing fluorine-containing functional groups into MOFs can change the pore channel properties and lead to various applications[13-15], such as hydrocarbon separation[16-19], ionic conductivity[20]and,mostly important, H2and CO2adsorption[21-23]. Nevertheless,fluorination will largely change the acidity and coordination ability of the carboxylate ligand, so that fluorinated analogues of MOFs constructed by carboxylate ligands can hardly be synthesized[24-26]. In recent years, some fluorinated analogues of MOFs have been synthesized and the effects of fluorination on MOFs have been studied[27-29]. However, there are still some challenges to figure out the effect of fluorination in MOFs for crystal structures, stabilities, H2and CO2adsorption properties, which arouses our interests.

    Cheetham and co-workers investigated that a series of 3D fluorinated-MOFs can be synthesized by using perfluorinated carboxylates in combination with nonfluorinated nitrogen heterocyclic ligands such as imidazole[30], triazole[31], and both bipyridine[32]. Inspired by this, we synthesized three analogic structures (xF-MAC-3) based on our previous work[33]by using Zn(II) salts, 3,5-dimethyl-1H-1,2,4-triazole(Hdmtrz) and different fluorination degree carboxylate ligands.We also discuss the effects of fluorination on MOFs structure,thermal and chemical stability, H2and CO2adsorption properties in detail.

    2 EXPERIMENTAL

    2. 1 General materials and methods

    All reagents were purchased from commercial sources and used without further purification, except for 3,5-dimethyl-1H-1,2,4-triazole (HDmtrz) and 2,5-difluoroterephthalic acid(H2DFBDC), which were synthesized according to the references[34,35]. Fourier Transform Infrared Spectra (FT-IR)were performed on a ThermoFisher Nicolet iS10 FT-IR spectrometer in the range of 4000~400 cm-1with KBr pellets.Elemental analyses of C, N and H were tested on the Elementar Vario EL III. Powder X-ray diffraction (PXRD)was measured by using a Bruker D8 Advance diffractometer with Cu-Kαradiation (λ= 1.5406 ?). Thermogravimetric analyses (TGA) were carried out on SDT Q600 with the temperature range of 30~900 °C under N2flow at a heating rate 10 °C·min-1. Gas adsorption analyses were tested on the Micromeritics ASAP 2020 surface area analyzer. Before gas sorption, the as-made MOF samples (about 100 mg) were exchanged with dichloromethane (10 mL for three times) and then degassed at 140 °C for 10 hours.

    2. 2 X-ray crystallographic study

    Single-crystal X-ray diffraction (SC-XRD) of all compounds was performed on a Bruker D8 Venture MetalJet with Ga-Kαradiation (λ= 1.3414 ?) at 173 K. Data collection and reduction were performed with APEX III, and empirical absorption corrections were applied by the SADABS program.Structures were solved by direct methods using the SHELXS program and refined with the SHELXL program[36].Non-hydrogen atoms and N-bondedHatoms were directly obtained from a difference Fourier map.C-bonded H atoms were placed geometrically and refined as riding modes. Final refinements were carried out by full-matrix least-squares methods with anisotropic thermal parameters for all non-hydrogen atoms onF2. SQUEEZE method was used to consider the disorder in the channel of the structures[37].

    2. 3 Syntheses

    2. 3. 1 3,5-Dimethyl-1H-1,2,4-triazole (HDmtrz)

    Acetamide (60 g, 1 mol) and 80 wt% hydrazine hydrate (30 g, 0.5 mol) were added into a 250 mL flask and heated at 120 °C for 3 h, when the reaction solution first turned pink and then became colorless. After that, the reaction temperature was increased to 180 °C for 3 h and about 30 mL of liquid was distilled. Finally, the temperature was further increased to 240 °C and colorless liquid was distilled, which was condensed on the tube as white solid product (8.98 g, 0.09 mol). Yield: 9%.1H NMR (DMSO-d6) showedδ= 13.13 (s,1H), 2.20 (s, 6H).

    2. 3. 2 2,5-Difluoroterephthalic acid (H2DFBDC)

    2,5-Difluoro-4-methylbenzoic acid (5.6 g, 33.5 mmol),N-bromosuccinimide (NBS, 29.5 g, 165 mmol) and benzoyl peroxide (BPO, 0.4 g) were added into 100 mL CCl4and refluxed at 120 °C for 48 h and the reaction system changed into orange color. The hot mixture was filtered and washed successively with hot CCl4, and the organic solution was extracted with 1 M HCl by three times, dried over anhydrous MgSO4, filtered and evaporated. The remaining orange solid was the intermediate product with the mess of 9.14 g.1H NMR (DMSO-d6):δ= 7.71 (q, 1H), 7.61 (q, 1H), 7.41 (s, 1H).

    The intermediate product (9.14 g) and sodium periodate(7.17 g, 33.5 mmol) were added into 50 mL 2% H2SO4and refluxed at 90 °C for 24 h. The product was subsequently cooled to room temperature and the cold mixture was filtered,then the precipitate was washed with water. The solids were recrystallized from acetic acid to gain white powder 3.47 g(17.5 mmol). Yield: 52.2%.1H NMR (DMSO-d6):δ= 7.68 (t, 2H).

