• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-controlled Structural Diversity of Two Cd(II)Coordination Polymers Based on the Dicarboxylate Ligand①

    2022-03-12 07:43:50CHENFngMinZHOUChiChiHEXiongLIYnZHANGXiuQing
    結(jié)構(gòu)化學(xué) 2022年2期

    CHEN Fng-Min ZHOU Chi-Chi HE Xiong LI Yn② ZHANG Xiu-Qing②

    a (College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin 541004, China)

    ABSTRACT Two new 3-D Cd(II) coordination polymers with p-phthalic acid (p-BDC) and 4,4?-dipyridylamine (4,4?-dpa), namely [Cd2(p-BDC)2(4,4?-dpa)2]n 1 and {[Cd(p-BDC)(4,4?-dpa) (H2O)]·4H2O}n 2 were successfully synthesized under hydrothermal conditions at 120 and 140 °C. They were characterized by single-crystal X-ray diffraction, IR, PXRD and TGA. It was further characterized by Hirshfeld surface (HS)analysis for complex 2. The luminescent properties of the complexes have also been investigated.

    Keywords: Cd(II) coordination polymers, p-phthalic acid, Hirshfeld surface, Luminescent properties;

    1 INTRODUCTION

    Recently, the design of coordination polymers (CPs) has attracted considerable attention not only for their interesting topological structures[1]but also for their potential applications in the fields of magnetism, luminescence, gas adsorption, catalysis, electrical conductivity, and so on[2-5]. To date, how to rationally design and synthesize aiming metalorganic complexes with the expected structure and prospective properties is still a big challenge. Thereinto,selecting suitable ligands is crucially to construct complexes with special functionality. However, it remains difficult to predict the exact structures and control the construction of these CPs[6,7]because they might be easily influenced by many factors, such as the geometry of organic ligands,coordination number of metal ions, solvents, pH value of the solution, reaction time, etc[8-11]. Apart from these factors,higher reaction temperature may lead to complicated structures due to the increase in connected number of ligands,the appearance of entanglement, hydroxo metal clusters and so on[12]. Due to different temperatures, a great number of these complexes possessing novel structures and interesting properties have been effectively prepared under hydrothermal conditions. Inspired by the aforementioned considerations,two novel Cd(II) CPs based onp-phthalic acid and 4,4?-bipyridylamine ligand, namely, [Cd2(p-BDC)2(4,4?-dpa)2]n1 and {[Cd(p-BDC)(4,4?-dpa)(H2O)]·4H2O}n2, have been successfully obtained under hydrothermal conditions at different temperature. Herein, we report the synthesis, crystal structures and luminescent properties of the polymers in this work.

    2 EXPERIMENTAL

    2. 1 Materials and instruments

    All chemicals for syntheses were commercially available(Aldrich, Aladdin, Alfa Aesar or Xilong Scientific) and used as received without further purification. The structures of the complexes have also been confirmed by single-crystal X-ray(Agilent G8910A CCD) diffraction analyses. The Fourier transform infrared spectra were recorded using KBr pellets ranging from 4000 to 500 cm-1on a PerkinElmer spectrum one FT-IR spectrometer. Powder X-ray diffraction (XRD)data were collected on a Bruker D8 Advance X-ray diffractometer with CuKαradiation (λ= 1.5418 ?). The thermal behavior was carried out by a SDTQ 600 apparatus. The photoluminescence spectra for the solid samples were measured at room temperature on a RF-4600 fluorescence spectrophotometer.

    2. 2 Preparation of [Cd2(p-BDC)2(4,4?-dpa)2]n 1

    A mixture of Cd(NO3)2·4H2O (0.1542 g, 0.5 mmol),p-BDC (0.0831 g, 0.5 mmol), 4,4?-dpa (0.0855 g, 0.5 mmol),NaOH (0.0400 g, 1 mmol), and H2O (15 ml) was stirred at room temperature for 10 min. Then, it was sealed in a 25 mL Teflon-lined stainless-steel container. The mixture was heated at 120 °C for 72 h. After slowly cooling to room temperature at a rate of 10 °C·h-1, the mixture was washed with alcohol/distilled water and faint yellow lump-shaped crystals were filtered off and dried at room temperature (Yield: 0.077 g, 28% based on Cd). Anal. Calcd. (%) for C36H26Cd2N6O81:C, 48.24; H, 2.90; N, 9.38. Found (%): C, 48.21; H, 2.89; N,9.34. IR (cm-1, KBr): 3451 (m, O-H), 1562(m, COO-), 1392(m, COO-), 1210 (m, C-H), 1015 (m, C-H), 820 (m, N-M)738 (m, O-M).

