• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation

    2022-03-10 01:24:36SofiyevKuruoglu
    Defence Technology 2022年2期

    A.H.Sofiyev , N.Kuruoglu

    a Department of Civil Engineering of Engineering Faculty, Suleyman Demirel University, 32260, Isparta, Turkey

    b Information Technology Research and Application Center Member of Consultancy Board of ITRAC Center, Istanbul Commerce University, Beyoglu, 34445,Istanbul, Turkey

    c Scientific Research Centers for Composition Materials of UNEC-Azerbaijan State Economic University,1001/Baku, Azerbaijan

    d Department of Civil Engineering of Faculty of Engineering and Architecture of Istanbul Gelisim University, Istanbul, Turkey

    Keywords:Nanocomposites CNTs Composite conical shells Two-parameter elastic foundations Combined buckling loads Shear deformation shell theories

    ABSTRACTThe main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation (T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs, based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix, i.e.uniform distribution(U) and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads (CBLs) of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.

    1.Introduction

    The importance of shell theories in modern science and technology is growing every day.While the theory of plates and shells solves the rational tasks of designing engineering structures,which consisted mainly of finished materials, at the present time, the optimal design and production of the materials that make up the structures play a more active role.Recently, using new technological methods, developing the properties of the various materials that make up the structural elements,designs are created with high performance and low cost [1,2].

    Due to its high aspect ratio, large surface area, rich surface chemical functionality and nanoscale dimensional stability, CNTs have various applications such as electromagnetic interference protection, membranes and structural reinforcement.CNTs have the simplest chemical composition and atomic bonding configuration, adding extraordinary variety and richness in the properties of the structures.The CNTs were discovered by Sumio Iijima in 1991, shortly after the laboratory synthesis of fuller in the installation of the arc discharge apparatus [3].

    In modern technology, there is a need for lightweight, flexible and durable alternatives to replace hard and brittle materials.Instead of traditional materials that have been used for thousands of years, synthetic materials today can be produced at the scale of atoms, including CNTs.The nanotubes are a structural element made by bending graphene, which consists of one row of carbon atoms, into a cylinder.Even though it has such a simple shape, it becomes more effective as its physical and chemical properties change as the length and diameter change.The carbon nanotubes,which can reach a diameter of millions of times,are more beneficial than other materials due to their properties such as strength,electrical conductivity, and thermal conductivity [4,5].

    The superior properties of CNTs open up exciting possibilities for new composites.NASA has invested heavily in the development of carbon nanotube-based composites for applications such as a mission to Mars.Recently, polymer/CNT composites have received great attention due to their unique mechanical, surface and multifunctional properties, as well as their strong interaction with the matrix due to their nanoscale microstructure and extremely large interfaces [6].Determination of thermal, electrical and mechanical properties of composites reinforced with carbon nanotubes reveals the extraordinary advantages of nanocomposites.Velasco-Santos et al.[7]investigated the effect of multi-walled carbon nanotubes (MWCNTs) and processing methods on the morphological, dynamic, mechanical, mechanical, thermal and electrical properties of MWCNT/nylon 6 (PA6) composites.Moniruzzaman and Winey [8]summarized various nanotube/polymer composite manufacturing methods, including solution mixing,melt mixing,and in-situ polymerization,with special emphasis on evaluating the dispersion state of nanotubes.In addition, mechanical, electrical, rheological, thermal, and flammability are specifically discussed,and the variation of these physical properties depending on the size,aspect ratio,loading,distribution status and alignment of nanotubes in polymer nanocomposites is discussed.Alizada and Sofiyev [9]created modified Young’s moduli of nanomaterials taking into account the scale effects and vacancies.Díez-Pascual et al.[10]presented research on the production of single-walled carbon nanotube buckypaper reinforced poly (phenylene sulphide) and poly (ether-ether ketone) composite laminates by hot press process using transmission electron microscopes.

    The advent and widespread use of carbon nanotubes led to the development of new generation heterogeneous composite structures based on polymers.The defense industry is undoubtedly one of the earliest manufacturers of advanced composites,in particular CNT-reinforced composites.This is due to the fact that the defense industry requires materials with low weight, high strength and stiffness.The composite circular shells reinforced by CNTs,combining lightness with high strength are widely used in many branches of the modern defense industry, such as submarines,aircraft and spaceships, rockets, pressure vessels, for military drones,armored military vehicles,etc.,and are subjected to various combined loads.It is of great technical importance to clarify the buckling behavior of heterogeneous composite shells under combined loadings.Although not many, there are some remarkable studies on this problem.The buckling problem of heterogenous composite cylindrical shells reinforced with carbon nanotubes under combined loads was first mathematically modeled and solved in the study of Shen and Xiang [11].After this study, the stability problems of rotating cylindrical shells reinforced by CNTs and nano-shells under combined loadings were solved in various formulations[12,13].Later Sofiyev et al.[14]presented a solution to the problem of stability of composite conical shells reinforced with carbon nanotubes under combined loads.