    2. 3. 3 Zn2(BDC)2(Dmtrz)]·(CH3NH3)·2H2O (MAC-3)

    Zn(OAc)2·2H2O (75 mg, 0.2 mmol), terephthalic acid(H2BDC, 33 mg, 0.2 mmol) and HDmtrz (10 mg, 0.1 mmol)were added to 10 mLN,N-dimethylformamide (DMF) and stirred for 10 min. Then the solution was sealed in a Teflon-lined stainless-steel autoclave (15 mL) and heated at 140 °C for 3 days, followed by cooling down to room temperature. Colorless block crystals were collected by filtration. Yield: 75% based on the Zn(OAc)2·2H2O. Elemental analysis calculated for MAC-3 (Zn2C21H24N4O10, 623.19):C, 40.41; N, 8.98; H, 3.85%. Found: C, 40.50; N, 9.41; H,3.78%. FT-IR (cm-1): 3426m, 3059m, 2963m, 2794m, 2484w,1952w, 1632vs, 1599vs, 1492s, 1393vs, 1253w, 1136w,1099m, 10118m, 875w, 816m, 753s, 694w, 592w, 514m (Fig. 1b).

    2. 3. 4 Zn3(H2O)2(MeO)2(DFBDC)2(Dmtrz)]·(CH3)2NH2(2F-MAC-3)

    [Zn(NO3)2·6H2O (87 mg, 0.3 mmol), H2DFBDC (40 mg,0.2 mmol) and HDmtrz (10 mg, 0.1 mmol) were added to the mixture solution of DMF (2 mL) and methanol (MeOH, 8 mL), and the mixture was stirred for 10 min. Subsequently,the mixture was sealed in a Teflon-lined stainless-steel autoclave (15 mL) and heated at 90 °C for 12 h, followed by cooling down to room temperature. Colorless block crystals were collected by filtration. Yield: 60% based on the Zn(NO3)2·6H2O. Elemental analysis calculated for 2F-MAC-3 (Zn3C24H28N4O12F4, 836.61): C, 34.42; N, 6.69; H,3.35%. Found: C, 34.45; N, 6.65; H, 3.30%. FT-IR (cm-1):3411m, 3073w, 2978m, 2927w, 2878w, 2448w, 2033w,1646vs, 1588vs, 1486m, 1419vs, 1356s, 1264m, 1213m,1183s, 1121m, 1026w, 988w, 945w, 900m, 853m, 808s, 774s,706w, 657w, 529m (Fig. 1b).

    2. 3. 5 [Zn2(TFBDC)2(Dmtrz)]·H2O (4F-MAC-3)

    Zn(NO3)2·6H2O (87 mg, 0.3 mmol), 2,3,5,6-tetrafluoroterephthalic acid (H2TFBDC, 48 mg, 0.2 mmol) and HDmtrz (10 mg, 0.1 mmol) were added to the mixture solution ofN,N-diethylformamide (DEF, 2 mL) and MeOH (8 mL), and the mixture was stirred for 10 min. Then the mixture was sealed in a Teflon-lined stainless-steel autoclave (15 mL) and heated at 90 °C for 12 h, followed by cooling down to room temperature. Light purple block crystals were collected by filtration. Yield: 65% based on Zn(NO3)2·6H2O. Elemental analysis calculated for 4F-MAC-3 (Zn2C20H9N3O9F8, 718.04):C, 33.42; N, 5.84; H, 1.24%. Found: C, 33.50; N, 5.94; H,1.20%. FT-IR (cm-1): 3422m, 2921w, 2941w, 2874w, 2361w,1639vs, 1474m, 1419vs, 1356s, 1264m, 1213m, 1183s,1121m, 1026w, 988w, 945w, 900m, 853m, 808s, 774s, 706w,657w, 529m (Fig. 1b).

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis and general characterization

    Zn2(BDC)2(Dmtrz)]·(CH3NH3)·2H2O (MAC-3) was synthesized by solvothermal method in DMF with the raw material ratio of Zn(OAc)2·2H2O:H2BDC:HDmtrz as 3:2:2 after referring to the previously reported method[33]. However,we failed to acquirexF-MAC-3 (x= 2 or 4) under the same synthesis conditions, which we believed that was mainly due to the introduction of fluorine atoms[38]. Due to the strongest electronegativity and electron polarization of the fluorine atom, the electronic density on the benzene ring and the ligand acidity would change after the introduction of the fluorine atom into the carboxylate ligand. As the number of fluorine atoms increases, the electronic density of the benzene ring would decrease while the ligand acidity would increase,which changed the coordination ability of the carboxylate ligand and affected the synthesis of MOF materials. Therefore,we used zinc nitrate with stronger coordination ability as the metal salt during the synthesis of 2F-MAC-3. We also introduced methanol with low boiling point and strong polarity into the solvent system and used milder reaction conditions to gain high quality 2F-MAC-3 single crystal.During the synthesis of 4F-MAC-3, we replaced DMF with DEF, which had better ligand solubility and helped to obtain the single-crystal test-qualified 4F-MAC-3 sample.

