程敏,張靜,曹鵬博,周鋼橋1,,3
研究報告
缺氧相關(guān)長鏈非編碼RNA作為肝癌預(yù)后預(yù)測標(biāo)志物的潛在價值
程敏1,3,張靜4,曹鵬博2,周鋼橋1,2,3
1. 南京醫(yī)科大學(xué)公共衛(wèi)生學(xué)院流行病學(xué)系,南京 211166 2. 軍事科學(xué)院軍事醫(yī)學(xué)研究院輻射醫(yī)學(xué)研究所,蛋白質(zhì)組學(xué)國家重點實驗室,國家蛋白質(zhì)科學(xué)中心,北京 100850 3. 南京醫(yī)科大學(xué)全球健康中心,南京 211166 4. 河北大學(xué)生命科學(xué)學(xué)院,保定 071002
肝細(xì)胞癌(hepatocellular carcinoma, 簡稱肝癌)是一種常見的惡性腫瘤。缺氧是肝癌等實體腫瘤的一個重要特征,同時也是誘導(dǎo)腫瘤惡性進(jìn)展的重要因素。然而,肝癌缺氧相關(guān)的長鏈非編碼RNA(long non-coding RNA,lncRNA)的鑒定及其在臨床生存預(yù)后等方面的價值仍未得到系統(tǒng)的研究。本研究旨在通過肝癌轉(zhuǎn)錄組的整合分析鑒定肝癌缺氧相關(guān)的lncRNA,并評估其在肝癌預(yù)后中的價值?;诎┌Y基因組圖譜(The Cancer Genome Atlas, TCGA)計劃的肝癌轉(zhuǎn)錄組數(shù)據(jù)的整合分析,初步鑒定到233個缺氧相關(guān)的候選lncRNA。進(jìn)一步篩選具有預(yù)后價值的候選者,基于其中12個缺氧相關(guān)lncRNA (、、、、、、、、、、和)建立了肝癌預(yù)后風(fēng)險模型。Cox比例風(fēng)險回歸分析顯示,基于該模型計算的缺氧風(fēng)險評分作為肝癌患者新的獨立預(yù)后預(yù)測指標(biāo),優(yōu)于傳統(tǒng)的臨床病理因素?;蚣患治鲲@示,缺氧風(fēng)險評分反映了細(xì)胞增殖相關(guān)通路的活化和脂代謝過程的失活。綜上所述,本研究構(gòu)建了一個基于缺氧相關(guān)lncRNA的風(fēng)險評分模型,可以作為肝癌患者預(yù)后預(yù)測的候選指標(biāo),并初步提示了這些缺氧相關(guān)的lncRNA在肝癌防治中的重要作用。
肝細(xì)胞癌;缺氧;長鏈非編碼RNA;預(yù)后模型
肝癌是全球最常見的惡性腫瘤之一,其在男性和女性中的死亡率分別位居第二和第六位[1]。近年來針對肝癌的早期診斷和臨床治療策略均取得很大進(jìn)展,但肝癌的長期預(yù)后仍然較差。因此,建立肝癌復(fù)發(fā)和轉(zhuǎn)移風(fēng)險等相關(guān)的預(yù)后預(yù)測模型有利于指導(dǎo)臨床治療。以往研究顯示,腫瘤淋巴結(jié)轉(zhuǎn)移分期和血管侵犯等傳統(tǒng)臨床病理指標(biāo)有助于預(yù)測肝癌患者的預(yù)后;然而,由于肝癌巨大的異質(zhì)性,這些傳統(tǒng)指標(biāo)的預(yù)測效果仍遠(yuǎn)不能令人滿意。
實體腫瘤微環(huán)境中的氧分子含量水平較低,被稱為缺氧(hypoxia)。已有大量研究報道,實體腫瘤微環(huán)境的缺氧與包括肝癌在內(nèi)的多種癌癥的進(jìn)展密切相關(guān)[2,3]。因此,針對肝癌微環(huán)境缺氧相關(guān)的分子機(jī)制研究受到關(guān)注。lncRNA是一種長度超過200個核苷酸、缺乏開放閱讀框(open reading frame, ORF)、蛋白質(zhì)編碼能力較弱的RNA。以往多項研究已表明,lncRNA可參與腫瘤發(fā)生發(fā)展的多種生物學(xué)過程[4,5]。