    Due to structural elements reinforced by CNTs are used in a variety of environments, the influence of elastic media on their behavior is crucial for safety.One of the more frequently used models that better define the structure of elastic foundations is the two-parameter elastic foundation model or Pasternak model [15].The special case of the Pasternak model is the one-parameter elastic foundation model or Winkler elastic foundation model(W-EF),which is defined as a system of parallel springs that do not touch each other [16].In addition to these models, basic information about other foundation models and their interactions with structural members are also presented in Ref.[17].The interaction of the homogeneous conical shells with the two-parameter elastic foundation (T-P-EF) and the solution of bending problems suggested by Sun and Huang [18].

    The use of advanced composites in unmanned aerial vehicles,armor of tanks and aircraft, wing and empennage elements of aircraft and runways, especially on ships, submarines and oil transportation, makes a significant contribution to the development of various industries, including the defense industry.Since 2014,research has been conducted on the stability and vibrational characteristics of structural elements reinforced with CNTs resting on the EFs.For example,the influence of the two-parameter elastic foundation on the buckling or vibration behaviors of the composite plates and panels reinforced with carbon nanotubes has been studied in various formulations and theories.Zhang et al.[19]studied vibration for functionally graded carbon nanotubereinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method.Fu et al.[20]analyzed the nonlinear dynamic stability of carbon nanotube-reinforced composite plates resting on elastic foundations.Bani’c et al.[21]examined influence of Winkler-Pasternak foundation on the vibrational behavior of plates and shells reinforced by agglomerated carbon nanotubes.Tounsi and coauthors[22-25]investigated the buckling and vibration behaviors of FGM and FG-CNT mono and sandwich plates made of new generation materials on the elastic foundations using different boundary conditions and theories.Shen and Xiang [26-29]investigated nonlinear vibration and postbuckling of nanotube-reinforced composite cylindrical panels under axial and external pressures resting on elastic foundations in thermal environments.Mohammadi et al.[30]studied higherorder thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation.Duc et al.[31]presented thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations.

    It is known that the influences of shear strains are very important for the buckling behavior of composite shells in different environments.The use of shear deformation shell theories(SDSTs)in the calculation of the critical parameters of composite shells allows one to overcome the disadvantages of the critical parameters when using CST [31-35].In recent years, various methods have been developed for studying the problems of stability and vibration of heterogeneous composite shells in different environments based on the SDSTs.Bousahla et al.[36]studied buckling and dynamic behavior of the simply supported CNT-RC beams using an integralfirst shear deformation theory.Babaei et al.[37]reported thermal buckling and post-buckling analysis of geometrically imperfect FGM clamped tubes on nonlinear elastic foundation.Sobhy and Zenkour [38,39]studied vibration and hygrothermal analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells and microplates on elastic foundations.

    As can be seen from the literature review, no scientific studies have been carried out regarding the problem of loss of stability of CCSs reinforced with CNTs under combined loads, taking into account the influence of T-P-EF in the framework of the FSDST.The main purpose of this study is to examine the solution of this problem in detail.The study consists of the following sections:the first section is an introduction that evaluates the literature studies relevant to this study and presents the original features of the article.In sections 2 and 3,taking into account the T-P-EF effect,the problem is formulated and the basic equations are derived.In section 4, the basic differential equations are solved for specific boundary conditions, and a new and original expression for the combined buckling loads is obtained.After proving the correctness of the formulas obtained by comparison in Section 5, an original numerical analysis was carried out in the presence of elastic foundations and,finally, the comments are discussed in Section 6.

    2.Formulation of the problem

    2.1.Geometry and material properties

    Consider composite conical shell reinforced by CNTs and resting on the two-parameter elastic foundation under a combined loading(Fig.1).The symbols characterizing the CCS are presented below:The thickness is,the large and small radii areand,the length of the truncated cone is,the semi-vertex angle is γ,the distance from the top of the cone to the small and large bases areand.The origin of the coordinate system is at the top of the cone and located on the middle surface,theaxis is directed along the generator,the θ axis is in the circumferential direction, and theaxis is perpendicular to the plane of these two axes and directed inward.The displacement components of any point on the reference surface in the,anddirections are shown asand, respectively.The two-parameter elastic foundation is used as the elastic foundation model and its mathematical expression is as follows [18]:

    where θ= θ sinγ,= ln(/),denotes the stiffness of the spring layer(in Pa/m),denotes the shearing layer stiffness of the foundation (Pa?m),is the reaction force of the T-P-EF per unit area on the shell reinforced by CNTs,and a coma is indicated partial differentiation versus the coordinates.