    2. 3 Preparation of {[Cd(p-BDC)(4,4?-dpa)(H2O)]·4H2O}n 2

    A mixture of Cd(NO3)2·4H2O (0.1542 g, 0.5 mmol),p-BDC (0.0831 g, 0.5 mmol), 4,4?-dpa (0.0855 g, 0.5 mmol),NaOH (0.0400 g, 1 mmol), and H2O (15 mL) was stirred at room temperature for 10 min. Then, it was sealed in a 25 mL Teflon-lined stainless-steel container. The mixture was heated at 140 °C for 72 h. After slowly cooling to room temperature at a rate of 10 °C·h-1, the mixture was washed with alcohol/distilled water and faint yellow lump-shaped crystals were filtered off and dried at room temperature (Yield: 0.042 g, 16% based on Cd). Anal. Calcd. (%) for C36H46Cd2N6O182:C, 40.16; H, 4.27; N, 7.81. Found (%): C, 40.13; H, 4.25; N,7.79. IR (cm-1, KBr): 3432 (m, O-H), 1566 (m, COO-), 1386(m, COO-), 1216 (m, C-H), 1008 (m, C-H), 814 (m, N-M),758 (m, O-M).

    2. 4 X-ray crystal structure determination

    Single-crystal X-ray diffraction analyses of 1 and 2 were carried out on an Agilent Technologies G8910A CCD diffractometer equipped with graphite-monochromated MoKαradiation (λ= 0.71073 ?) using anω-scan mode. Theυ-scan technique was employed to measure intensities.Absorption corrections were applied empirically using the SADABS[13]. The crystal structures were solved by direct methods and difference Fourier synthesis and refined by full-matrix least-squares using SHELXL[13]. An absorption correction was applied based on the comparison of multiple symmetry equivalent measurements. The structures were solved by direct methods using SHELXS-97 and refined anisotropically by full-matrix least-squares methods onF2using SHELXL-97 for all non-hydrogen atoms[15,16]. Crystal data as well as details of data correction and refinement for complexes 1 and 2 are summarized in Table 1. Selected bond lengths and bond angles are listed in Tables 2 and 3, and H-bonds for 2 are listed in Table 4.

    Table 1. Crystallographic Data and Details for 1 and 2

    Table 2. Selected Bond Lengths (?) and Bond Angles (o) for 1

    Table 3. Selected Bond Lengths (?) and Bond Angles (o) for 2

    Table 4. Hydrogen Bond Lengths (?) and Bond Angles (°) for Complex 2

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure of [Cd2(p-BDC)2(4,4?-dpa)2]n 1

    Crystallographic analysis reveals that complex 1 crystallizes in the monoclinic systemP21/nspace group. The asymmetric unit of complex 1 contains two Cd(II) cations,two 4,4?-dpa ligands and twop-BDC2-anions. The two Cd(II)ions lie in two different environments, as shown in Fig. 1a.The Cd(1) is six-coordinated by four oxygen atoms from threep-BDC2-anions and two nitrogen atoms from two 4,4?-dpa ligands. The Cd(1)-O bond lengths vary from 2.253(2) to 2.464(2) ?, and the Cd(1)-N bond lengths change from 2.267(7) to 2.310(8) ?. Six atoms form a distorted octahedral coordination geometry. The Cd(2) is five-coordinated by three oxygen atoms from threep-BDC2-anions and two nitrogen atoms from two 4,4?-dpa ligands.The Cd(2)-O bond lengths vary from 2.215(6) to 2.310(6) ?,and the Cd(2)-N bond lengths change from 2.325(7) to 2.333(7) ?. The coordination geometry around the Cd(2) ion can be regarded as an intermediate between square pyramid and trigonal bipyramid as described by theτparameter of 0.61[17]. Two Cd(II) centers are bridged by carboxylate groups from two differentμ4-p-BDC2-anions, generating a binuclear Cd2unit with a Cd···Cd distance of 4.005 ?.Further linkage of these Cd2units via bothμ3- andμ4-p-BDC2-moieties furnishes a 3D structure. The carboxylate groups ofp-BDC2-blocks alternately bridge the adjacent Cd(II) ions to form a 2-D metal-organic net (Fig. 1b).The 2-D layers are further connected by 4,4?-dpa ligands to form a 3-D structure (Fig. 1c and 1d).