近年來,越來越多的與缺氧應(yīng)答相關(guān)的lncRNA被陸續(xù)發(fā)現(xiàn)。缺氧可以通過缺氧誘導(dǎo)因子(hypoxia- inducible factor 1-alpha,)轉(zhuǎn)錄激活多個參與腫瘤發(fā)生發(fā)展的lncRNA,例如[6]、[7]、[8]、[9]和[10]等。此外,也有大量研究發(fā)現(xiàn)lncRNA可以通過調(diào)控的表達(dá)或活性促進(jìn)腫瘤的進(jìn)展。例如,Dong等[11]發(fā)現(xiàn)lncRNA可通過參與調(diào)控miR-98-5p-STAT3-HIF-1α正反饋環(huán)路而促進(jìn)卵巢癌的增殖、凋亡和轉(zhuǎn)移。lncRNA可通過激活PKM2-HIF-1α糖酵解級聯(lián)反應(yīng)促進(jìn)腫瘤細(xì)胞的代謝適應(yīng),以增加細(xì)胞在葡萄糖饑餓和缺氧應(yīng)激下的存活能力[12]。然而,目前關(guān)于肝癌缺氧相關(guān)lncRNA的鑒定及其在臨床預(yù)后方面的價值仍未得到系統(tǒng)研究。
基于與缺氧相關(guān)的轉(zhuǎn)錄組表達(dá)特征,本研究對TCGA計劃(The Cancer Genome Atlas)中的肝癌組織樣本進(jìn)行了缺氧評分,基于此評分系統(tǒng)篩選出233個與缺氧相關(guān)的候選lncRNA,繼而基于其中12個lncRNA構(gòu)建了肝癌預(yù)后模型,并系統(tǒng)評價了此模型的預(yù)測能力。此模型為肝癌患者的預(yù)后風(fēng)險分層、預(yù)后評估及指導(dǎo)臨床治療等提供了新的參考指標(biāo),具備潛在的應(yīng)用價值。
從TCGA數(shù)據(jù)庫(https://portal.gdc.cancer.gov/)下載獲得肝癌患者(包括374個肝癌腫瘤組織和50個鄰近非腫瘤組織)的mRNA和lncRNA表達(dá)譜數(shù)據(jù)和臨床信息。該表達(dá)譜數(shù)據(jù)包括20530個蛋白編碼基因和15093個lncRNA基因。基于這些數(shù)據(jù)集建立了預(yù)后風(fēng)險評分模型,并對367例隨訪信息完整的患者進(jìn)行了后續(xù)分析。數(shù)據(jù)集的詳細(xì)信息見附表1。從基因表達(dá)綜合數(shù)據(jù)庫(gene expression omnibus, GEO)獲得另一個公開的肝癌lncRNA表達(dá)譜數(shù)據(jù)集(編號:GSE40144;包括59例病例)作為獨立的驗證隊列,用以評估建立的預(yù)后風(fēng)險模型。從TCGA數(shù)據(jù)庫下載肝癌的拷貝數(shù)變異數(shù)據(jù)集,從UCSC Xena獲取了患者相應(yīng)的臨床信息。
首先,收集了文獻(xiàn)報道的與腫瘤缺氧相關(guān)的蛋白編碼基因集[13, 14]。其次,基于TCGA中肝癌的癌組織基因表達(dá)數(shù)據(jù)集,利用基因集變異分析(gene set variation analysis, GSVA)[15]計算每個腫瘤樣本的缺氧評分。最后,依據(jù)缺氧評分與lncRNA表達(dá)水平的Spearman相關(guān)性來篩選缺氧相關(guān)的候選lncRNA。以相關(guān)系數(shù)||>0.35和<10–6為標(biāo)準(zhǔn),共鑒定到233個肝癌缺氧相關(guān)的候選lncRNA。