    The composite conical shells reinforced by CNTs are subjected to a combined axial load and uniform hydrostatic pressure,as follows[14]:

    For convenience and simplicity, the extended mixing rule is used to express the effective material properties of CCSs reinforced by CNTs as follows [11,23]:

    wheredenotes the mass fraction of nanotubes.

    3.Governing relations and equations

    The constitutive equations of CCSs reinforced by CNTs with linear distributions in the framework of the FSDST are built as[14]:

    In the framework of the generalized first order shear deformation shell theory [14,32]in association with the modified Donnell shell theory, the governing equations for the CCSs reinforced by CNTs with linear distribution under combined loading and resting on the T-P-EF can be derived and expressed by

    Fig.1.Composite shell reinforced by CNTs resting on the two-parameter elastic foundation and notations.

    where Ψand Ψare the rotations of the normal to the mid-surface with respect to the θ- and s-axes, and Φ is the stress function defined by Refs.[32,40,41].

    In the set of Eq.(7),L(,=1,2,…,4)are differential operators and are defined in Appendix A.

    The set of Eq.(7)is the governing equations of carbon nanotubebased heterogeneous CCSs under combined loads and resting on the two-parameter elastic foundation within the FSDST.

    4.Solution of governing equations

    In this section we present the procedure to solve the eigen value problem, which includes the solution of partially differential equation for freely-supported boundary conditions.The approximation function is sought as follows [14]:

    Introducing (9) into the system of Eq.(8), then applying the Galerkin procedure to the obtained equations, and using integration and some manipulations,we obtain algebraic equations,which for their non-trivial solution, the determinant of the matrix, consisting of the coefficients of the unknown, equals to zero:

    where q(,=1,2,…,4)are the coefficients depending on the CCSs reinforced by CNTs,=-T--q-qin whichanddenote coefficients axial compression and hydrostatic pressure,respectively,qand qdenote coefficients of the T-P-EF,and are defined in Appendix B.

    In order to find the expression for the combined load, we first find the analytical expressions for the axial buckling load and hydrostatic buckling pressure from the extended form of the determinant of Eq.(10).

    The critical combined axial load/hydrostatic pressure for CCSs reinforced by CNTs with linear distributions resting on the T-P-EF based on the FSDST,are obtained from the following relation[40]:

    where=/and.=/

    Under the assumptions= μ, in Eq.(14), we get the following expressions for combined (axial/hydrostatic) buckling load:

    5.Results and discussion

    5.1.Parameters used in numerical calculations

    The numerical analyzes are carried out by changing eight parameters: volume fraction of SWCNT, CNT distribution, effective material properties methyl methacrylate (PMMA) and (10,10)armchair single walled CNTs(SWCNTs),foundation stiffness,shear strains shape functions, semi-vertex angle, γ,/and/ratios(see, Table 1).The values of the combined load for conical shells reinforced by CNTs are determined for different magnitudes ofλ,within a coupled stress theory context, in order to check for the effect of the FSDST on the critical loading condition.After a systematic numerical computation, it is found that for freelysupported CCSs reinforced by CNTs with linear distributions and resting on the T-P-EF,the critical combined hydrostatic/axial load is reached for λ = 2.4.The shear strain functions vary parabolically trough the thickness of the cones and given in Table 1, also.

    Table 1The parameters used in numerical analysis and their changes.

    The concept of functionally graded carbon nanotube-reinforced composites(FG-CNTRCs)was defined by Shen[42]to better utilize a low percentage of CNTs in CNTRCs.It is believed that the volume fraction of CNTs varies linearly in the direction of thickness, and such an arrangement of CNTs is easily realized in practice.The distribution of the volume fraction of carbon nanotubes in the thickness direction of the matrix is mathematically expressed by the uniform distribution(UD)and two types of linear function(see,Fig.2) [11,22]:

    Fig.2.Different distribution patterns of CNTs in the matrix:(a)UD,(b)VD and(c)XD.

    5.2.Comparison

    Table 2Comparative response of buckling loads for shear deformable cylinders reinforced by CNTs with X-type linear distribution.

    Table 3Variation the CBL for CCSs reinforced by CNTs resting on the T-P-EF within the various shell theories versus the μ for various *and types of CNT distribution.

    5.3.Specific analysis for CBLs

    Fig.3.Variation the values of the CBL for CCSs reinforced by CNTs on the T-P-EF within the various shell theories versus the μ for = 0.12 and various types of CNT distribution.