    The PXRD pattern ofxF-MAC-3 samples fitted well with the simulated data, confirming the pure phase of all samples(Fig. 1a). The existence of fluorine atoms in the structures was checked by using1H NMR and FT-IR spectroscopy. The FT-IR spectra of 2F-MAC-3 and 4F-MAC-3 had absorption peaks at 1182 and 989 cm-1, respectively, which could be ascribed as the stretching vibration peaks of C-F bonds,showing the presence of fluorine functionalized ligands(Fig. 1b)[39]. Furthermore, the disappearance of C-H non-planar deviational vibration peaks in the range of 950~780 cm-1in 4F-MAC-3 FT-IR spectrum also implied the absence of C-H bonds in 4F-MAC-3, certifying that the carboxylate ligand in 4F-MAC-3 is TFBDC[40]. The1H NMR spectroscopy showed the ligand composition ofxF-MAC-3 structures. The1H NMR spectra of MAC-3 and 2F-MAC-3 had two NMR peaks with different chemical shifts, where the peak atδ7.99 could be ascribed as the benzene ring hydrogen of carboxylate ligand (-PhH) and that atδ2.48 was the methyl hydrogen of the Dmtrz ligand (-CH3), respectively (Fig. 1c).The ratio of the two ligands closed to 1:1 calculated by the peak integrating area, which was consistent with the structural molecular formula results. There was only one peak in the1H NMR spectrum of 4F-MAC-3 atδ2.44, which was the methyl hydrogen (-CH3) of the Dmtrz ligand. The absence of other chemical shift peaks also proved that the carboxylate ligand in 4F-MAC-3 is TFBDC.

    Fig. 1. (a) PXRD pattern; (b) FT-IR spectra; (c) 1H NMR spectra of xF-MAC-3 (x = 0, 2, 4)

    3. 2 X-ray crystal structure

    As a prototype structure, single-crystal X-ray diffraction study revealed that MAC-3 crystallized in monoclinic system,C2/mspace group (Table S1). The asymmetric unit of MAC-3 contained two crystallographically independent Zn(II). Four carboxylate groups in BDC ligands andNatoms in Dmtrz ligands coordinated to Zn(1) and Zn(1)A(A: 1-x,y, 2-z),forming zinc paddle-wheel SBU [Zn2(COO)4N2]. Two Dmtrz ligands coordinated to Zn(2) and Zn(2)B(B: 1-x, 1-y, 1-z)viaaμ1,2-bridging mode to construct triazolate-dinuclear SBUs[Zn2(Dmtrz)2O4] (Fig. 2a). Two SBUs connected with each other to generate a 1D chain structure with a folding angleθof 168.78°, and such chains are linked by BDC ligands along thexandyaxes to form a 3D structure with a 7.0? × 7.0? channel along thecaxis (considering van der Waals radius,Fig. 2b). Considering paddle-wheel and triazolate-dinuclear as 6-connected SBUs, MAC-3 could be defined as a (6,6)-connectedpcu-b topology net (Fig. S1)[41].

    Fig. 2. (a) Secondary building units and organic ligands of xF-MAC-3; (b)~(d) Single-crystal structures of xF-MAC-3

    Based on the MAC-3 prototype structure, we replaced BDC ligand by fluorine-functionalized ligands to synthesize iso-structures and 2F-MAC-3 & 4F-MAC-3 were subsequently isolated (Fig. 2c, d, Fig. S2, 3 and Table S1). Distinct structural changes concerning the carboxylate ligands, 1D chain and SBUs are summarized in Table 1 and Fig. 1b, which mainly included (i) space group elevated fromC2/m(MAC-3)toImmm(2F-MAC-3 & 4F-MAC-3); (ii) the folding angleθof 1D chain changed from obtuse angle (168.78°) into straight angle (180°); (iii) the torsion angle φ in BDC ligands turned into right angle; (iv) trianzolate-dinuclear SBU changed into a novel zinc tetranuclear SBU when the BDC ligand was replaced by fluorine-functionalized DFBDC ligands. The 1D channel size of 2F-MAC-3 is 4.0? × 6.8? (considering van der Waals radius) which is smaller than MAC-3. The channel of 2F-MAC-3 is smaller than MAC-3 mainly caused by the larger zinc tetranuclear SBU in 2F-MAC-3, which reduced the size of 1D channel in MOFs. Furthermore, the 1D channel size of 4F-MAC-3 is 6.8? × 6.8? (considering van der Waals radius) which is slightly smaller than MAC-3. Considering the SBUs in 4F-MAC-3 are the same with MAC-3, the smaller 1D channel in 4F-MAC-3 is due to the relatively larger size of fluorine atoms.

    There are two important differences in the chemistry of fluorine-functionalized BDC ligands compared to their nonfluorinated analogues, which caused the structural changes inxF-MAC-3 mentioned above. The first difference among three carboxylate ligands is the pKavalue. As discussed, the pKavalue of BDC-derived ligands decreases with the increasing number of fluorine atoms on the ligand, which means the acidities of 2F-MAC-3 & 4F-MAC-3 are stronger than MAC-3. So the fluorinated ligands can be deprotonated more easily and coordinated with zinc ions in a multidentate mode. This explains SBUs in MAC-3 are paddle-wheel and triazolate-dinuclear when SBUs in 2F-MAC-3 & 4F-MAC-3 are paddle-wheel and zinc tetranuclear. Secondly, in 2F-MAC-3 & 4F-MAC-3, the fluorine atoms of BDC ligands enlarge the torsion angle φ to a right angle, by which the carboxylate groups are twisted out of the benzene ring. This can be attributed to (i) an electrostatic repulsion effect between the fluorine atoms on the benzene ring and the lone-pair oxygen atoms on the carboxylate groups; (ii) the decrease in aromatic character of BDC ligands due to the electron-withdrawing nature of the fluorine atoms[42]. The two differences mentioned above cause the folding angleθof 1D chain inxF-MAC-3 (x= 2, 4) become a straight angle, thus inducing structures to crystallize in a higher symmetry space group (Fig. S4). This suggests that the introduction of fluorine atoms into ligand has a structure directing effect on the synthesizedxF-MAC-3.