    Fig. 1. (a) Coordination environment of Cd(II) in 1 (All hydrogens are omitted for clarity). (b) View of 2-D network in complex 1. (c) Schematic representation of topology for complex 1. (d) View of the 3-D framework for complex 1

    3. 2 Crystal structure of{[Cd(p-BDC)(4,4?-dpa)(H2O)]·4H2O}n 2

    The single-crystal X-ray diffraction analysis reveals that complex 2 crystallizes in orthorhombic space groupPbca.The asymmetric unit of 2 contains one crystallographically unique Cd(II) ion, onep-BDC2-anion, one 4,4?-dpa ligand,one coordinated water molecule, and four lattice water molecules, as shown in Fig. 2. The Cd(II) ion is seven-coordinated in a pentagonal bipyramidal geometry by four oxygen atoms from twop-BDC2-anions, two nitrogen atoms of 4,4?-dpa ligands, and one oxygen from one coordinated water molecule. The Cd(1)-O bond lengths vary from 2.266(2) to 2.579(2) ?, and the Cd(1)-N bond lengths change from 2.3032(3) to 2.364(3) ?. In complex 2, two different carboxylate groups adopt bidentate chelate coordination modes, which connect Cd(II) ions to form a 3-D structure. As shown in Fig. 3, from the perspective of topology,p-BDC2-and 4,4?-dpa as linkers connect two adjacent Cd metal atoms,so the structure of 2 could be simplified as a uninodal 4-connected net with a point symbol of (66).

    Fig. 2. Coordination environment for Cd(II) in complex 2 (All hydrogens have been omitted for clarity)

    Fig. 3. Schematic representation of topology for complex 2

    3. 3 Hirshfeld surface analysis for complex 2

    Hirshfeld surface analysis is an effective tool for the quantitative study of intermolecular interactions within crystal packings, which provides visual images of intercontacts and molecular shapes in a crystalline material.The Hirshfeld surfaces are mapped via the normalized contact distance (dnorm) relative to both de and di and the van der Waals radius of the atoms, where de is the distance from a point on the surface to the nearest nucleus outside the surface and di is distance from a point on the surface to the nearest nucleus inside the surface[18]. The molecular Hirshfeld surface (dnorm) of the complex can be used to show short intermolecular interactions (Fig. 4). The Hirshfeld surfaces mapped with dnormand full fingerprint plots were made using CrystalExplorer software (Version 3.1). The dnormvalue is negative (red) when intermolecular contacts are shorter than the van der Waals radii, and the dnorm(blue) when longer. The dnormvalue of the white zone is zero and represents contacts equal to the van der Waals radius. The red spots in the picture are mainly caused by the hydrogen bonding between the carboxyl groups of the main ligandp-phthalic acid and free water molecules through O-H···O. In this study, the dnormvalues range from -1.188 to 1.429 ?.

    Fig. 4. Hirshfeld surfaces mapped with the dnorm function for 2

    Each 2D fingerprint plot can be split into the respective close contacts, and their contributions can be expressed as percentages. The relative contributions of various interactions for 2 are presented in Fig. 5. The 2D fingerprint plots (Fig. 6)present contacts between two atoms interacting with each other and indicate percentage of contributions from different interaction types. The proportions of H···H and C···H are 40.8% and 5% respectively, while that of O···H is 14%. In the interaction of molecules, H···H and O···H account for a large proportion, so van der Waals forces and hydrogen bonds play a significant role in the three-dimensional stacking structure, of which O-H···O plays a major role in intermolecular hydrogen bonds. This corresponds to the fact the majority of the surface of this molecular crystal is covered with atoms of H.

    Fig. 5. Fingerprint plots for H···H (a), H···O (b) and O···H (c) contacts of 2

    Fig. 6. Hirshfeld surface calculations for 2

    3. 4 Powder X-ray diffraction analysis

    The powder X-ray diffraction (PXRD) patterns for the coordination polymers were recorded to investigate the crystalline phases of the polycrystalline materials. The simulated and experimental PXRD patterns are shown in Fig. 7.Most of the PXRD peak positions in the simulated and experimental patterns are in good agreement with each other,indicating the pure samples of complexes 1 and 2.

