• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anomalous transport driven by ion temperature gradient instability in an anisotropic deuterium-tritium plasma

    2022-03-10 03:49:50DebingZHANG張德兵LiminYU虞立敏ErbingXUE薛二兵XianmeiZHANG張先梅andHaijunREN任海駿
    Plasma Science and Technology 2022年2期

    Debing ZHANG(張德兵),Limin YU(虞立敏),Erbing XUE(薛二兵),Xianmei ZHANG(張先梅),*and Haijun REN(任海駿)

    1 Department of Physics,East China University of Science and Technology,Shanghai 200237,People's Republic of China

    2 School of Physical Science and CAS Key Laboratory of Geospace Environment,University of Science and Technology of China,Hefei 230026,People's Republic of China

    Abstract In this work,the anomalous transport driven by the ion temperature gradient instability is investigated in an anisotropic deuterium-tritium(D-T)plasma.The anisotropic factor α,defined as the ratio of perpendicular temperature to parallel temperature,is introduced to describe the temperature anisotropy in the equilibrium distribution function.The linear dispersion relation in local kinetic limit is derived,and then numerically evaluated to study the dependence of mode frequency on the anisotropic factor α of D and the fraction of T particle εT by choosing three sets of typical parameters,denoted as the cyclone base case,ITER and CFETR cases.Based on the linear results,the mixing length model approximation is adopted to analyze the quasi-linear particle and energy fluxes for D and T.It is found that choosing small α and large εT is beneficial for the confinement of particle and energy for D and T.This work may be helpful for the estimation of turbulent transport level in the ITER and CFETR devices.

    Keywords:deuterium-tritium plasma,ion temperature gradient instability,temperature anisotropy,turbulent transport,mixing length model approximation

    1.Introduction

    The confinement of particle and energy is a key issue in tokamaks.Since the experimental observation of the anomalous ion thermal transport in DIII-D tokamak[1],the research for the heat transport has been developed prosperously.The ion temperature gradient(ITG)instability is considered to play an important role in the anomalies in ion thermal transport[2,3].

    The fusion temperature can be reached through the intense auxiliary heating,such as the neutral beam injection(NBI)heating,ion cyclotron resonance heating(ICRH)as well as electron cyclotron resonance heating.These heating regimes have been widely used in the existent tokamaks such as EAST,JET,DIII-D,and will be adopted in the fusion tokamaks such as ITER and CFETR for the realization of deuterium-tritium(D-T)discharge.Nevertheless,the auxiliary heating regimes could produce strong plasma anisotropy.Generally,tangentially injected NBI drives the anisotropy withT‖>T⊥,and the ICRH typically generates perpendicularly dominant anisotropy withT⊥>T‖,whereT‖andT⊥are the parallel and perpendicular temperatures with respect to the magnetic field.Anisotropic plasma has been experimentally observed.For instance,studies in MAST suggest that the ratioT⊥/T‖=1.7 is achieved[4].In EAST,the degree of the parallel-dominated anisotropyT‖/T⊥=1.8 is reached at low electron density with low hybrid wave heating[5].

    Influences of the temperature anisotropy on plasma behaviours have been widely researched.The temperature anisotropy plays important roles in the ITG instability[6],the resistive wall mode[7],the low-frequency electromagnetic wave[8],the geodesic acoustic mode[9-11],the zonal flows[12,13]and so on.In detail,in[6],it is demonstrated that instability of ITG mode is reduced by an ion temperature anisotropy of higher perpendicular temperature or high enough parallel temperature.In[13],it is found that the residual zonal flow driven by the ITG instability shows a strong dependence on the temperature ratioIn[14],it is reported that in the ITG driven turbulence in tokamak plasmas,the different parallel and perpendicular temperaturesT‖≠T⊥induced by the ion Bernstein wave heating plays an important role in the generation and dynamics of transport barriers.In[15],the theoretical analysis and numerical evaluation of the impurity flux for the stellarator plasmas suggest that the main ion pressure anisotropy must be taken into account for a correction description of impurity transport in most of the collisionality range.

    In this work,we focus on the ITG instability in a temperature anisotropic D-T plasma.The linear dispersion relation is theoretically derived and numerically solved to analyze the effects of temperature anisotropy on the linear behaviour of ITG instability;based on the linear results,the mixing length model approximation is adopted to analyze the anomalous particle and energy transport.The remaining part of this paper is organized as follows.In section 2,dispersion relation of the ITG instability in an anisotropic D-T plasma is derived;in section 3,the linear frequency of ITG instability is numerically evaluated;in section 4,by adopting the mixing length model approximation,the particle flux and energy flux driven by the ITG instability are analyzed;section 5 is the conclusion and discussion.

    2.Dispersion relation

    Table 1.Key parameters of three cases. a is the minor radius.