基于TCGA肝癌隊列分兩步構(gòu)建預(yù)后風(fēng)險評分模型。首先,對每個候選lncRNA進(jìn)行單因素Cox回歸分析,以篩選與肝癌總體生存期(overall survival, OS)相關(guān)的lncRNA,其中<5×10–4的lncRNA作為候選對象。其次,采用多因素Cox分析,以建立基于Akaike信息標(biāo)準(zhǔn)(Akaike information criterion, AIC;AIC = 1314.509)的最佳預(yù)后風(fēng)險模型。最后,根據(jù)下列公式計算每個患者的風(fēng)險評分:風(fēng)險評分(risk score) = Coef(lncRNA1) × Expr(lncRNA1) + Coef(lncRNA2) × Expr(lncRNA2) + …… + Coef(lncRNAn) × Expr(lncRNAn)。其中,Expr(lncRNAn)代表某一特定lncRNA的表達(dá)水平,Coef(lncRNAn)代表lncRNA多因素Cox分析中的系數(shù)。以TCGA肝癌隊列中患者的總體風(fēng)險評分的中位數(shù)為界,將患者劃分為高風(fēng)險組和低風(fēng)險組;采用單因素和多因素Cox回歸分析評估該風(fēng)險模型對患者總體生存風(fēng)險的預(yù)測能力。在驗證隊列中,同樣基于以上模型計算每個患者的風(fēng)險評分,然后以患者總體風(fēng)險評分的中位數(shù)為界,將隊列中的患者劃分為高風(fēng)險組和低風(fēng)險組,進(jìn)而采用多因素Cox回歸分析評估該風(fēng)險模型對患者總體生存風(fēng)險的預(yù)測能力。
為了綜合評價預(yù)后風(fēng)險評分模型,將TCGA肝癌患者按照性別、年齡和腫瘤分期進(jìn)行分層后評估風(fēng)險評分與患者總體生存期的關(guān)系。在生存分析中,首先依據(jù)每個臨床參數(shù)將患者分成兩組[16],然后按照風(fēng)險評分(以中位數(shù)分組)將患者進(jìn)一步分為高風(fēng)險組和低風(fēng)險組,比較兩組間生存期的差異。此外,采用多因素Cox回歸構(gòu)建列線圖(nomogram)來量化患者的生存風(fēng)險,進(jìn)而預(yù)測患者的臨床預(yù)后。分析中納入的臨床參數(shù)包括性別、年齡、腫瘤分期和基于預(yù)測模型計算的風(fēng)險評分。采用R中的rms包來繪制列線圖,同時采用校準(zhǔn)曲線(calibration curve)來評價該模型預(yù)測患者生存的準(zhǔn)確性[17]。此外,還采用時間依賴的受試者工作特征(receiver opera-ting characteristic, ROC)曲線評估該風(fēng)險模型在預(yù)測患者預(yù)后方面的能力[18]。
采用基因集富集分析(gene set enrichment analysis, GSEA)[19]對高、低風(fēng)險組(以中位數(shù)分組)進(jìn)行富集分析,鑒定與缺氧生存風(fēng)險相關(guān)的信號通路。采用的參考基因集為MsigDB(7.2版本)中的GO(Gene Ontology)基因集,樣本置換檢驗1000次,< 0.05作為顯著性的評價標(biāo)準(zhǔn)。采用enrichplot[20]包對富集的基因集進(jìn)行聚類分析。
人正常肝細(xì)胞系L02,人肝癌細(xì)胞系HepG2、HCCLM3和Huh7均來自本實驗室細(xì)胞庫。細(xì)胞培養(yǎng)實驗所用培養(yǎng)基均為含10% FBS和1%青、鏈霉素雙抗的DMEM。L02、HepG2、HCCLM3和Huh7細(xì)胞培養(yǎng)條件均為37℃,5% CO2,并保持一定的濕度。