    Fig. 7. XRD patterns of complexes 1 and 2

    3. 5 Thermal gravimetry analysis

    To estimate the stabilities of the complexes, thermogravimetric (TG) analyses of complexes 1 and 2 were carried out under a N2atmosphere from 15 to 800 ℃. The weight loss curves of complexes 1 and 2 are shown in Fig. 8. For 1, the first stage 36.74% weight loss in the range of 379~417 ℃ is contributed to the decomposition ofp-BDC2-ligands (calcd.:37.10%). The second stage of 37.83% weight loss between 417 and 499 ℃ could be attributed to the departure of 4,4?-dpa ligands (calcd.: 38.19%). Above 500 ℃, the curve area is stable, and the final mass remnant is likely consistent with the deposition of CdO. For 2, the first stage 30.59%weight loss in the range of 385~422 ℃ results from the decomposition ofp-BDC2-ligand (calcd.: 30.91%). The second stage of 32.01% weight loss between 422 and 473 ℃is assigned to the removal of 4,4?-dpa ligand (calcd.: 31.81%).When reaching 500 ℃, the curve area is stable, and the final mass remnant is likely consistent with the deposition of CdO.

    Fig. 8. Thermal behaviours of 1 and 2

    3. 6 Luminescent properties

    The solid state UV-vis absorption of complexes 1 and 2 was measured (Fig. 9). The maximum absorption peaks are all around 270 nm. It is well known that coordination polymers constructed byd10metal center and conjugated organic linkers are promising candidates for photoactive materials, with potential applications such as chemical sensors and in photochemistry[19-22]. Considering the excellent luminescent properties ofd10transition metalorganic polymers[23,24], the solid-state photoluminescent properties of complexes 1 and 2 were investigated at room temperature. All bands can be assigned to the intraligandπ*→πorπ*→nemission[25]. Since the Cd(II) ions are difficult to oxidize or reduce, the emission of complex 1 and 2 is neither metal-to-ligand charge transfer (MLCT) nor ligand-to-metal charge transfer (LMCT)[26]. As shown in Fig.10, complex 1 exhibits the maximum emission at 385 nm (λex= 270 nm), and complex 2 shows the maximum emission at 385 nm (λex= 270 nm). Compared with 2, the luminous intensity of complex 1 is reduced. The emission discrepancy of 1 and 2 is probably due to the differences of coordination environments of the central metal ions[27-29].

    Fig. 9. Solid-state UV-vis absorption spectra of complexes 1 and 2

    Fig. 10. Emission spectra of complexes 1 and 2 in the solid state at room temperature

    4 CONCLUSION

    In this paper, we have synthesized two Cd(II) coordination polymers whose structures and properties were different because of the different temperature. Remarkably, the changes in coordination numbers of metal atoms and coordination modes stimulated by reaction temperature result in the distinct frameworks of 1 and 2, which promote us to make a further research on related functional crystalline solids through such a reliable synthetic procedure. This work demonstrates that the temperature has a significant effect on the structures and properties of coordination polymers. The luminescent properties of complexes 1 and 2 imply that they may be good candidates for luminescent materials.

    DISCLOSURE STATEMENT

    No potential conflict of interest was reported by the authors.