    The influence of VD and XD-distributions on the CBL is weakened, in the presence of T-P-EF.In addition, the use of shear deformation theory significantly reduces the heterogeneity effect on the combined buckling load compared to the classical theory(see,Fig.3).It is observed that the influence of the T-P-EF on the CBL decreased due to the increase of the μ.It has been determined that the influence of the T-P-EF on the CBL within the framework of FSDST is more pronounced than the classical shell theory.In the presence of the T-P-EF, the influence of shear strains on the CBL decreases with the increase of μ, although it is slow, the highest effect is observed in the CCSs reinforced by CNTs with XD-distribution.

    Fig.4.Variation of CBLs for CCSs reinforced by CNTs with UD- and XD-types distribution with and without EFs versus a/h for = 0.28.

    Fig.5.Variation of for CCSs reinforced by CNTs with UD and VD-types distribution with and without T-P-EF versus R1/h for a different

    Fig.6.Variation of CBLs for UD,VD and XD-CCSs with and without T-P-EF within two different shell theories versus the semi-vertex angle, γ, for the different .

    Fig.7.Variation of CBLs for UD and VD-CCSs with and without T-P-EF in the framework of two different shell theories versus the semi-vertex angle, γ, for the different.

    6.Conclusions

    In this study the buckling analysis of CCSs reinforced with CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the T-P-EF.The governing equations of CCSs reinforced by CNTs are derived in the framework of the FSDST that includes shell-foundation interaction.The governing equations are solved by using the Galerkin procedure to determine the combined buckling loads of the structure selected here.The stability equations are solved by using the Galerkin procedure to determine the CBLs of the structure selected here.

    Numerical analysis led to the following generalized results:

    a) The number of waves corresponding to the values of the CBL reduces with the increase of load-proportional parameter,and this reduce becomes more evident in the presence of the T-P-EF.

    b) The influence of VD and XD-distribution shapes on the CBL is weakened,in the presence of T-P-EF,further the use of FSDST significantly reduces the heterogeneity effect on the combined buckling load compared to the CST.

    c) Although the magnitudes of the CBL for CNT-based CCSs increase, its values decrease with increasing of the loadproportional parameter in the presence of T-P-EF.

    d) In the presence of the T-P-EF,the influence of shear strains on the CBL for CCSs decreases with the increasing of the loadproportional parameter, although it is slow, the highest effect is observed in the CCSs reinforced by CNTs with XD-distribution shape.

    e) The influence of heterogeneity and shear strains on the CBL for CCSs reinforced by CNTs is less pronounced on the T-P-EF compared to the one-parameter EF or W-EF.

    f) The influences of one-or two-parameter EFs on the CBLs for CCSs reinforced by CNTs are more pronounced in the framework of FSDST compared to the CST.

    g) The values of the CBL of composite conical shells reinforced by CNTs with and without T-P-EF decrease for the increasing of the semi-vertex angle.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    The differential operators L(,=1,2,…,4) are defined as