取對數(shù)生長期細(xì)胞分別接種于兩組6孔板中,當(dāng)細(xì)胞量生長到60%~70%時,將其中1組6孔板細(xì)胞移至氧氣濃度為2%的低氧培養(yǎng)箱中繼續(xù)培養(yǎng)24 h,另一組6孔板細(xì)胞繼續(xù)在二氧化碳培養(yǎng)箱中培養(yǎng)24 h。各組細(xì)胞總RNA的提取根據(jù)康為世紀(jì)生物有限公司的RNA提取試劑盒說明書進(jìn)行。RNA逆轉(zhuǎn)錄反應(yīng)根據(jù)TaKaRa公司的逆轉(zhuǎn)錄試劑盒說明書進(jìn)行。相關(guān)基因的實時定量PCR(quantitative reverse transcription-PCR, RT-qPCR)實驗根據(jù)SYBR Green熒光定量試劑盒說明書進(jìn)行。所有實驗均設(shè)置3個重復(fù)。以肌動蛋白()基因為對照,使用??Ct法對mRNA定量結(jié)果進(jìn)行歸一化處理。對所有PCR實驗均采用熔解曲線分析以排除非特異性擴(kuò)增。PCR引物由華大基因公司合成,引物信息見附表5。
采用2檢驗進(jìn)行分類變量組成的差異比較;采用秩和檢驗計算TCGA肝癌患者不同分組間風(fēng)險評分的差異;采用單因素方差分析計算在TCGA腫瘤及癌旁非腫瘤組織中的差異表達(dá)。采用Spearman相關(guān)分析計算TCGA肝癌組織中基因拷貝數(shù)與其表達(dá)水平的相關(guān)性。采用Kaplan-Meier法進(jìn)行生存期估計;采用Log-rank檢驗評估組間的生存期差異;采用單因素Cox比例風(fēng)險回歸分析計算風(fēng)險比(hazard ratio, HR)和95%置信區(qū)間(confidence interval, CI)。使用GEPIA[21]網(wǎng)站進(jìn)行泛癌腫瘤(TCGA腫瘤樣本)與非腫瘤組織(TCGA癌旁樣本和基因型–組織表達(dá)數(shù)據(jù)庫(genotype-tissue expression,GTEx)樣本)的差異表達(dá)分析和TCGA泛癌腫瘤樣本高低表達(dá)組間的生存分析。主成分分析(princi-pal component analysis, PCA)[22]用于肝癌缺氧相關(guān)lncRNA表達(dá)譜風(fēng)險模型的有效降維、模式識別和高維數(shù)據(jù)的可視化。所有統(tǒng)計學(xué)分析均采用R軟件(版本4.0.2,www.rproject.org)。
為了鑒定肝癌中與缺氧相關(guān)的lncRNA,首先從以往報道的研究[13,14]中獲得了124個與腫瘤缺氧相關(guān)的編碼基因(圖1A,附表2)。其次,基于TCGA肝癌癌組織的基因表達(dá)譜數(shù)據(jù)集,采用GSVA計算每個樣本的缺氧評分。最后,通過缺氧評分與lncRNA表達(dá)水平的Spearman相關(guān)性分析,共鑒定出233個與肝癌缺氧相關(guān)的lncRNA。其中與肝癌缺氧評分呈正相關(guān)的lncRNA有49個,呈負(fù)相關(guān)的有184個(圖1:B和C)。
為了從上述233個lncRNA中進(jìn)一步篩選與肝癌患者預(yù)后相關(guān)的lncRNA,采用單變量Cox比例風(fēng)險分析評估了每個候選lncRNA的預(yù)后價值。結(jié)果顯示,其中20個lncRNA具有顯著的預(yù)后價值(< 0.0005)。隨后,采用多變量Cox分析從中進(jìn)一步鑒定出12個具有獨立預(yù)后價值的候選lncRNA,包括、、、、、、、、、、和(圖2A,附表3)。這12個與缺氧相關(guān)的lncRNA中,包括1個保護(hù)型lncRNA(HR<1)和11個風(fēng)險型lncRNA(HR>1)(圖2A)。