    3.Linear version

    In figure 3,the real frequency and growth rate versuskθρs,Din the CBC,ITER and CFETR cases are shown.It is found that tendencies of the dependence of(normalized)real frequency on α and εTin the ITER and CFETR cases are similar with those in the CBC case;for a fixed(kθρs,D,α,εT),the(normalized)real frequency in three cases are of the same order.Tendencies of the dependence of(normalized)growth rate in the ITER case on α and εTare similar with those in the CBC case,except that the magnitude is about 30% smaller.The magnitude of growth rate in the CFETR case is close to that in the CBC case in a large range of α and εT,however,the tendency is not quite similar.It is seen that by varying εTfrom 0.0 to 0.5,the growth rate in the CFETR case is nearly unchanged when α=1/2,and only about 20% increment when α=1 and 2 in largekθρs,Dregion.Analogously,dependence of the growth rate on α is not quite obvious.When α varies from 1/2 to 2,the increment of the growth rate in the CFETR case is about 50%,which is much smaller than the increments in the CBC and ITER cases.These results show that the ITG instability is the weakest in the ITER case,and is least affected by varying α and εTin the CFETR case.

    To end this section,we make some remarks on the results about the linear frequency.In our modelling,only the temperature anisotropy of D is considered;effects of the anisotropy factor αDand the fraction of T εTon the linear frequency depend on this assumption.Obviously,when the temperature anisotropy of T is also considered,the situation becomes complicated.For example,in the case with εTincreased,though the influence of temperature anisotropy from D decreases,the influence of temperature anisotropy from T increases,and the final results depend on the competition of the temperature anisotropy between D and T.In this work,we do not focus on the analysis of this complicated situation,but emphasize the significant role of the temperature anisotropy on the linear frequency in a relatively easy way.

    4.Quasilinear transport

    In this section,based on the linear results in section 3,a quasilinear transport model is adopted to study the effects of temperature anisotropy on the particle and energy fluxes driven by the ITG instability.

    4.1.Particle flux

    According to the definition in equations(10)and(13a),the particle flux can be divided into three parts:one is driven by the density gradient(L11X1),the second is driven by the temperature gradient(L12X2+L13X3),and the third is due to the inward pinch(L14X4+L15X5).Totally speaking,as α and εTvaried,the linear real frequency and growth rate vary,then the transport coefficients calculated from equation(15)vary,leading to the variation of the contribution from these three parts to the particle flux.The analysis about the contribution from these three parts to the particle flux may be helpful to understand the tendency of the particle flux varied with α and εT.As an example,we take εT=0.5,α=1/2,1 and 2.The values are summarized in table 2.It is shown that with different α,the flux driven by the density gradient is always outward,the flux due to the inward pinch is always inward,the flux driven by the temperature gradient can be inward or outward.For a fixed α,the density gradient parts and the inward pinch parts for D and T are similar,but the temperature gradient parts for D and T are quite different,especially when α=1/2 and 2.As α increased from 1/2 to 2,the density gradient parts for D and T increase;the inward pinch parts for D and T increase;the temperature gradient part for D(T)changes from inward(outward)to outward(inward),correspondingly,the particle flux for D(T)changes from inward(outward)to outward(inward).The similar results can also be obtained for εT=0.1 to 0.4.It is indicated that the temperature gradient part plays an important role in determining the direction of particle flux for D and T.

    Figure 5 shows the particle flux versus εTin the CBC,ITER and CFETR cases.α=1/2,1 and 2 are adopted.Totally speaking,tendencies of the particle flux for D and T versus(εT,α)in the ITER and CFETR cases are similar with those in the CBC case.In large range of chosen(εT,α),the particle fluxes for D and T are about 0.5 m s-1,0.03 m s-1and 0.2 m s-1in the CBC,ITER and CFETR cases,respectively,that is,the particle flux is the largest in the CBC case and smallest in the ITER case.These results can be qualitatively explained by combining equation(15)and figure 3.Thetransport coefficient shown in equation(15)is proportional to γ3and χGB,both γ and χGBin the ITER case are about half of those in the CBC and CFETR cases,resulting that the particle flux in the ITER case is about an order of magnitude smaller.It is seen that the particle flux in the CFETR case is smaller than that in the CBC case,which is closely related to the contribution from the temperature gradient part and the inward pinch part.We take εT=0.5 as an example.When α=2,the particle fluxes for D in the CBC and CFETR case are 0.882 m s-1and 0.321 m s-1,respectively;however,the temperature gradient parts in the CBC and CFETR case are 0.795 m s-1and -0.712 m s-1,respectively.The bigger outward particle flux for D in the CBC case is mainly due to the positive contribution from the temperature gradient part.When α=1/2,the particle fluxes for D in the CBC and CFETR case are -0.375 m s-1and -0.162 m s-1,respectively;however,the inward pinch parts in the CBC and CFETR case are -1.108 m s-1and -0.460 m s-1,respectively.The bigger inward particle flux for D in the CBC case is mainly due to the positive contribution from the inward pinch part.

    Figure 1.Real frequency(a)-(c)and growth rate(d)-(f)versus kθρs,D with εT varied in the CBC case.α=1/2,1 and 2.The normalized frequency cs/R=156 kHz; R=R0+0.5a is adopted,where the biggest temperature gradient occurs.