    精品久久久久久久毛片微露脸 | 免费高清在线观看视频在线观看| 国产精品成人在线| 韩国精品一区二区三区| 午夜影院在线不卡| 精品国产国语对白av| 热re99久久国产66热| 精品久久久久久电影网| 国产一卡二卡三卡精品| 最新在线观看一区二区三区 | 狂野欧美激情性xxxx| 国产精品一区二区在线观看99| 欧美激情 高清一区二区三区| 国产xxxxx性猛交| 欧美黑人欧美精品刺激| 亚洲黑人精品在线| 日韩伦理黄色片| 两人在一起打扑克的视频| 亚洲精品久久久久久婷婷小说| 免费女性裸体啪啪无遮挡网站| 男人舔女人的私密视频| 两个人看的免费小视频| 亚洲五月婷婷丁香| 大陆偷拍与自拍| 99国产精品免费福利视频| 人妻 亚洲 视频| 岛国毛片在线播放| 18在线观看网站| 成人午夜精彩视频在线观看| 成年美女黄网站色视频大全免费| 搡老岳熟女国产| 狠狠精品人妻久久久久久综合| 啦啦啦中文免费视频观看日本| 亚洲激情五月婷婷啪啪| 欧美 日韩 精品 国产| 亚洲成人手机| 精品一区在线观看国产| 国产av国产精品国产| 亚洲一区中文字幕在线| 一级毛片我不卡| 国产高清国产精品国产三级| 亚洲激情五月婷婷啪啪| 免费在线观看视频国产中文字幕亚洲 | 日本黄色日本黄色录像| tube8黄色片| 色婷婷久久久亚洲欧美| 手机成人av网站| 久久ye,这里只有精品| 天天操日日干夜夜撸| 国产免费福利视频在线观看| 国产亚洲欧美在线一区二区| 亚洲av片天天在线观看| 成年人黄色毛片网站| 视频区欧美日本亚洲| 国产xxxxx性猛交| 欧美亚洲日本最大视频资源| 女警被强在线播放| 国产欧美日韩综合在线一区二区| 精品人妻在线不人妻| 久久人人爽人人片av| 男女高潮啪啪啪动态图| 国产精品 欧美亚洲| 99国产精品免费福利视频| av有码第一页| 伊人亚洲综合成人网| bbb黄色大片| 日韩av免费高清视频| 精品少妇内射三级| 国产精品99久久99久久久不卡| 男人爽女人下面视频在线观看| 国产精品一区二区在线观看99| 精品少妇一区二区三区视频日本电影| 色视频在线一区二区三区| 亚洲国产欧美在线一区| 成年美女黄网站色视频大全免费| 大陆偷拍与自拍| 婷婷色麻豆天堂久久| www.av在线官网国产| 精品人妻一区二区三区麻豆| 91成人精品电影| 女人爽到高潮嗷嗷叫在线视频| av福利片在线| 老司机影院毛片| 亚洲欧美色中文字幕在线| 婷婷成人精品国产| 亚洲精品国产区一区二| 91精品国产国语对白视频| 欧美精品一区二区免费开放| 亚洲成国产人片在线观看| 日本wwww免费看| 中国美女看黄片| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美一区二区三区国产| 国产成人91sexporn| 999久久久国产精品视频| 91老司机精品| 日韩中文字幕视频在线看片| 爱豆传媒免费全集在线观看| 男男h啪啪无遮挡| 秋霞在线观看毛片| 日韩欧美一区视频在线观看| 在线看a的网站| 国产成人免费观看mmmm| 美国免费a级毛片| 成人国产一区最新在线观看 | 国产精品一区二区在线不卡| 久久久精品免费免费高清| 精品国产超薄肉色丝袜足j| av电影中文网址| 免费高清在线观看视频在线观看| 久久久久久久久久久久大奶| 国产精品一国产av| 又大又黄又爽视频免费| 婷婷色麻豆天堂久久| 91精品伊人久久大香线蕉| 精品国产一区二区久久| 麻豆av在线久日| 精品国产超薄肉色丝袜足j| 建设人人有责人人尽责人人享有的| 制服人妻中文乱码| 一二三四在线观看免费中文在| 好男人电影高清在线观看| 99国产精品免费福利视频| 国产精品一区二区在线观看99| 18禁国产床啪视频网站| 久久精品久久久久久噜噜老黄| 久久久久国产精品人妻一区二区| 男女边吃奶边做爰视频| av片东京热男人的天堂| 色婷婷av一区二区三区视频| 精品少妇久久久久久888优播| 亚洲精品成人av观看孕妇| 日韩精品免费视频一区二区三区| 乱人伦中国视频| 国产在视频线精品| 亚洲精品av麻豆狂野| 一级毛片黄色毛片免费观看视频| 亚洲国产毛片av蜜桃av| av在线播放精品| 日本av手机在线免费观看| 黄色片一级片一级黄色片| 欧美黑人欧美精品刺激| 高清视频免费观看一区二区| 中文乱码字字幕精品一区二区三区| 亚洲视频免费观看视频| 国产视频一区二区在线看| 日韩免费高清中文字幕av| 久久久久久久精品精品| 国产精品 欧美亚洲| 久9热在线精品视频| 久久久精品94久久精品| 亚洲精品一卡2卡三卡4卡5卡 | 精品少妇黑人巨大在线播放| 国产成人一区二区在线| 久久国产精品影院| 