    免费看日本二区| .国产精品久久| 建设人人有责人人尽责人人享有的 | h日本视频在线播放| 18禁动态无遮挡网站| 91精品伊人久久大香线蕉| 菩萨蛮人人尽说江南好唐韦庄| 老司机影院毛片| 精品亚洲乱码少妇综合久久| 亚洲国产最新在线播放| 日本vs欧美在线观看视频 | 欧美变态另类bdsm刘玥| 国产人妻一区二区三区在| 在线观看美女被高潮喷水网站| 免费看光身美女| 下体分泌物呈黄色| 国产成人精品婷婷| 久久久午夜欧美精品| 中文资源天堂在线| 亚洲av不卡在线观看| 精品久久久久久久末码| 亚洲国产欧美在线一区| 亚洲一区二区三区欧美精品| 国产又色又爽无遮挡免| 久久精品国产亚洲网站| 91在线精品国自产拍蜜月| 国产伦精品一区二区三区视频9| 全区人妻精品视频| 成人一区二区视频在线观看| 人妻系列 视频| 久久国产亚洲av麻豆专区| 免费不卡的大黄色大毛片视频在线观看| 久久热精品热| 久久鲁丝午夜福利片| 免费黄频网站在线观看国产| 亚洲精品乱码久久久v下载方式| 欧美bdsm另类| 亚洲国产精品999| 狠狠精品人妻久久久久久综合| 婷婷色综合www| 激情 狠狠 欧美| 九九久久精品国产亚洲av麻豆| 在线看a的网站| 高清视频免费观看一区二区| 又爽又黄a免费视频| 久久精品夜色国产| 国产成人免费无遮挡视频| av又黄又爽大尺度在线免费看| 久久99蜜桃精品久久| 最近中文字幕2019免费版| 亚洲三级黄色毛片| 亚洲精品中文字幕在线视频 | 只有这里有精品99| 亚洲精品亚洲一区二区| 网址你懂的国产日韩在线| 国产成人a区在线观看| 亚洲欧美日韩另类电影网站 | 2021少妇久久久久久久久久久| 日韩强制内射视频| 99久久精品热视频| 亚洲精品乱码久久久久久按摩| 九草在线视频观看| 免费少妇av软件| 18禁动态无遮挡网站| 亚洲四区av| 一二三四中文在线观看免费高清| 国产成人精品婷婷| 少妇丰满av| 91久久精品电影网| 亚洲av二区三区四区| 国产av一区二区精品久久 | 人妻 亚洲 视频| 国产精品蜜桃在线观看| 在线免费十八禁| 国精品久久久久久国模美| 亚洲精品国产色婷婷电影| 亚洲国产av新网站| 婷婷色麻豆天堂久久| 高清午夜精品一区二区三区| 欧美人与善性xxx| 中文字幕久久专区| 亚洲美女搞黄在线观看| 熟女人妻精品中文字幕| 一区二区三区乱码不卡18| a级毛片免费高清观看在线播放| 亚洲国产av新网站| 国产精品福利在线免费观看| 亚洲欧美一区二区三区黑人 | av又黄又爽大尺度在线免费看| 国产精品成人在线| 亚洲精品aⅴ在线观看| 亚洲欧美日韩东京热| 联通29元200g的流量卡| 国产精品蜜桃在线观看| 国产91av在线免费观看| 国产美女午夜福利| 观看美女的网站| 久久99精品国语久久久| 联通29元200g的流量卡| 中文字幕亚洲精品专区| 少妇 在线观看| 大香蕉97超碰在线| 王馨瑶露胸无遮挡在线观看| 激情五月婷婷亚洲| 中文精品一卡2卡3卡4更新| 日本wwww免费看| 国产一区二区三区av在线| 欧美精品一区二区大全| 九九在线视频观看精品| 人妻制服诱惑在线中文字幕| 80岁老熟妇乱子伦牲交| 一级爰片在线观看| 国产乱人偷精品视频| 欧美 日韩 精品 国产| 99热这里只有是精品在线观看| 女性被躁到高潮视频| videossex国产| 嫩草影院新地址| 欧美少妇被猛烈插入视频| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久噜噜老黄| 十分钟在线观看高清视频www | 国产v大片淫在线免费观看| 国产人妻一区二区三区在| 国产在视频线精品| 六月丁香七月| 天美传媒精品一区二区| 亚洲国产欧美人成| 一本色道久久久久久精品综合| 日韩精品有码人妻一区| 午夜福利网站1000一区二区三区| 黄色一级大片看看| 97超碰精品成人国产| 九草在线视频观看| 日本-黄色视频高清免费观看| 人妻夜夜爽99麻豆av| 国产爱豆传媒在线观看| 女性生殖器流出的白浆| 欧美激情极品国产一区二区三区 | 亚洲三级黄色毛片| 蜜桃在线观看..