    Figure 2.Real frequency(a)-(c)and growth rate(d)-(f)versus kθρs,D with α varied in the CBC case.εT=0.0,0.1 and 0.5.

    Figure 3.Real frequency(a)-(c)and growth rate(d)-(f)versus kθρs,D in the CBC,ITER and CFETR cases.α=1/2,1 and 2,εT=0.0 and 0.5.The normalized frequency cs/R=156 kHz(CBC),96 kHz(ITER),116 kHz(CFETR);here,R=R0+0.5a for ITER and R=R0+0.6a for CFETR.

    Figure 4.Particle flux versus εT with α varied in the CBC case.(a)D;(b)T and(c)total.The gray dash line denotes Γr=0.

    Figure 5.Particle flux versus εT in the(a)CBC,(b)ITER and(c)CFETR cases.α=1/2,1 and 2.Solid:D,dash:T,dot:total.

    Table 2.Contribution from the density gradient(L11 X1),the temperature gradient(L12 X2+ L13 X3),and the inward pinch(L14 X4+ L15 X5)to the particle flux(total).The unit for the flux is m s-1.εT=0.5,and α=1/2,1,2.‘←’ and ‘→’ denote the inward and outward particle flux,respectively.

    Generally,the inward or smaller outward particle flux means the better particle confinement.In figure 5,it is shown that for a fixed εT,the particle fluxes for both D and T are closer to zero when α approaches to 1 than that when α is far away from 1,indicating that the confinement is better for the isotropic case than that for the anisotropic case.On the other hand,for the anisotropic case,it is found that for a certain α <1,larger εT(for example,α=1/2 and εT=0.5)is beneficial for the particle confinement;for a certain α >1,smaller εT(for example,α=2 and εT=0.1)is beneficial for the particle confinement.

    4.2.Energy flux

    Figure 6 shows the heat and energy fluxes for D versus εTin the CBC case.The heat and energy fluxes are calculated according to equations(13c)and(13b),respectively.It is seen that for a fixed εT,both the heat and energy fluxes increase as α increases,dependences of the heat and energy flux on α are more sensitive in α <1 region than that in α >1 region.For εT=0.5,when α increases from 1/2 to 1,the heat flux increases from about 2.3 to about 4.5 m s-1,the increment is about 96%;when α increases from 1 to 2,the heat flux increases from about 4.5 to about 5.4 m s-1,the increment is about 20%.As shown in equation(13c),the heat flux contains two parts,which are denoted as the perpendicular heat flux(J2)and the parallel heat flux(J3).A careful analysis shows that the perpendicular part dominates the heat flux(in our cases,the ratios of the parallel part to the total heat flux are 1%,14% and 20% for α=1/2,1 and 2 with εT=0.5,respectively).Furthermore,the perpendicular heat flux is dominated by the temperature gradient part(L22X2+L23X3).It is found that dependence of the heat flux on α has the similar tendency to that of the temperature gradient part.

    Figure 6.Heat(a)and energy(b)flux for D versus εT with α varied in the CBC case.

    Figure 7.Heat(a)and energy(b)flux for T versus εT with α varied in the CBC case.

    As shown in equation(13b),the energy flux contains the particle flux and the heat flux.According to figures 4(a)and 6(a),the particle flux is much smaller than the heat flux,thus the heat flux dominates the energy flux.It is seen that dependence of the energy flux on α is similar to that of the heat flux.In addition,for a fixed α,dependence of the heat flux on εTis just opposite to that of the particle flux,which leads to that the energy flux moderately decreased as εTincreases.When εTvaries from 0.1 to 0.5,the biggest change of energy flux occurs at α=1,which is dropped from about 5.3 to about 4.7 m s-1.It indicates that the energy transport can be significantly reduced in the situation where the parallel temperature dominates(α <1),and effectively aggravated in the situation where the perpendicular temperature dominates(α >1).

    Figure 7 shows the heat and energy fluxes for T versus εTin the CBC case.It is seen that dependence of the heat flux for T on(α,εT)and its value are similar to those for D.The heat flux for T increases as α increases,and the increment is more significant in α <1 region.Analogously,the perpendicular heat flux dominates the heat flux,and the temperature gradient part dominates the perpendicular heat flux.Unlike the situation for the heat flux,dependence of the energy flux on(α,εT)shows different characters.Since the particle flux for T is comparable to the heat flux for T,due to the modulation of particle flux,the energy flux is not sensitive to εT,and its value obviously increases(decreases)in α <1(α >1)region,where the particle flux is outward(inward).It is seen that the biggest energy flux appears at α=1.When α is far away from α=1,the energy flux for T can be moderately suppressed by about 20%-40% in the chosen parameter ranges.

    Figure 8.Energy flux for D(solid)and T(dash)versus εT.(a)CBC;(b)ITER;(c)CFETR.