国产av国产精品国产| 久久人人爽av亚洲精品天堂| 久久国产精品人妻蜜桃| 两个人看的免费小视频| 伦理电影免费视频| 午夜日韩欧美国产| 妹子高潮喷水视频| 亚洲欧美中文字幕日韩二区| 蜜桃国产av成人99| 美女高潮到喷水免费观看| 日本色播在线视频| 日本猛色少妇xxxxx猛交久久| 黑丝袜美女国产一区| avwww免费| 亚洲色图综合在线观看| 色视频在线一区二区三区| 日本av手机在线免费观看| 日日爽夜夜爽网站| 人人澡人人妻人| 久久青草综合色| 热99国产精品久久久久久7| 狂野欧美激情性bbbbbb| 国产1区2区3区精品| 欧美日韩av久久| 纯流量卡能插随身wifi吗| 欧美黑人精品巨大| 视频在线观看一区二区三区| 中文字幕av电影在线播放| 国产成人影院久久av| 国产在线视频一区二区| 热99久久久久精品小说推荐| 1024香蕉在线观看| 亚洲av国产av综合av卡| 免费少妇av软件| 色精品久久人妻99蜜桃| 老鸭窝网址在线观看| 日韩av在线免费看完整版不卡| 精品熟女少妇八av免费久了| 啦啦啦在线免费观看视频4| 日本猛色少妇xxxxx猛交久久| 99久久99久久久精品蜜桃| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 国产又色又爽无遮挡免| 欧美人与善性xxx| 看免费成人av毛片| 亚洲国产欧美一区二区综合| 久久久国产精品麻豆| 天天添夜夜摸| 亚洲av电影在线进入| 亚洲欧美精品自产自拍| 人成视频在线观看免费观看| 婷婷色麻豆天堂久久| 久久久国产精品麻豆| 十八禁人妻一区二区| 成人亚洲精品一区在线观看| 丝袜美腿诱惑在线| 久久久久久久久久久久大奶| 亚洲欧美精品自产自拍| 人体艺术视频欧美日本| 欧美在线黄色| 欧美黑人精品巨大| 在线观看免费视频网站a站| 国产午夜精品一二区理论片| 免费高清在线观看日韩| 菩萨蛮人人尽说江南好唐韦庄| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三区在线| 国产日韩欧美在线精品| 日本五十路高清| 国产三级黄色录像| 一区二区三区精品91| 一区在线观看完整版| 国产熟女午夜一区二区三区| 美女主播在线视频| 老司机午夜十八禁免费视频| 色婷婷av一区二区三区视频| 精品一区在线观看国产| 国产精品久久久久成人av| 久久久国产欧美日韩av| 超色免费av| 一本大道久久a久久精品| 国产日韩欧美在线精品| 男女下面插进去视频免费观看| 欧美97在线视频| 人人妻人人添人人爽欧美一区卜| 天天躁日日躁夜夜躁夜夜| a 毛片基地| 精品福利观看| 亚洲精品一区蜜桃| 精品国产一区二区三区四区第35| 一二三四社区在线视频社区8| 欧美日韩亚洲高清精品| 操出白浆在线播放| 中文字幕人妻熟女乱码| 久久精品久久久久久噜噜老黄| 又粗又硬又长又爽又黄的视频| 夜夜骑夜夜射夜夜干| 国产男女内射视频| 少妇人妻 视频| 国产精品一二三区在线看| kizo精华| 日韩一本色道免费dvd| 久久人人爽av亚洲精品天堂| 国产亚洲欧美精品永久| 亚洲精品一卡2卡三卡4卡5卡 | 国产高清videossex| 日韩 亚洲 欧美在线| 黄色a级毛片大全视频| 欧美成人午夜精品| 一区二区日韩欧美中文字幕| 日本一区二区免费在线视频| 一级毛片我不卡| 国产淫语在线视频| 一区在线观看完整版| 一本综合久久免费| 超碰97精品在线观看| 亚洲精品久久成人aⅴ小说| 国产精品二区激情视频| 超色免费av| 精品国产一区二区三区久久久樱花| 日本vs欧美在线观看视频| 性少妇av在线| 国产av国产精品国产| 91字幕亚洲| 国产精品久久久人人做人人爽| 一本一本久久a久久精品综合妖精| 国产成人一区二区三区免费视频网站 | av视频免费观看在线观看| 国产一区二区三区av在线| 热re99久久国产66热| 成年人午夜在线观看视频| 黄片小视频在线播放| 久久这里只有精品19| 久热爱精品视频在线9| 国产主播在线观看一区二区 | 制服诱惑二区| 久久人人爽av亚洲精品天堂| 国产人伦9x9x在线观看| 三上悠亚av全集在线观看| 久久国产精品大桥未久av| 欧美国产精品一级二级三级| 在线观看免费高清a一片| 亚洲国产最新在线播放| 亚洲专区国产一区二区| 天天影视国产精品| 日韩熟女老妇一区二区性免费视频| 男的添女的下面高潮视频| 久久ye,这里只有精品| 亚洲一区中文字幕在线| 国产xxxxx性猛交| a级毛片黄视频| 久久天堂一区二区三区四区| 国产熟女午夜一区二区三区| 下体分泌物呈黄色| 