    3. 3 Structural stability

    To study the porosity ofxF-MAC-3, we first investigated the thermal and solvent stability ofxF-MAC-3 to determine the activation conditions for gas adsorption test. The TGA analysis reveals that allxF-MAC-3 samples contain two weight loss peaks. The first one from room temperature to 200 °C shows about 25% weight loss, which can be attributed to the departure of guest molecules. The second weight loss peak from 250 to 600 °C results from the decomposition of the framework. For the increasing fluorination degree will weaken the C(-Phenyl)-C(Carboxylate)bond, the decarboxylation reaction will be easy to occur as the degree of fluorination increases, which makes the decomposition temperature significantly shift to lower temperature (420 °C for MAC-3 and 250 °C for 4F-MAC-3, Fig. 3a)[43]. From the variable temperature PXRD patterns ofxF-MAC-3, we can find that the structures will keep the crystallinity until 180 °C, which is consistent with the TGA data (Fig. 3b~d). ImmersingxF-MAC-3 into different solvents (e.g. dichloromethane,methanol, acetone, ethyl acetate) for 2 h, PXRD patterns show no significant changes, indicating thatxF-MAC-3 has good solvent stability and the fluorine-functionalized of the ligands doesn’t affect the solvent stability of the MAC-3 structure(Fig. S5).

    3. 4 Gas adsorption properties

    The N2-77 K adsorption isotherms ofxF-MAC-3 reveal the presence of microporous structures in the structures. The BET surfaces are 532 m2g-1(MAC-3), 459 m2g-1(2F-MAC-3) and 579 m2g-1(4F-MAC-3, Fig. 3a), respectively. For the channel ofxF-MAC-3 is occupied by cationic CH3NH3+molecules,the experimental BET surfaces are remarkably lower than the theoretical accessible surfaces calculated by Material Studio(van der Waals radius of the probe molecule: 1.84 ?;calculated supercell: 2 × 2 × 2 supercell)[44]. The void space ofxF-MAC-3 is calculated by PLATON software and the data are listed in Table S2[45]. The pore size distribution ofxF-MAC-3 is calculated by DFT model and the maximum pore sizes ofxF-MAC-3 are 5.52 ? (MAC-3), 5.88 ?(2F-MAC-3) and 5.73 ? (4F-MAC-3, Fig. 4b), respectively.

    Fig. 3. (a) TGA curves; (b) Variable temperature PXRD patterns of xF-MAC-3

    Fig. 4. (a) N2-77K adsorption isotherms; (b) Pore size distribution of xF-MAC-3

    H2and CO2adsorption experiments have been used to understand the relationship between gas adsorption capacity and fluorination degree ofxF-MAC-3. CO2-273 K adsorption experiments ofxF-MAC-3 are carried out under 800 mmHg and the uptake ofxF-MAC-3 amount is 23.21 cm3·g-1(1.04 mmol·g-1, MAC-3), 27.50 cm3·g-1(1.23 mmol·g-1,2F-MAC-3) and 36.13 cm3·g-1(1.61 mmol·g-1, 4F-MAC-3)respectively, which show that CO2uptake amount increases when fluorination degree increases on the carboxylate ligands(Fig. 5a~c).

    Fig. 5. (a) Low-pressure CO2 adsorption isotherm at 258 and 273 K (solid line: adsorption isotherm;hollow line: desorption isotherm); (b) Adsorption heat (Qst) for xF-MAC-3

    To further investigate the effect of fluorination degree on CO2adsorption enthalpy (Qst), we preform 258 K CO2adsorption experiments and the isosteric heat of CO2adsorption is calculated from the Virial method (Fig. S6, Fig.5d~f)[46]. The near-zero coverageQstis 29.0, 27.5 and 26.1 kJ·mol-1for MAC-3, 2F-MAC-3 and 4F-MAC-3, respectively. The result illustrates that the interaction between the hostxF-MAC-3 frameworks and guest CO2molecules adsorption decrease as the degree of fluorination increases,which is caused by the lower electronic density on the benzene ring after using fluorine-functionalized ligands[42].

    H2-77 K adsorption experiment results show that the gas uptake amounts ofxF-MAC-3 increase form 24.33 cm3·g-1(MAC-3) to 59.79 cm3·g-1(4F-MAC-3) at 77 K and 1 atm(Fig. S7). Although the H2uptake amounts ofxF-MAC-3 are significantly lower than some classical electrically neutral frameworks due to the presence of anti-balance cation in the channel of structures, 4F-MAC-3 has the highest H2capacity among the ionic fluorinated-MOFs[31,47]. It is further demonstrated that the structural pore properties and adsorption performance can be tuned by functionalization of ligands in MOF materials.