    Figure 8 shows the energy flux versus εTin the CBC,ITER and CFETR cases.α=1/2,1 and 2 are adopted.Tendencies of the energy flux for D and T versus(εT,α)in the ITER and CFETR cases are similar with those in the CBC case.In each case,qualitatively,dependence of the energy flux for D on α is more significant than that for T,dependences of the energy flux for both D and T on εTare not obvious,which are due to the modulation of the particle flux,as illustrated in the following figures 6 and 7.Quantitatively,analogous to the particle flux shown in figure 5,the energy flux in the ITER case is an order of magnitude smaller than that in the CBC case,which is due to the smaller growth rate and χGB,as is discussed following figure 5.The energy flux in the CFETR case is about half of magnitude smaller than that in the CBC case.Note that the energy flux can also be divided into three parts,which are driven by the density gradient,the temperature gradient and the inward pinch.As an example,in table 3,we show the contribution from these three parts to the energy flux for D with εT=0.5 and α=1/2,1 and 2.It is shown that in the CBC case,the density gradient part and the inward pinch are mostly cancelled,the value of the total energy flux is close to that of the temperature gradient part.In the CFETR case,values of these three parts are smaller than those in the CBC case.Though the transport coefficients described by equation(15)are close in CBC and CFETR cases,the fluxes are not close,since the the fluxes are calculated by the product of transport coefficients and driving forces(Xν).For example,in our modelling,the biggerRresults in the smaller energy flux in the CFETR case.

    Besides,it is seen that the optimal confinement for the energy of D and T appears at α=1/2,regardless of the value of εT.

    Table 3.Contribution from the density gradient part,the temperature gradient part and the inward pinch part to the energy flux for D in the CBC and CFETR cases.The unit for the flux is m s-1.εT=0.5,and α=1/2,1,2.

    5.Conclusion and discussion

    In conclusion,the particle and energy transports driven by the ITG instability are investigated in an anisotropic D-T plasma.

    At first,the linear dispersion relation is derived in the local kinetic limit.Three sets of typical parameters,denoted as CBC,ITER and CFETR case,respectively,are chosen to numerically solve the dispersion relation.Dependences of the linear mode frequency on parameters,such as the temperature anisotropy factor of D α,the fraction of T particle εTand the poloidal spectrumkθρs,D,are studied.Based on the linear results,the quasilinear transport coefficients are derived by adopting the mixing length model approximation,and the particle and energy fluxes for D and T are evaluated.

    The main results are concluded as follows:

    (1)Dependences of the linear frequency and the quasilinear transports on the parameters in the three cases show the similar tendency.Values of the real frequency in the three cases are nearly the same,the growth rate is the smallest in the ITER case,and largest in the CBC case.The quasilinear particle and energy transports are the largest in the CBC case and the smallest in the ITER case,which indicates the better particle and energy confinement in large devices.

    (2)As α increases,the real frequency decreases,while the growth rate increases;in α >1(α <1)region,the real frequency increases(decreases)as εTincreases,while the growth rate decreases(increases).The ITG instability may be significantly stabilized by controlling α <1.

    (3)Due to the adiabatic electron approximation and the quasi-neutrality condition,the total particle flux for ions is found to be zero;this result proves the accuracy for the calculation of the linear frequency and provides the reliability for the calculation of the quasilinear transport fluxes.The direction of the particle flux for D is opposite to that of T;the temperature gradient driven particle flux plays an important role in determining the direction of the particle flux for D and T.It is shown that the particle confinement is better for the isotropic case than that for the anisotropic case when εTis fixed.On the other hand,for the anisotropic case,it is found that for a certain α <1(α >1),larger εT(smaller εT)is beneficial for the particle confinement.

    (4)As α increases,the heat fluxes for D and T increase,the increment is more sensitive in α <1 region than that in α >1 region.Due to the modification of the particle flux,dependences of the energy flux for D and T on α show different tendencies.As α increases,the energy flux for D increases,while the energy flux for T increases in α <1 region and then decreases in α >1 region.The largest energy flux for T appears at α=1;as the deviation of α is larger from 1,the energy flux becomes smaller.It is concluded that smaller α is beneficial for energy confinement.

    (5)Totally speaking,in the ITG-dominated regime,the better particle and energy confinement occur by choosing smaller α and larger εT.

    To the end,it should be pointed out that a significant source of anisotropy in high performance machines is NBI,which may also produce a sheared flow in the plasma.Consideration of the consistency between temperature anisotropy and sheared flows may be helpful for a better estimation of turbulent transport level in devices such as ITER and CFETR.This issue will be left as a future work.

    Acknowledgments

    This work was supported by the National MCF Energy R&D Program of China(No.2019YFE03060000),and National Natural Science Foundation of China(Nos.12005063,12175228,11875131 and 11675053).

    Appendix.Derivation of the perturbed distribution function from the traditional GK theory.