午夜福利视频在线观看免费| a级毛片在线看网站| xxx大片免费视频| 精品国产超薄肉色丝袜足j| 91成人精品电影| 十八禁人妻一区二区| 青青草视频在线视频观看| 美国免费a级毛片| 久久天堂一区二区三区四区| 黄色片一级片一级黄色片| 波多野结衣一区麻豆| 人人澡人人妻人| 国产在视频线精品| 亚洲三区欧美一区| 中文字幕另类日韩欧美亚洲嫩草| 国产欧美亚洲国产| 十八禁人妻一区二区| 欧美激情极品国产一区二区三区| 9色porny在线观看| av视频免费观看在线观看| 成人国产av品久久久| 欧美日本中文国产一区发布| 99国产精品一区二区蜜桃av | 男女无遮挡免费网站观看| 亚洲成人国产一区在线观看 | 亚洲精品av麻豆狂野| 一本—道久久a久久精品蜜桃钙片| 色网站视频免费| 尾随美女入室| 男女无遮挡免费网站观看| 亚洲av综合色区一区| 欧美亚洲日本最大视频资源| 国产精品一区二区精品视频观看| 久久精品亚洲熟妇少妇任你| 又大又黄又爽视频免费| 久久国产精品大桥未久av| av有码第一页| 国产福利在线免费观看视频| 精品一区二区三卡| 国产成人av教育| 久久人妻福利社区极品人妻图片 | 国产日韩欧美亚洲二区| 日日爽夜夜爽网站| √禁漫天堂资源中文www| 国产免费一区二区三区四区乱码| h视频一区二区三区| 这个男人来自地球电影免费观看| 黄色视频在线播放观看不卡| 免费在线观看日本一区| 中文乱码字字幕精品一区二区三区| 美女中出高潮动态图| 99国产精品一区二区蜜桃av | 在线av久久热| 黄色怎么调成土黄色| 国产成人欧美| 黄色一级大片看看| 大香蕉久久成人网| 可以免费在线观看a视频的电影网站| 日日爽夜夜爽网站| 每晚都被弄得嗷嗷叫到高潮| 久久久欧美国产精品| 国产成人av教育| av电影中文网址| 国产真人三级小视频在线观看| 亚洲av美国av| 女警被强在线播放| 国精品久久久久久国模美| 国产一区有黄有色的免费视频| 午夜福利免费观看在线| 亚洲国产av影院在线观看| 99久久99久久久精品蜜桃| av欧美777| 美女主播在线视频| 国产在视频线精品| 欧美变态另类bdsm刘玥| 精品一区二区三区四区五区乱码 | 精品高清国产在线一区| 天天影视国产精品| 男的添女的下面高潮视频| 在线观看免费高清a一片| 亚洲国产看品久久| 日韩一本色道免费dvd| 高清不卡的av网站| 精品亚洲乱码少妇综合久久| 国产伦人伦偷精品视频| 人人澡人人妻人| 免费黄频网站在线观看国产| 1024视频免费在线观看| 久久 成人 亚洲| av线在线观看网站| 欧美日韩综合久久久久久| 日本vs欧美在线观看视频| 亚洲五月色婷婷综合| 久久精品人人爽人人爽视色| 一本色道久久久久久精品综合| 97精品久久久久久久久久精品| 90打野战视频偷拍视频| 国产精品欧美亚洲77777| 老汉色∧v一级毛片| 国产成人精品久久久久久| 国产日韩一区二区三区精品不卡| 成年av动漫网址| 国产成人精品久久久久久| 免费一级毛片在线播放高清视频 | 久久毛片免费看一区二区三区| 亚洲国产av影院在线观看| 中文字幕精品免费在线观看视频| 精品亚洲乱码少妇综合久久| 99国产精品一区二区蜜桃av | 国产国语露脸激情在线看| 精品少妇内射三级| 国产精品国产三级国产专区5o| 国产xxxxx性猛交| 狠狠婷婷综合久久久久久88av| www.精华液| 亚洲国产成人一精品久久久| 国产亚洲精品久久久久5区| 成人三级做爰电影| 一二三四在线观看免费中文在| 久久鲁丝午夜福利片| 大码成人一级视频| 精品少妇一区二区三区视频日本电影| 亚洲国产日韩一区二区| bbb黄色大片| 精品福利永久在线观看| 亚洲情色 制服丝袜| 妹子高潮喷水视频| 高清黄色对白视频在线免费看| 亚洲成国产人片在线观看| 美女国产高潮福利片在线看| 黑人巨大精品欧美一区二区蜜桃| 免费人妻精品一区二区三区视频| 无限看片的www在线观看| 婷婷色av中文字幕| cao死你这个sao货| 真人做人爱边吃奶动态| 久久亚洲国产成人精品v| 成年女人毛片免费观看观看9 | 免费久久久久久久精品成人欧美视频| 人人妻,人人澡人人爽秒播 | 亚洲国产欧美在线一区| 免费在线观看影片大全网站 | 黄色片一级片一级黄色片| 一区二区三区激情视频| 亚洲黑人精品在线| 咕卡用的链子| 高清视频免费观看一区二区| 国产成人av教育| 一区二区三区乱码不卡18| 亚洲男人天堂网一区| 电影成人av| 久久久久精品国产欧美久久久 | 亚洲欧洲国产日韩| 欧美精品啪啪一区二区三区 | 一本综合久久免费| 在线观看一区二区三区激情| 久久久久久久久久久久大奶| 国产免费视频播放在线视频| 