    4 CONCLUSION

    In conclusion, we synthesized three different fluorination degree MOFs (xF-MAC-3) withpcu-b topology. Our studies revealed that the introduction of fluorine atoms into carboxylate ligands would not only enlarge the torsion angle φ of ligands but also elevate the space group ofxF-MAC-3,which indicated that fluorination is crucial for MOFs structures. Besides, the CO2and H2adsorption abilities ofxF-MAC-3 have a great enhancement after fluorination, in which the H2-77 K uptake of 4F-MAC-3 (59.79 cm3·g-1) is the highest among all anion fluorinated MOFs. Therefore, we do a systematic research on the effect of fluorination inxF-MAC-3, thus offering a potential way to study the ligand pre-functionalization effect on the structures and properties of MOFs analogues.

    国产精品日韩av在线免费观看| 69av精品久久久久久| 国内揄拍国产精品人妻在线| 91午夜精品亚洲一区二区三区| av天堂中文字幕网| 在线a可以看的网站| 亚洲性久久影院| 国产精品不卡视频一区二区| 国产欧美日韩精品一区二区| 啦啦啦韩国在线观看视频| 亚洲美女搞黄在线观看 | 日韩精品青青久久久久久| 神马国产精品三级电影在线观看| 久久久久久九九精品二区国产| 亚洲中文字幕一区二区三区有码在线看| 亚洲专区国产一区二区| 亚洲av五月六月丁香网| 内射极品少妇av片p| 日韩欧美在线乱码| 人人妻人人看人人澡| 久久久久免费精品人妻一区二区| 中国美白少妇内射xxxbb| 欧美日韩国产亚洲二区| 少妇熟女aⅴ在线视频| 波多野结衣巨乳人妻| 久久久久久久久中文| 尾随美女入室| 国产精品不卡视频一区二区| 内射极品少妇av片p| 又黄又爽又免费观看的视频| h日本视频在线播放| 在线a可以看的网站| 99国产极品粉嫩在线观看| 日韩欧美 国产精品| 午夜福利高清视频| 欧美又色又爽又黄视频| 深夜a级毛片| 久久精品国产自在天天线| 久久婷婷人人爽人人干人人爱| 久久久久久伊人网av| 99久久中文字幕三级久久日本| 亚洲18禁久久av| 变态另类丝袜制服| 亚洲精品国产成人久久av| 99热只有精品国产| 97超视频在线观看视频| 五月玫瑰六月丁香| 国产精品日韩av在线免费观看| 亚洲精品国产成人久久av| 嫩草影院新地址| 欧美成人一区二区免费高清观看| 99riav亚洲国产免费| 亚洲欧美日韩高清专用| 国产麻豆成人av免费视频| 老司机午夜福利在线观看视频| 欧美极品一区二区三区四区| 国产在视频线在精品| 久久久a久久爽久久v久久| 国产色婷婷99| 国产亚洲精品av在线| 看十八女毛片水多多多| 成年女人看的毛片在线观看| 两个人的视频大全免费| av在线观看视频网站免费| 成人三级黄色视频| 男人舔女人下体高潮全视频| 日韩制服骚丝袜av| 深夜精品福利| 成人特级av手机在线观看| 观看美女的网站| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久com| 国产成人aa在线观看| 男人狂女人下面高潮的视频| 老女人水多毛片| 国产av麻豆久久久久久久| 搞女人的毛片| 在线a可以看的网站| 成人毛片a级毛片在线播放| av在线观看视频网站免费| 热99在线观看视频| 99热网站在线观看| 一级av片app| 韩国av在线不卡| 中文字幕免费在线视频6| 国内久久婷婷六月综合欲色啪| 亚洲在线观看片| 亚洲精华国产精华液的使用体验 | 天堂网av新在线| 国产探花在线观看一区二区| 91在线观看av| .