    国产成人欧美| 欧美黄色淫秽网站| 久久国产精品男人的天堂亚洲| 国内毛片毛片毛片毛片毛片| 日韩成人在线观看一区二区三区| 咕卡用的链子| 国产高清videossex| 久久久久久久精品吃奶| 一区二区三区激情视频| 欧洲精品卡2卡3卡4卡5卡区| 男女之事视频高清在线观看| 婷婷精品国产亚洲av在线| 搞女人的毛片| 免费一级毛片在线播放高清视频 | 免费女性裸体啪啪无遮挡网站| 国产一卡二卡三卡精品| 亚洲国产看品久久| 亚洲情色 制服丝袜| 热99re8久久精品国产| 国产精品自产拍在线观看55亚洲| 精品不卡国产一区二区三区| 成人欧美大片| 国产麻豆69| 99国产精品一区二区蜜桃av| 国产真人三级小视频在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 欧美日本中文国产一区发布| 12—13女人毛片做爰片一| 国产精品野战在线观看| 最新在线观看一区二区三区| 电影成人av| 亚洲中文av在线| 国产一区在线观看成人免费| 日韩中文字幕欧美一区二区| 在线十欧美十亚洲十日本专区| 在线播放国产精品三级| 免费在线观看亚洲国产| 一区二区三区精品91| 精品免费久久久久久久清纯| 亚洲成av片中文字幕在线观看| 国产一区在线观看成人免费| 免费少妇av软件| 精品人妻1区二区| 12—13女人毛片做爰片一| 色av中文字幕| 十八禁人妻一区二区| 女生性感内裤真人,穿戴方法视频| avwww免费| 巨乳人妻的诱惑在线观看| 人人妻,人人澡人人爽秒播| 老熟妇仑乱视频hdxx| 亚洲中文日韩欧美视频| 亚洲欧美一区二区三区黑人| 欧美av亚洲av综合av国产av| 黄网站色视频无遮挡免费观看| 欧美精品啪啪一区二区三区| 最新美女视频免费是黄的| 欧美乱妇无乱码| 色精品久久人妻99蜜桃| 色播亚洲综合网| 最近最新免费中文字幕在线| 亚洲欧美一区二区三区黑人| 久久精品国产亚洲av高清一级| 亚洲人成77777在线视频| 大型av网站在线播放| 欧美黑人欧美精品刺激| 亚洲精品美女久久av网站| 97人妻精品一区二区三区麻豆 | 制服丝袜大香蕉在线| 丁香欧美五月| 99国产精品一区二区三区| 一本大道久久a久久精品| 夜夜夜夜夜久久久久| 男女下面插进去视频免费观看| 国产一区二区激情短视频| 啦啦啦免费观看视频1| 国产精品久久久久久亚洲av鲁大| 9热在线视频观看99| 国产精品一区二区精品视频观看| www日本在线高清视频| 久久精品91蜜桃| 女同久久另类99精品国产91| 亚洲专区国产一区二区| 亚洲三区欧美一区| 国产一级毛片七仙女欲春2 | 国内久久婷婷六月综合欲色啪| 精品熟女少妇八av免费久了| 久久久国产精品麻豆| 午夜视频精品福利| 亚洲国产欧美网| 人妻久久中文字幕网| 非洲黑人性xxxx精品又粗又长| 嫩草影院精品99| 亚洲国产精品999在线| 人人妻人人澡欧美一区二区 | 午夜免费成人在线视频| 欧美精品啪啪一区二区三区| 校园春色视频在线观看| 国产av一区在线观看免费| 久久人妻av系列| 99久久精品国产亚洲精品| 啦啦啦免费观看视频1| 久久国产亚洲av麻豆专区| 50天的宝宝边吃奶边哭怎么回事| 欧美中文综合在线视频| 美女 人体艺术 gogo| 欧美日韩一级在线毛片| 国产av又大| 黄频高清免费视频| 国产精品一区二区三区四区久久 | 日本 欧美在线| 女人被躁到高潮嗷嗷叫费观| 一二三四在线观看免费中文在| 免费观看精品视频网站| 亚洲精品国产色婷婷电影| 热99re8久久精品国产| 满18在线观看网站| 天堂√8在线中文| 宅男免费午夜| 国产高清激情床上av| 波多野结衣av一区二区av| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美日韩另类电影网站| 国产视频一区二区在线看| 女人爽到高潮嗷嗷叫在线视频| 熟女少妇亚洲综合色aaa.| 高清毛片免费观看视频网站| 亚洲欧美日韩无卡精品| 又黄又爽又免费观看的视频| 亚洲午夜精品一区,二区,三区| 亚洲av片天天在线观看| 又黄又爽又免费观看的视频| 欧美日韩精品网址| 精品国产亚洲在线| 国产av在哪里看| 丝袜在线中文字幕| 日本一区二区免费在线视频| 国产又爽黄色视频| 国产亚洲精品av在线| 夜夜夜夜夜久久久久| av网站免费在线观看视频| 亚洲专区国产一区二区| 亚洲欧洲精品一区二区精品久久久| tocl精华| 岛国视频午夜一区免费看| 午夜精品国产一区二区电影| 色播在线永久视频| 国产精品美女特级片免费视频播放器 | 精品久久久精品久久久| 十八禁人妻一区二区| 禁无遮挡网站| 淫秽高清视频在线观看| 国产又爽黄色视频| 在线视频色国产色| 黑人巨大精品欧美一区二区mp4| 香蕉久久夜色| 色综合婷婷激情| 亚洲专区字幕在线| 久久精品亚洲熟妇少妇任你| 