圖1 肝癌中缺氧相關(guān)lncRNA的鑒定
A:肝癌中缺氧相關(guān)lncRNA的鑒定流程。B:火山圖顯示了TCGA肝癌組織中l(wèi)ncRNA的表達(dá)水平與缺氧評分之間的相關(guān)性。缺氧評分基于缺氧相關(guān)基因集由GSVA計算所得。紅色的點代表顯著正相關(guān),藍(lán)色的點代表顯著負(fù)相關(guān)。相關(guān)系數(shù)()和值采用Spearman相關(guān)性分析計算所得。C:TCGA肝癌隊列中缺氧相關(guān)lncRNA表達(dá)水平的熱圖。
隨后,基于這12個lncRNA的表達(dá)水平及其對應(yīng)的多變量Cox回歸分析系數(shù),在TCGA肝癌患者隊列中建立了預(yù)后評分模型:風(fēng)險評分= (0.38976795 × Expr) + (0.405757379 × Expr) + (0.357444336 × Expr) + (0.36846134 × Expr) + (0.473496973 × Expr) + (0.422085606 × Expr) + (0.417047269 × Expr) + (-0.355404128 × Expr) + (0.399819433 × Expr) + (0.391626222 × Expr) + (0.579995375 × Expr) + (0.3673704 × Expr)。進(jìn)一步根據(jù)風(fēng)險評分的中位數(shù)將肝癌患者分為高風(fēng)險組和低風(fēng)險組。這些缺氧相關(guān)的lncRNA在肝癌組織樣本中的表達(dá)水平熱圖顯示,高風(fēng)險組中風(fēng)險型lncRNA表達(dá)上調(diào),而保護(hù)型lncRNA在低風(fēng)險組中高表達(dá)(圖2B)。主成分分析同樣顯示,這些缺氧相關(guān)的lncRNA可以區(qū)分低風(fēng)險組和高風(fēng)險組的肝癌樣本(圖2C)。風(fēng)險評分和生存狀況相關(guān)性分析顯示,風(fēng)險評分越高,患者的死亡率則越高(圖2:D和E)。Kaplan-Meier生存分析顯示,高風(fēng)險組患者的總體生存率顯著低于低風(fēng)險組患者(HR = 2.55,< 0.0001)(圖2F),提示此風(fēng)險評分具有重要的預(yù)后價值。為了驗證此風(fēng)險模型的預(yù)測價值,在另一獨立的肝癌患者隊列(GSE40144)中對此進(jìn)行了驗證[23]?;谌毖跸嚓P(guān)lncRNA風(fēng)險評分的Kaplan-Meier生存分析顯示,高風(fēng)險組患者的死亡率顯著高于低風(fēng)險組患者(HR = 1.93,= 0.015)(圖2G)。
圖2 肝癌缺氧相關(guān)lncRNA預(yù)后模型的構(gòu)建
A:多變量Cox比例風(fēng)險回歸分析。森林圖顯示了候選lncRNA的HR(95% CI)和值。B:熱圖顯示了高風(fēng)險組患者和低風(fēng)險組患者中候選lncRNA的表達(dá)水平。C:主成分分析顯示基于12個候選lncRNA的表達(dá)譜可以顯著區(qū)分低風(fēng)險組和高風(fēng)險組肝癌患者。D:缺氧相關(guān)lncRNA預(yù)后特征的高、低風(fēng)險肝癌患者風(fēng)險評分分布。E:肝癌患者的生存時間與基于缺氧相關(guān)lncRNA構(gòu)建的預(yù)后特征的風(fēng)險評分之間的相關(guān)性。