| 少妇人妻精品综合一区二区| 国产精品国产三级国产专区5o| 中文字幕免费在线视频6| 丝袜脚勾引网站| 久久久色成人| 久久午夜福利片| 成人漫画全彩无遮挡| 日本av手机在线免费观看| 视频中文字幕在线观看| 国产精品三级大全| 在线观看一区二区三区| 边亲边吃奶的免费视频| 色网站视频免费| 国产黄片美女视频| 日韩av不卡免费在线播放| 日本黄大片高清| 午夜日本视频在线| 国产亚洲5aaaaa淫片| 26uuu在线亚洲综合色| 久久久久久伊人网av| 高清日韩中文字幕在线| 26uuu在线亚洲综合色| 精品国产三级普通话版| 男女下面进入的视频免费午夜| 亚洲天堂av无毛| av播播在线观看一区| 91aial.com中文字幕在线观看| 亚洲欧美精品专区久久| 精品久久国产蜜桃| 夜夜骑夜夜射夜夜干| a级毛色黄片| 久久久久久久久久久丰满| 亚洲丝袜综合中文字幕| 久久久久久久久久成人| 国产探花极品一区二区| 高清午夜精品一区二区三区| 3wmmmm亚洲av在线观看| 精品久久久久久久久av| 精品久久久精品久久久| videos熟女内射| 欧美日韩综合久久久久久| 日本wwww免费看| 亚洲成人手机| 成人二区视频| 久久久a久久爽久久v久久| a级一级毛片免费在线观看| 日韩国内少妇激情av| 成人亚洲精品一区在线观看 | 大话2 男鬼变身卡| 深夜a级毛片| 日韩伦理黄色片| 久久久久久久久大av| 亚洲精品色激情综合| 日韩大片免费观看网站| av免费在线看不卡| 97超视频在线观看视频| 国产精品免费大片| 欧美一区二区亚洲| 卡戴珊不雅视频在线播放| 欧美成人一区二区免费高清观看| 国产在视频线精品| 精品一区二区三区视频在线| 狂野欧美白嫩少妇大欣赏| 亚洲成人一二三区av| 国产久久久一区二区三区| 一个人免费看片子| h视频一区二区三区| 人妻一区二区av| 亚洲电影在线观看av| 亚洲一区二区三区欧美精品| 黄片无遮挡物在线观看| 18禁裸乳无遮挡动漫免费视频| 一级a做视频免费观看| 我要看日韩黄色一级片| 国产成人a∨麻豆精品| 在现免费观看毛片| 建设人人有责人人尽责人人享有的 | 极品少妇高潮喷水抽搐| 国产精品久久久久久久久免| av线在线观看网站| 国产日韩欧美在线精品| 日韩在线高清观看一区二区三区| 久久鲁丝午夜福利片| 亚洲国产高清在线一区二区三| 中文字幕av成人在线电影| 街头女战士在线观看网站| 久久久成人免费电影| 亚洲av福利一区| 免费大片18禁| 亚洲va在线va天堂va国产| 久久99热6这里只有精品| 国产久久久一区二区三区| 精品一区二区三卡| 日日摸夜夜添夜夜添av毛片| 大香蕉久久网| 在线看a的网站| 欧美日韩在线观看h| 美女国产视频在线观看| 一级毛片电影观看| 精品一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区三区久久久樱花 | 18+在线观看网站| 国产白丝娇喘喷水9色精品| av在线蜜桃| 亚洲天堂av无毛| 亚州av有码| 18禁在线播放成人免费| 成人无遮挡网站| 精品人妻熟女av久视频| 精品99又大又爽又粗少妇毛片| 亚洲第一av免费看| 在线精品无人区一区二区三 | 91在线精品国自产拍蜜月| 简卡轻食公司| 中文字幕亚洲精品专区| 免费人成在线观看视频色| 亚洲国产日韩一区二区| 两个人的视频大全免费| 黄片wwwwww| 男女边吃奶边做爰视频| 毛片一级片免费看久久久久| 亚洲欧美中文字幕日韩二区| 纯流量卡能插随身wifi吗| 青春草视频在线免费观看| 九草在线视频观看| 精品人妻偷拍中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 久久ye,这里只有精品| 18禁裸乳无遮挡免费网站照片| 国产视频内射| 少妇精品久久久久久久| 伊人久久精品亚洲午夜| 国产免费一级a男人的天堂| 精品久久久久久久久亚洲| 国产精品人妻久久久影院| av在线播放精品| 国产精品久久久久久精品电影小说 | 成人综合一区亚洲| 性高湖久久久久久久久免费观看| 中文字幕av成人在线电影| 久久久久视频综合| 高清不卡的av网站| 99热6这里只有精品| 精品亚洲乱码少妇综合久久| 久久精品国产亚洲av涩爱| 午夜福利网站1000一区二区三区| 亚洲欧美成人综合另类久久久| 丰满乱子伦码专区| 能在线免费看毛片的网站| 干丝袜人妻中文字幕| 日本欧美视频一区| 三级经典国产精品| 欧美精品人与动牲交sv欧美| 草草在线视频免费看| 国产综合精华液| 国产精品99久久99久久久不卡 | 久久人人爽人人爽人人片va| 久久国产亚洲av麻豆专区| 亚洲精品成人av观看孕妇| 国产 一区 欧美 日韩| 国产一区二区三区综合在线观看 | 久久人妻熟女aⅴ| 草草在线视频免费看| 精品少妇久久久久久888优播| 狂野欧美白嫩少妇大欣赏| 日本欧美视频一区| 亚洲欧美精品自产自拍| 最新中文字幕久久久久| 观看美女的网站| 99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 久久人妻熟女aⅴ| 色婷婷av一区二区三区视频| 美女内射精品一级片tv| 欧美日韩亚洲高清精品| 