亚洲av五月六月丁香网| 每晚都被弄得嗷嗷叫到高潮| 美女大奶头视频| 午夜福利欧美成人| 国产精品久久久人人做人人爽| 久热这里只有精品99| 日本欧美视频一区| 国产成人系列免费观看| 久久久久久免费高清国产稀缺| 在线观看www视频免费| 中文亚洲av片在线观看爽| 真人做人爱边吃奶动态| 欧美一级毛片孕妇| 十分钟在线观看高清视频www| 如日韩欧美国产精品一区二区三区| 禁无遮挡网站| 麻豆国产av国片精品| 欧美人与性动交α欧美精品济南到| 波多野结衣一区麻豆| 国产精华一区二区三区| 在线观看午夜福利视频| 久久久国产精品麻豆| videosex国产| 一二三四社区在线视频社区8| 午夜影院日韩av| 国产免费av片在线观看野外av| 国产三级在线视频| 久久人人爽av亚洲精品天堂| 午夜久久久久精精品| 国产成人av教育| 男人操女人黄网站| 真人一进一出gif抽搐免费| 欧美日韩一级在线毛片| 欧美日韩福利视频一区二区| 日韩一卡2卡3卡4卡2021年| 女人精品久久久久毛片| 亚洲第一欧美日韩一区二区三区| 少妇的丰满在线观看| 欧美中文日本在线观看视频| 狂野欧美激情性xxxx| 久久久久国产一级毛片高清牌| 欧美日韩亚洲国产一区二区在线观看| 国产欧美日韩一区二区三| 午夜两性在线视频| 久久伊人香网站| 91av网站免费观看| 国产在线观看jvid| 一边摸一边抽搐一进一出视频| 亚洲午夜理论影院| 亚洲午夜精品一区,二区,三区| 欧美日本视频| 国产亚洲精品综合一区在线观看 | 国产精品永久免费网站| 国内精品久久久久久久电影| 国产欧美日韩一区二区精品| 久久久久久大精品| 国产精品自产拍在线观看55亚洲| 亚洲一码二码三码区别大吗| 久久久久久久久久久久大奶| 在线观看免费午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 青草久久国产| 操美女的视频在线观看| 脱女人内裤的视频| 亚洲va日本ⅴa欧美va伊人久久| 黄网站色视频无遮挡免费观看| 午夜福利18| 长腿黑丝高跟| 在线观看免费日韩欧美大片| 欧美黄色淫秽网站| 看黄色毛片网站| 欧美亚洲日本最大视频资源| 国产主播在线观看一区二区| 波多野结衣av一区二区av| 精品电影一区二区在线| 久久久久亚洲av毛片大全| 国产亚洲精品第一综合不卡| 999久久久国产精品视频| 亚洲视频免费观看视频| 99国产精品一区二区蜜桃av| 国产精品久久久av美女十八| 久久亚洲精品不卡| 久久久精品欧美日韩精品| 高清毛片免费观看视频网站| 亚洲av电影不卡..在线观看| 国产激情欧美一区二区| 777久久人妻少妇嫩草av网站| 一区二区三区高清视频在线| 中文字幕人成人乱码亚洲影| 精品久久久久久久毛片微露脸| 大香蕉久久成人网| 国产精品秋霞免费鲁丝片| 最新美女视频免费是黄的| 女性被躁到高潮视频| 国产精品亚洲一级av第二区| 伊人久久大香线蕉亚洲五| 午夜福利欧美成人| 亚洲av美国av| 国产成人精品在线电影| a级毛片在线看网站| 黄色片一级片一级黄色片| 免费久久久久久久精品成人欧美视频| 成人18禁高潮啪啪吃奶动态图| 精品卡一卡二卡四卡免费| 一二三四在线观看免费中文在| 老司机靠b影院| 精品久久久久久,| 国产又色又爽无遮挡免费看| videosex国产| 国产精品美女特级片免费视频播放器 | 91精品国产国语对白视频| 亚洲va日本ⅴa欧美va伊人久久| 国产av在哪里看| 19禁男女啪啪无遮挡网站| 亚洲久久久国产精品| 日本 欧美在线| 国产亚洲欧美精品永久| 9热在线视频观看99| 最好的美女福利视频网| 亚洲国产精品999在线| 黄色视频不卡| 欧美色视频一区免费| 欧美日韩亚洲国产一区二区在线观看| 成熟少妇高潮喷水视频| 中文字幕最新亚洲高清| 亚洲国产欧美网| 久久人人97超碰香蕉20202| 午夜福利18| 亚洲av第一区精品v没综合| 国产成人影院久久av| 老司机福利观看| 麻豆一二三区av精品| 国产精品99久久99久久久不卡| 97碰自拍视频| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久男人| 香蕉国产在线看| 午夜成年电影在线免费观看| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 在线观看免费视频网站a站| 极品教师在线免费播放| tocl精华| 国产高清videossex| 美女国产高潮福利片在线看| 亚洲 国产 在线| 91精品三级在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美色欧美亚洲另类二区 | xxx96com| 国产免费男女视频| 国产精品久久久久久亚洲av鲁大| 