国产精品久久| 久久热精品热| 18禁黄网站禁片免费观看直播| 日韩制服骚丝袜av| 国国产精品蜜臀av免费| 日韩欧美免费精品| 亚洲高清免费不卡视频| 在现免费观看毛片| 俺也久久电影网| 在线看三级毛片| 亚洲美女搞黄在线观看 | 成人国产麻豆网| 国产精品久久久久久精品电影| 国产亚洲91精品色在线| 欧美性感艳星| 超碰av人人做人人爽久久| 狠狠狠狠99中文字幕| 麻豆国产av国片精品| 特大巨黑吊av在线直播| 国产aⅴ精品一区二区三区波| 亚洲欧美成人精品一区二区| 国产高清不卡午夜福利| 日韩一本色道免费dvd| 色噜噜av男人的天堂激情| 国产成人91sexporn| 久久久久久国产a免费观看| 国产黄色小视频在线观看| 欧美成人一区二区免费高清观看| 午夜精品在线福利| 亚洲一区高清亚洲精品| 久久久久精品国产欧美久久久| 真人做人爱边吃奶动态| 久久亚洲国产成人精品v| 人人妻人人澡人人爽人人夜夜 | 看片在线看免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 波野结衣二区三区在线| 中文亚洲av片在线观看爽| 日韩人妻高清精品专区| 在线观看一区二区三区| 久久精品国产清高在天天线| 噜噜噜噜噜久久久久久91| 国产亚洲av嫩草精品影院| 亚洲av不卡在线观看| 99久久精品一区二区三区| 免费无遮挡裸体视频| 97碰自拍视频| 色综合亚洲欧美另类图片| 中国国产av一级| 久久天躁狠狠躁夜夜2o2o| 午夜激情欧美在线| 又黄又爽又刺激的免费视频.| 波多野结衣巨乳人妻| 日本熟妇午夜| 国产精品综合久久久久久久免费| 3wmmmm亚洲av在线观看| 国产精品一区二区三区四区久久| 国模一区二区三区四区视频| 久久久久国内视频| 免费在线观看成人毛片| 国产aⅴ精品一区二区三区波| 搡老熟女国产l中国老女人| 精品福利观看| 91在线观看av| 欧美区成人在线视频| 91在线观看av| 免费av不卡在线播放| 国产三级在线视频| 国产一区二区亚洲精品在线观看| 高清毛片免费观看视频网站| 欧美极品一区二区三区四区| 亚洲成av人片在线播放无| 亚洲成人av在线免费| 色在线成人网| 国产精品三级大全| 18禁裸乳无遮挡免费网站照片| 97超级碰碰碰精品色视频在线观看| 天堂网av新在线| 人人妻人人澡人人爽人人夜夜 | ponron亚洲| 色噜噜av男人的天堂激情| 色综合站精品国产| 男人的好看免费观看在线视频| 又爽又黄无遮挡网站| 成人欧美大片| 婷婷精品国产亚洲av| 欧美日韩在线观看h| 女生性感内裤真人,穿戴方法视频| 春色校园在线视频观看| 晚上一个人看的免费电影| 亚洲人成网站在线观看播放| 国产午夜福利久久久久久| 久久亚洲精品不卡| 我要看日韩黄色一级片| 精品人妻熟女av久视频| av在线老鸭窝| 欧美不卡视频在线免费观看| 亚洲精品成人久久久久久| 国产精品99久久久久久久久| 国产高清视频在线播放一区| 亚洲一级一片aⅴ在线观看| 69av精品久久久久久| 99热这里只有是精品在线观看| 亚洲人成网站高清观看| 人人妻人人澡人人爽人人夜夜 | 自拍偷自拍亚洲精品老妇| 99在线人妻在线中文字幕| 久久午夜福利片| 午夜福利成人在线免费观看| 午夜日韩欧美国产| 两个人的视频大全免费| 国产精品,欧美在线| 久久6这里有精品| 成人鲁丝片一二三区免费| 欧美日本视频| 嫩草影视91久久| 国产成年人精品一区二区| 一区二区三区免费毛片| 欧美丝袜亚洲另类| 欧美潮喷喷水| 身体一侧抽搐| 久久久成人免费电影| 欧美激情在线99| 国产精品伦人一区二区| 日日摸夜夜添夜夜添小说| 不卡一级毛片| 免费不卡的大黄色大毛片视频在线观看 | 不卡视频在线观看欧美| 国产高清不卡午夜福利| 亚洲成人中文字幕在线播放| 国产一区二区激情短视频| 俺也久久电影网| 亚洲美女搞黄在线观看 | 日日摸夜夜添夜夜爱| 国产视频内射| 久久久久久久久中文| 男女啪啪激烈高潮av片| 国产精品三级大全| 国产片特级美女逼逼视频| 日韩大尺度精品在线看网址| 精品熟女少妇av免费看| 日日撸夜夜添| videossex国产| 国产av一区在线观看免费| 在线观看免费视频日本深夜| 国产高清激情床上av| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区| 成人精品一区二区免费| 国产精品综合久久久久久久免费| 日韩三级伦理在线观看| 一个人观看的视频www高清免费观看| 一卡2卡三卡四卡精品乱码亚洲| 伊人久久精品亚洲午夜| av天堂在线播放| 国产精品女同一区二区软件| 秋霞在线观看毛片| 看黄色毛片网站| 嫩草影视91久久| 舔av片在线| 韩国av在线不卡| 精品少妇黑人巨大在线播放 | 午夜福利成人在线免费观看| 国产成人freesex在线 | 人妻久久中文字幕网| 不卡视频在线观看欧美| 搡老岳熟女国产| 听说在线观看完整版免费高清| 男人狂女人下面高潮的视频| 欧美激情国产日韩精品一区| 精品人妻偷拍中文字幕| 床上黄色一级片| 午夜精品在线福利| 成人一区二区视频在线观看| 精品人妻偷拍中文字幕| 淫秽高清视频在线观看| 99热这里只有是精品在线观看| 日日摸夜夜添夜夜添av毛片| 国产精品福利在线免费观看| 天美传媒精品一区二区| 欧美中文日本在线观看视频| 国产午夜精品论理片| 国产一区二区三区av在线 | 亚洲高清免费不卡视频| 国产乱人偷精品视频| 亚洲av五月六月丁香网| 日韩欧美一区二区三区在线观看| 最近手机中文字幕大全| 十八禁国产超污无遮挡网站| 国产精品电影一区二区三区| 国产三级在线视频| 欧美激情在线99| 久久久a久久爽久久v久久| 99久久久亚洲精品蜜臀av| 舔av片在线| 国产精品久久久久久久久免| 欧美不卡视频在线免费观看| 草草在线视频免费看| 午夜福利视频1000在线观看| 淫妇啪啪啪对白视频| 两个人的视频大全免费| 露出奶头的视频| 秋霞在线观看毛片| 国产免费男女视频| 成人国产麻豆网| 禁无遮挡网站| 一级毛片aaaaaa免费看小| 大型黄色视频在线免费观看| 欧美性感艳星| 亚洲不卡免费看| 中文亚洲av片在线观看爽| 亚洲av美国av| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站在线观看播放| 自拍偷自拍亚洲精品老妇| 校园人妻丝袜中文字幕| 欧美另类亚洲清纯唯美| 国产精品1区2区在线观看.