亚洲久久久国产精品| 日日啪夜夜撸| 国产精品三级大全| 毛片女人毛片| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久久免费av| 人人妻人人澡人人爽人人夜夜| 91aial.com中文字幕在线观看| 亚洲av电影在线观看一区二区三区| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 天堂中文最新版在线下载| 亚洲综合色惰| av卡一久久| 中文字幕制服av| 亚洲最大成人中文| 国产精品无大码| 偷拍熟女少妇极品色| 亚洲精品第二区| 午夜免费观看性视频| 人妻夜夜爽99麻豆av| 久久久久视频综合| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 国产精品国产三级国产av玫瑰| 日韩免费高清中文字幕av| 亚洲人成网站高清观看| 三级国产精品欧美在线观看| av又黄又爽大尺度在线免费看| 国产精品嫩草影院av在线观看| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 在线免费十八禁| av在线老鸭窝| 人妻夜夜爽99麻豆av| 高清av免费在线| 亚洲精品日本国产第一区| 精品视频人人做人人爽| 国产免费一级a男人的天堂| 亚洲自偷自拍三级| 亚洲av免费高清在线观看| 亚洲三级黄色毛片| 我的老师免费观看完整版| 一级片'在线观看视频| 五月天丁香电影| 精品视频人人做人人爽| 只有这里有精品99| 深爱激情五月婷婷| 妹子高潮喷水视频| 伊人久久精品亚洲午夜| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区成人| videos熟女内射| 国产爱豆传媒在线观看| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 国产男女超爽视频在线观看| 99久久精品热视频| 最近手机中文字幕大全| 在线观看一区二区三区激情| 男女免费视频国产| 精品一区在线观看国产| 99热这里只有是精品在线观看| 国产伦在线观看视频一区| 欧美日韩精品成人综合77777| 久久国产亚洲av麻豆专区| 国产乱人偷精品视频| 亚洲av日韩在线播放| 黑人猛操日本美女一级片| 久久精品国产亚洲网站| 色5月婷婷丁香| 男女下面进入的视频免费午夜| 久久午夜福利片| 国产日韩欧美在线精品| 亚洲av欧美aⅴ国产| 我要看日韩黄色一级片| 欧美 日韩 精品 国产| 女人久久www免费人成看片| 一级毛片 在线播放| a 毛片基地| 欧美+日韩+精品| 观看av在线不卡| 99久久综合免费| 国产大屁股一区二区在线视频| 在线看a的网站| 在线观看国产h片| 欧美成人午夜免费资源| 国产高潮美女av| 国产av国产精品国产| 国产av一区二区精品久久 | 一级片'在线观看视频| 女的被弄到高潮叫床怎么办| 久久女婷五月综合色啪小说| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 亚洲电影在线观看av| 男女国产视频网站| 在线观看人妻少妇| 国产精品国产三级专区第一集| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 国产精品福利在线免费观看| 精品久久久精品久久久| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 2021少妇久久久久久久久久久| 色5月婷婷丁香| 97超视频在线观看视频| 久久精品夜色国产| 黄色一级大片看看| 一边亲一边摸免费视频| 免费看av在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 美女xxoo啪啪120秒动态图| 99热这里只有是精品50| 免费高清在线观看视频在线观看| 日本一二三区视频观看| 久久精品国产亚洲av涩爱| 免费久久久久久久精品成人欧美视频 | 亚洲av成人精品一二三区| av女优亚洲男人天堂| 亚洲色图av天堂| 一级毛片电影观看| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 国语对白做爰xxxⅹ性视频网站| 国产精品不卡视频一区二区| 美女国产视频在线观看| 少妇 在线观看| 看十八女毛片水多多多| 偷拍熟女少妇极品色| 成人美女网站在线观看视频| 汤姆久久久久久久影院中文字幕| 午夜老司机福利剧场| 麻豆成人av视频| 一本色道久久久久久精品综合| 三级国产精品片| 我的老师免费观看完整版| 