国产精品二区激情视频| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 嫩草影视91久久| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产亚洲在线| 国产欧美日韩精品亚洲av| 亚洲成av人片免费观看| x7x7x7水蜜桃| 久久国产精品人妻蜜桃| 曰老女人黄片| 最好的美女福利视频网| 夜夜爽天天搞| 久久热在线av| 亚洲电影在线观看av| АⅤ资源中文在线天堂| 一级作爱视频免费观看| 亚洲天堂国产精品一区在线| 欧美成人午夜精品| 一进一出好大好爽视频| 青草久久国产| 一级毛片女人18水好多| 国产高清视频在线播放一区| 国产精品日韩av在线免费观看 | 成人永久免费在线观看视频| 色在线成人网| 亚洲一码二码三码区别大吗| 在线播放国产精品三级| 亚洲五月色婷婷综合| 人人妻人人爽人人添夜夜欢视频| 香蕉国产在线看| 窝窝影院91人妻| 久久精品亚洲熟妇少妇任你| 在线观看免费视频网站a站| 国产三级黄色录像| 制服诱惑二区| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 国产精品1区2区在线观看.| 日韩成人在线观看一区二区三区| 老汉色av国产亚洲站长工具| 久久九九热精品免费| 欧美激情 高清一区二区三区| 午夜免费激情av| 久久国产亚洲av麻豆专区| 午夜福利欧美成人| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看 | 女人爽到高潮嗷嗷叫在线视频| 亚洲视频免费观看视频| 97超级碰碰碰精品色视频在线观看| 日韩精品中文字幕看吧| 国产精品爽爽va在线观看网站 | 国产伦一二天堂av在线观看| 欧美日韩乱码在线| 757午夜福利合集在线观看| 搡老妇女老女人老熟妇| 亚洲国产精品合色在线| 夜夜爽天天搞| 侵犯人妻中文字幕一二三四区| 国产成人精品久久二区二区91| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 精品国内亚洲2022精品成人| 变态另类丝袜制服| 波多野结衣巨乳人妻| 成人免费观看视频高清| 国产亚洲精品av在线| 国产av精品麻豆| 国产熟女xx| 久久中文字幕一级| 中文字幕精品免费在线观看视频| 精品免费久久久久久久清纯| 欧美不卡视频在线免费观看 | or卡值多少钱| 搡老熟女国产l中国老女人| 丝袜美腿诱惑在线| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| www日本在线高清视频| av视频在线观看入口| 国产精品国产高清国产av| cao死你这个sao货| 亚洲欧美精品综合一区二区三区| 麻豆av在线久日| 一边摸一边做爽爽视频免费| 久久午夜亚洲精品久久| 久久久久久人人人人人| x7x7x7水蜜桃| 亚洲第一av免费看| 亚洲国产精品久久男人天堂| 免费在线观看完整版高清| 淫妇啪啪啪对白视频| 天堂√8在线中文| 黄色毛片三级朝国网站| 亚洲狠狠婷婷综合久久图片| 国产伦一二天堂av在线观看| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| 日韩大码丰满熟妇| 亚洲精品中文字幕在线视频| 一级作爱视频免费观看| 免费看a级黄色片| 国产单亲对白刺激| 久久精品国产亚洲av香蕉五月| www.熟女人妻精品国产| 99热只有精品国产| 91精品国产国语对白视频| 嫩草影院精品99| 又黄又粗又硬又大视频| av超薄肉色丝袜交足视频| 一边摸一边做爽爽视频免费| 午夜精品久久久久久毛片777| 亚洲专区中文字幕在线| 欧美中文日本在线观看视频| 男女做爰动态图高潮gif福利片 | 日韩 欧美 亚洲 中文字幕| www.精华液| 国产91精品成人一区二区三区| 国产在线精品亚洲第一网站| 国产黄a三级三级三级人| 50天的宝宝边吃奶边哭怎么回事| 午夜福利,免费看| 窝窝影院91人妻| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 一区二区三区精品91| 一区二区三区高清视频在线| 亚洲免费av在线视频| 美女午夜性视频免费| 亚洲第一电影网av| 99在线人妻在线中文字幕| 午夜日韩欧美国产| 男女下面插进去视频免费观看| 亚洲男人的天堂狠狠| 神马国产精品三级电影在线观看 | 精品欧美国产一区二区三| 18禁观看日本| 久久草成人影院| 国产不卡一卡二| 在线播放国产精品三级| 亚洲精品粉嫩美女一区| 中文字幕精品免费在线观看视频| 人成视频在线观看免费观看| 久久久久久免费高清国产稀缺| 可以在线观看的亚洲视频| 人人妻人人澡欧美一区二区 | 欧美黄色片欧美黄色片| 中文字幕高清在线视频| а√天堂www在线а√下载| 久热爱精品视频在线9| 