| 国产精品一区二区三区四区久久| 男女下面进入的视频免费午夜| 精品久久久久久久末码| 又黄又爽又刺激的免费视频.| 免费在线观看影片大全网站| or卡值多少钱| 蜜桃亚洲精品一区二区三区| 老熟妇乱子伦视频在线观看| 美女黄网站色视频| 久久九九热精品免费| 真人做人爱边吃奶动态| 少妇人妻一区二区三区视频| 色播亚洲综合网| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| av视频在线观看入口| 国产大屁股一区二区在线视频| av.在线天堂| 精品久久久久久久久av| 欧美中文日本在线观看视频| 欧美绝顶高潮抽搐喷水| 日日撸夜夜添| 久久久国产成人免费| 午夜视频国产福利| 日韩av不卡免费在线播放| 日韩强制内射视频| 欧美极品一区二区三区四区| 三级国产精品欧美在线观看| 中文字幕熟女人妻在线| 精品久久久久久成人av| 午夜福利在线观看免费完整高清在 | 小蜜桃在线观看免费完整版高清| av中文乱码字幕在线| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 三级国产精品欧美在线观看| 久久久精品94久久精品| 啦啦啦啦在线视频资源| 三级经典国产精品| 黑人高潮一二区| 51国产日韩欧美| 色综合色国产| 精品午夜福利在线看| 女人被狂操c到高潮| 变态另类成人亚洲欧美熟女| 99热只有精品国产| 国产日本99.免费观看| 国产免费男女视频| 99久久中文字幕三级久久日本| 一进一出抽搐动态| 黄色一级大片看看| 亚洲精品色激情综合| 亚洲一区高清亚洲精品| 国产老妇女一区| 色综合站精品国产| 精品99又大又爽又粗少妇毛片| av.在线天堂| 欧美日韩乱码在线| av在线老鸭窝| 亚洲成人精品中文字幕电影| 一本久久中文字幕| 亚洲中文日韩欧美视频| 草草在线视频免费看| 精品人妻熟女av久视频| 又黄又爽又免费观看的视频| 十八禁网站免费在线| 欧美中文日本在线观看视频| 久久精品91蜜桃| 我要搜黄色片| 又爽又黄a免费视频| 神马国产精品三级电影在线观看| 一边摸一边抽搐一进一小说| 欧美日本视频| 免费电影在线观看免费观看| 亚洲一区高清亚洲精品| 亚洲欧美精品自产自拍| 午夜亚洲福利在线播放| 国产色婷婷99| 在线观看一区二区三区| 国产麻豆成人av免费视频| 波野结衣二区三区在线| 嫩草影院精品99| 国产又黄又爽又无遮挡在线| 国产三级在线视频| 久久久色成人| 黄色配什么色好看| 99在线人妻在线中文字幕| 国产91av在线免费观看| 久久久久久九九精品二区国产| 免费观看人在逋| 精品国内亚洲2022精品成人| 欧美bdsm另类| 久99久视频精品免费| 在线观看免费视频日本深夜| 最近中文字幕高清免费大全6| 成人美女网站在线观看视频| 日日啪夜夜撸| 插阴视频在线观看视频| 精品少妇黑人巨大在线播放 | 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 中出人妻视频一区二区| 日本免费一区二区三区高清不卡| 日韩av在线大香蕉| 在线国产一区二区在线| 国产精品av视频在线免费观看| 韩国av在线不卡| 全区人妻精品视频| 亚洲av第一区精品v没综合| 亚洲丝袜综合中文字幕| 男人舔女人下体高潮全视频| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 国产精品日韩av在线免费观看| 99热这里只有精品一区| 欧美+亚洲+日韩+国产| 女人十人毛片免费观看3o分钟| 亚洲丝袜综合中文字幕| 色综合亚洲欧美另类图片| 麻豆av噜噜一区二区三区| 色哟哟哟哟哟哟| 男女视频在线观看网站免费| 午夜免费男女啪啪视频观看 | 久久久久久久久久久丰满| av在线观看视频网站免费| 禁无遮挡网站| 国产精品乱码一区二三区的特点| 91久久精品国产一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久欧美精品欧美久久欧美| 高清毛片免费观看视频网站| 赤兔流量卡办理| 亚洲av免费在线观看| 性欧美人与动物交配| 色综合色国产| 亚洲精品在线观看二区| 美女黄网站色视频| 国产精品国产三级国产av玫瑰| 97超视频在线观看视频| 一级毛片久久久久久久久女| 69av精品久久久久久| 国产成人影院久久av| 一卡2卡三卡四卡精品乱码亚洲| 波野结衣二区三区在线| 久久久久久久午夜电影| 内地一区二区视频在线| 在线观看av片永久免费下载| 亚洲精品久久国产高清桃花| 久久精品国产亚洲av天美| 女的被弄到高潮叫床怎么办| 久久精品人妻少妇| 给我免费播放毛片高清在线观看| 欧美不卡视频在线免费观看| 俄罗斯特黄特色一大片| 联通29元200g的流量卡| 色综合亚洲欧美另类图片| 欧美成人免费av一区二区三区| 久久久午夜欧美精品| 在线免费十八禁| av.