视频在线观看一区二区三区| 日本午夜av视频| 在线 av 中文字幕| 午夜福利,免费看| 18禁黄网站禁片午夜丰满| 免费日韩欧美在线观看| 黄片小视频在线播放| 色婷婷av一区二区三区视频| 日韩一区二区三区影片| 欧美激情高清一区二区三区| 制服人妻中文乱码| av天堂在线播放| 久久性视频一级片| 黄片播放在线免费| 新久久久久国产一级毛片| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 国产又爽黄色视频| 午夜免费观看性视频| 老司机深夜福利视频在线观看 | 十八禁网站网址无遮挡| 女人久久www免费人成看片| 精品国产乱码久久久久久小说| 欧美 亚洲 国产 日韩一| 免费高清在线观看日韩| 国产男女内射视频| 欧美成人午夜精品| 51午夜福利影视在线观看| 亚洲国产欧美网| 日韩电影二区| 婷婷色av中文字幕| 欧美激情高清一区二区三区| 亚洲色图综合在线观看| 一区二区日韩欧美中文字幕| 国产激情久久老熟女| 国产免费又黄又爽又色| 男人操女人黄网站| www日本在线高清视频| 黄色一级大片看看| 亚洲第一av免费看| 大陆偷拍与自拍| 精品高清国产在线一区| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲专区中文字幕在线| 最新的欧美精品一区二区| 精品久久久精品久久久| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 亚洲av电影在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 电影成人av| 亚洲精品日本国产第一区| 美女脱内裤让男人舔精品视频| 国产1区2区3区精品| 宅男免费午夜| 亚洲精品国产一区二区精华液| 91成人精品电影| 日本wwww免费看| av片东京热男人的天堂| 国产成人欧美| 精品亚洲成a人片在线观看| 国产成人一区二区在线| 91国产中文字幕| 久久99精品国语久久久| 超碰成人久久| 赤兔流量卡办理| 欧美一级毛片孕妇| 色在线成人网| 国产高清有码在线观看视频 | 黄频高清免费视频| 亚洲自偷自拍图片 自拍| 99国产精品一区二区蜜桃av| 美国免费a级毛片| 成人国产综合亚洲| 极品教师在线免费播放| 午夜亚洲福利在线播放| 亚洲国产欧美网| 亚洲真实伦在线观看| 一本一本综合久久| 午夜激情av网站| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| av免费在线观看网站| 天天添夜夜摸| 国产成人av教育| 老司机在亚洲福利影院| 午夜两性在线视频| 欧美一区二区精品小视频在线| 嫁个100分男人电影在线观看| 成人国产综合亚洲| 黄色视频,在线免费观看| 看黄色毛片网站| 长腿黑丝高跟| www.精华液| 在线视频色国产色| 首页视频小说图片口味搜索| 一级a爱视频在线免费观看| 两个人视频免费观看高清| 美女国产高潮福利片在线看| 国产一区二区在线av高清观看| 精品熟女少妇八av免费久了| 1024手机看黄色片| 午夜福利视频1000在线观看| avwww免费| 在线观看免费日韩欧美大片| 亚洲一区中文字幕在线| 日本精品一区二区三区蜜桃| 久久伊人香网站| 成人国产一区最新在线观看| 1024手机看黄色片| 妹子高潮喷水视频| 婷婷精品国产亚洲av在线| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 欧美性猛交╳xxx乱大交人| 精品一区二区三区av网在线观看| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 亚洲国产高清在线一区二区三 | 最近最新中文字幕大全免费视频| 国产乱人伦免费视频| 国内毛片毛片毛片毛片毛片| 性欧美人与动物交配| 免费在线观看日本一区| 国产亚洲欧美在线一区二区| av片东京热男人的天堂| 精品久久久久久,| 国产成人一区二区三区免费视频网站| 国产野战对白在线观看| 亚洲国产欧美一区二区综合| 999久久久精品免费观看国产| av在线天堂中文字幕| 看免费av毛片| 久久中文字幕一级| 看黄色毛片网站| 99国产精品一区二区蜜桃av| 黑人巨大精品欧美一区二区mp4| 亚洲五月天丁香| 国产一区二区三区视频了| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区| www.www免费av| 亚洲国产高清在线一区二区三 | 香蕉国产在线看| 老熟妇乱子伦视频在线观看|