真人一进一出gif抽搐免费| 神马国产精品三级电影在线观看 | 可以在线观看的亚洲视频| 亚洲美女黄片视频| 伦理电影免费视频| 琪琪午夜伦伦电影理论片6080| 一本综合久久免费| 18美女黄网站色大片免费观看| 亚洲一区二区三区色噜噜| x7x7x7水蜜桃| 久久亚洲精品不卡| 精品国内亚洲2022精品成人| 欧美日韩乱码在线| 中文亚洲av片在线观看爽| 国产精品美女特级片免费视频播放器 | 丝袜美腿诱惑在线| 黄色成人免费大全| 国产精品美女特级片免费视频播放器 | 51午夜福利影视在线观看| 国产精品免费视频内射| 亚洲人成电影免费在线| 久久国产精品男人的天堂亚洲| 在线播放国产精品三级| 琪琪午夜伦伦电影理论片6080| 一本大道久久a久久精品| 欧美成人一区二区免费高清观看 | 桃色一区二区三区在线观看| 久久婷婷人人爽人人干人人爱 | 久久中文字幕一级| 黑人巨大精品欧美一区二区mp4| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品第一综合不卡| 正在播放国产对白刺激| 亚洲无线在线观看| 欧美精品亚洲一区二区| 日韩有码中文字幕| 男人舔女人下体高潮全视频| 脱女人内裤的视频| 欧美成人性av电影在线观看| 久久久久久免费高清国产稀缺| 精品无人区乱码1区二区| 在线观看一区二区三区| 99精品在免费线老司机午夜| 国产伦人伦偷精品视频| 动漫黄色视频在线观看| 久久久久久亚洲精品国产蜜桃av| 精品国产美女av久久久久小说| 丁香六月欧美| 欧美在线一区亚洲| 久久久久久人人人人人| 国产亚洲欧美精品永久| 亚洲精品美女久久av网站| 免费在线观看视频国产中文字幕亚洲| 午夜福利在线观看吧| 91字幕亚洲| 日韩国内少妇激情av| 中亚洲国语对白在线视频| 日韩免费av在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品,欧美在线| 国产成人精品久久二区二区免费| av网站免费在线观看视频| 欧美一区二区精品小视频在线| 老司机午夜福利在线观看视频| 精品乱码久久久久久99久播| 国产亚洲精品一区二区www| www.www免费av| av天堂在线播放| 国产高清videossex| 一个人免费在线观看的高清视频| 国产精品98久久久久久宅男小说| 国产精品美女特级片免费视频播放器 | 视频在线观看一区二区三区| 欧美+亚洲+日韩+国产| 国产成人啪精品午夜网站| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品合色在线| 在线观看日韩欧美| 亚洲精品久久成人aⅴ小说| 精品第一国产精品| 国产亚洲精品久久久久5区| 精品一区二区三区视频在线观看免费| 夜夜夜夜夜久久久久| 亚洲第一青青草原| 熟妇人妻久久中文字幕3abv| 久久午夜亚洲精品久久| 美女午夜性视频免费| 国产精品电影一区二区三区| 亚洲黑人精品在线| www.自偷自拍.com| 级片在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲成人免费电影在线观看| 性欧美人与动物交配| 亚洲久久久国产精品| 亚洲最大成人中文| 免费在线观看黄色视频的| 一a级毛片在线观看| 国产1区2区3区精品| 一级片免费观看大全| 国产精品久久久久久亚洲av鲁大| 国产高清videossex| 国产av精品麻豆| 久久精品91蜜桃| 欧美一级毛片孕妇| av有码第一页| 亚洲五月色婷婷综合| 久久久久久亚洲精品国产蜜桃av| 深夜精品福利| 99国产精品一区二区三区| 欧美人与性动交α欧美精品济南到| 国产又色又爽无遮挡免费看| 成人精品一区二区免费| 国产成人影院久久av| 天天躁狠狠躁夜夜躁狠狠躁| 欧美最黄视频在线播放免费| 亚洲精华国产精华精| 人人妻人人澡欧美一区二区 | 免费高清在线观看日韩| 夜夜看夜夜爽夜夜摸| 国产单亲对白刺激| 国产午夜精品久久久久久| 黄色成人免费大全| 十分钟在线观看高清视频www| 美女高潮喷水抽搐中文字幕| 欧美激情久久久久久爽电影 | 搡老岳熟女国产| 黄色毛片三级朝国网站| 久久久久国内视频| 亚洲国产精品sss在线观看| 免费在线观看日本一区| 亚洲五月天丁香| 女人高潮潮喷娇喘18禁视频| xxx96com| 人成视频在线观看免费观看| 人人妻,人人澡人人爽秒播| 人人澡人人妻人| 啪啪无遮挡十八禁网站| 精品人妻1区二区| 亚洲欧美日韩高清在线视频| 久久久久久久久久久久大奶| 男女午夜视频在线观看| 啦啦啦韩国在线观看视频| 视频在线观看一区二区三区| 亚洲欧美日韩无卡精品| 日日爽夜夜爽网站| 日韩高清综合在线| 国产精品久久久av美女十八| 精品久久久久久久人妻蜜臀av | 少妇熟女aⅴ在线视频| 午夜老司机福利片| 黄片小视频在线播放|