在线天堂| 18禁在线无遮挡免费观看视频 | 国产精品日韩av在线免费观看| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 久久草成人影院| 此物有八面人人有两片| 好男人在线观看高清免费视频| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 国产伦在线观看视频一区| 色综合站精品国产| 黄色欧美视频在线观看| 国产精品免费一区二区三区在线| 免费黄网站久久成人精品| 美女大奶头视频| 麻豆乱淫一区二区| 国内少妇人妻偷人精品xxx网站| 最近中文字幕高清免费大全6| 91在线观看av| 综合色av麻豆| 精品国内亚洲2022精品成人| 久久久久久久久久黄片| 尤物成人国产欧美一区二区三区| 久久这里只有精品中国| 男人狂女人下面高潮的视频| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 久久久久久九九精品二区国产| 成人无遮挡网站| 久久久久国产网址| 综合色丁香网| 国产成人一区二区在线| 嫩草影院精品99| 免费一级毛片在线播放高清视频| 精品人妻视频免费看| 欧美丝袜亚洲另类| 在线观看av片永久免费下载| 精品欧美国产一区二区三| 日本黄大片高清| 禁无遮挡网站| 日本黄色视频三级网站网址| 18禁在线无遮挡免费观看视频 | 成人午夜高清在线视频| 国产午夜精品论理片| 免费看美女性在线毛片视频| 在线国产一区二区在线| 久久久精品94久久精品| 真人做人爱边吃奶动态| 亚洲内射少妇av| 一级毛片aaaaaa免费看小| 女生性感内裤真人,穿戴方法视频| 免费观看精品视频网站| 国产成人福利小说| 天堂网av新在线| 国产精品人妻久久久影院| 十八禁国产超污无遮挡网站| 日本精品一区二区三区蜜桃| 久久久精品大字幕| 亚洲av免费在线观看| 亚洲在线自拍视频| 午夜a级毛片| 成熟少妇高潮喷水视频| 亚洲成人精品中文字幕电影| 干丝袜人妻中文字幕| 久久欧美精品欧美久久欧美| 久久久久性生活片| 日日啪夜夜撸| 国产69精品久久久久777片| 欧美日本亚洲视频在线播放| 国产69精品久久久久777片| 精华霜和精华液先用哪个| 国产精品久久久久久久久免| 国产高清视频在线播放一区| 亚洲最大成人手机在线| 成年女人看的毛片在线观看| 99久国产av精品国产电影| 1000部很黄的大片| 熟女人妻精品中文字幕| 日韩av不卡免费在线播放| 久久午夜亚洲精品久久| 免费高清视频大片| 国产精品永久免费网站| 丰满的人妻完整版| 观看免费一级毛片| 亚洲av.av天堂| 国产高清三级在线| 国产精品精品国产色婷婷| 小蜜桃在线观看免费完整版高清| 久久久精品欧美日韩精品| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 色5月婷婷丁香| 欧美在线一区亚洲| 黄色日韩在线| 亚洲va在线va天堂va国产| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 日韩精品青青久久久久久| 成年免费大片在线观看| 97人妻精品一区二区三区麻豆| 极品教师在线视频| 久久亚洲精品不卡| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 亚洲精华国产精华液的使用体验 | 狠狠狠狠99中文字幕| 婷婷亚洲欧美| 97热精品久久久久久| 国产熟女欧美一区二区| 日本欧美国产在线视频| 一区二区三区高清视频在线| 99热全是精品| 欧美日韩精品成人综合77777| 成年av动漫网址| 97超视频在线观看视频| 国产探花在线观看一区二区| a级毛片a级免费在线| 黄色配什么色好看| 国产精品久久久久久av不卡| 亚洲电影在线观看av| 可以在线观看的亚洲视频| 亚洲美女黄片视频| 九九爱精品视频在线观看| 在线免费观看的www视频| 99精品在免费线老司机午夜| 日韩强制内射视频| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 中文亚洲av片在线观看爽| 在线免费十八禁| 免费看a级黄色片| 特大巨黑吊av在线直播| 菩萨蛮人人尽说江南好唐韦庄 | 韩国av在线不卡| 欧美+亚洲+日韩+国产| 女人被狂操c到高潮| 男女做爰动态图高潮gif福利片| 国产精品一区二区免费欧美| 国产一区二区在线av高清观看| 欧美日韩国产亚洲二区| 男女视频在线观看网站免费| 亚洲电影在线观看av| 狂野欧美白嫩少妇大欣赏| 18禁黄网站禁片免费观看直播| 国产在视频线在精品| 国国产精品蜜臀av免费|