色视频在线一区二区三区| 国产精品麻豆人妻色哟哟久久| 深夜a级毛片| 成年人午夜在线观看视频| 2021少妇久久久久久久久久久| 欧美丝袜亚洲另类| 精品国产露脸久久av麻豆| 在线观看美女被高潮喷水网站| 一级爰片在线观看| 日本av免费视频播放| 99热6这里只有精品| 精品国产露脸久久av麻豆| 国产精品久久久久久av不卡| www.av在线官网国产| 一级毛片电影观看| 观看免费一级毛片| 精品人妻视频免费看| 在线免费十八禁| 久久久久久久久久久免费av| 久久久久人妻精品一区果冻| 精品亚洲成a人片在线观看 | 能在线免费看毛片的网站| 日韩成人伦理影院| 少妇人妻久久综合中文| 熟女人妻精品中文字幕| 欧美三级亚洲精品| 伦理电影免费视频| 美女中出高潮动态图| 男女下面进入的视频免费午夜| 亚洲国产精品成人久久小说| 三级经典国产精品| 激情五月婷婷亚洲| av在线app专区| 亚洲天堂av无毛| 在线 av 中文字幕| 伦理电影大哥的女人| 精品久久国产蜜桃| 久久精品国产亚洲av天美| 日本与韩国留学比较| 国产在视频线精品| 黄色配什么色好看| 国产男女内射视频| 国产久久久一区二区三区| 日韩av在线免费看完整版不卡| av国产久精品久网站免费入址| 欧美高清成人免费视频www| 日韩中文字幕视频在线看片 | 亚洲欧美一区二区三区黑人 | 欧美激情国产日韩精品一区| 精品午夜福利在线看| 国产欧美日韩一区二区三区在线 | 久久久色成人| 国产精品一区二区在线观看99| 搡老乐熟女国产| 国产免费又黄又爽又色| 看非洲黑人一级黄片| 最近最新中文字幕免费大全7| 丝袜脚勾引网站| av.在线天堂| 男男h啪啪无遮挡| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 国产精品久久久久久精品古装| 国产乱人视频| 国产精品久久久久成人av| 内射极品少妇av片p| 国国产精品蜜臀av免费| 老师上课跳d突然被开到最大视频| av国产免费在线观看| 人妻少妇偷人精品九色| 亚洲在久久综合| 男女国产视频网站| 国产色爽女视频免费观看| 成人国产麻豆网| 国产69精品久久久久777片| 黄色一级大片看看| 成人漫画全彩无遮挡| 联通29元200g的流量卡| 色吧在线观看| 精品99又大又爽又粗少妇毛片| av播播在线观看一区| 熟女人妻精品中文字幕| 日本黄色日本黄色录像| 搡老乐熟女国产| 成年女人在线观看亚洲视频| 99热网站在线观看| 国产精品蜜桃在线观看| 国产精品国产三级专区第一集| 丝袜脚勾引网站| 国产在线免费精品| 免费av中文字幕在线| 夜夜爽夜夜爽视频| 精品一区二区免费观看| 18禁在线无遮挡免费观看视频| 国产在线视频一区二区| 久久影院123| 国产午夜精品一二区理论片| 一级毛片 在线播放| 免费黄网站久久成人精品| 亚洲欧美日韩无卡精品| 熟女人妻精品中文字幕| 精品国产一区二区三区久久久樱花 | 人体艺术视频欧美日本| av卡一久久| 亚洲色图av天堂| 嫩草影院新地址| 国产成人一区二区在线| 97超视频在线观看视频| 涩涩av久久男人的天堂| 啦啦啦在线观看免费高清www| 欧美97在线视频| 在线观看国产h片| 伦理电影大哥的女人| 99久久综合免费| 两个人的视频大全免费| 人妻系列 视频| 又大又黄又爽视频免费| 熟妇人妻不卡中文字幕| 欧美日韩精品成人综合77777| 美女视频免费永久观看网站| 街头女战士在线观看网站| 成年免费大片在线观看| 亚洲精品日韩在线中文字幕| 亚洲人与动物交配视频| 国产高潮美女av| 亚洲国产精品成人久久小说| av在线蜜桃| 国产乱来视频区| 亚洲精品日韩av片在线观看| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频 | 亚洲国产精品国产精品| 久久久久久久久大av| 国产91av在线免费观看| 亚洲欧洲国产日韩| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 久久久久久久久久久丰满| 草草在线视频免费看| 丝瓜视频免费看黄片| 精品一区二区免费观看| 精品亚洲成a人片在线观看 | 香蕉精品网在线| 久久久成人免费电影| h视频一区二区三区| 我要看日韩黄色一级片| 人妻制服诱惑在线中文字幕| 午夜福利视频精品| 亚洲第一区二区三区不卡| 国产老妇伦熟女老妇高清| 日韩人妻高清精品专区| 韩国av在线不卡| 一区在线观看完整版| 精品99又大又爽又粗少妇毛片| 国产精品秋霞免费鲁丝片| 夜夜骑夜夜射夜夜干| 国产熟女欧美一区二区| 高清欧美精品videossex| 三级国产精品欧美在线观看|