F:Kaplan-Meier生存曲線顯示,TCGA肝癌隊列中基于缺氧相關(guān)lncRNA構(gòu)建的預(yù)后特征的高風(fēng)險評分患者的生存時間顯著短于低風(fēng)險評分患者。G:Kaplan-Meier生存曲線顯示,GSE40144隊列中基于缺氧相關(guān)lncRNA構(gòu)建的預(yù)后特征的高風(fēng)險評分患者的生存時間顯著短于低風(fēng)險評分患者。H:風(fēng)險模型評分和臨床特征的1、3和5年生存預(yù)測能力評價。PC1,主成分1(principal component 1);PC2,主成分2(principal component 2);PC3,主成分3(principal component 3);T,腫瘤大??;N,淋巴結(jié)轉(zhuǎn)移;M,遠(yuǎn)端轉(zhuǎn)移。
為了進(jìn)一步評價風(fēng)險評分預(yù)測肝癌患者短期和長期生存的能力,估算了風(fēng)險評分預(yù)測不同生存期的受試者工作特征曲線下面積(area under the curve, AUC)。結(jié)果顯示,1年、3年和5年生存風(fēng)險評分的AUC分別為0.74、0.70和0.71,顯著優(yōu)于年齡、性別、T(腫瘤大小)分期、N(淋巴結(jié)轉(zhuǎn)移)分期及M(遠(yuǎn)處轉(zhuǎn)移)分期等臨床病理因素的預(yù)測能力(AUC均小于0.67;圖2H),提示該模型能較好地預(yù)測肝癌患者的短期和長期生存狀況。
為了評估上述由12個缺氧相關(guān)lncRNA構(gòu)建的風(fēng)險模型是否具備獨立的預(yù)后預(yù)測價值,對TCGA肝癌患者進(jìn)行了風(fēng)險評分的單因素和多因素生存分析。單因素Cox回歸分析顯示,HR和95% CI分別為2.55和1.78~3.70(= 3.29×10–7)(圖3A)。校正了其他的臨床病理因素后的多因素Cox回歸分析顯示,HR和95% CI分別為2.77和1.68~4.56(= 6.07×10–5) (圖3A)。這些結(jié)果表明,缺氧相關(guān)lncRNA的風(fēng)險模型是獨立于臨床病理因素的最顯著的預(yù)后因素。
為了進(jìn)一步驗證其臨床意義,將TCGA肝癌隊列按臨床病理特征進(jìn)行了分層,并比較不同分組間風(fēng)險評分的差異?;颊叻謩e按年齡(≤60歲>60歲)、性別(女性男性)、T(腫瘤大小)分期(T1和T2T3和T4)進(jìn)行分組。不同年齡患者風(fēng)險評分的秩和檢驗顯示,年輕和老年患者之間的風(fēng)險評分在統(tǒng)計學(xué)上相似(圖3B)。Kaplan-Meier生存分析顯示,老年組(HR = 2.24,= 0.00083)和年輕組(HR = 2.95,< 0.0001)高風(fēng)險患者的總體生存率均顯著低于低風(fēng)險患者(圖3B)。不同性別患者風(fēng)險評分的秩和檢驗顯示,女性患者的風(fēng)險評分和男性患者的風(fēng)險評分在統(tǒng)計學(xué)上相似(圖3C)。該風(fēng)險模型對男性患者的預(yù)后具有預(yù)測價值(HR = 3.51,< 0.0001),而對女性患者則沒有這種預(yù)測價值(HR = 1.34,= 0.30)(圖3C)。此外,不同臨床分期患者的風(fēng)險評分秩和檢驗顯示,臨床分期較高的肝癌患者其風(fēng)險評分(T2、T3和T4期)顯著高于臨床分期較低的肝癌患者(T1期)(圖3D)。T1~T2期患者(HR = 2.12,= 0.0012)和T3~T4期患者(HR = 2.27,= 0.0028)的Kaplan- Meier生存分析均顯示,高風(fēng)險患者的總體生存率顯著低于低風(fēng)險患者(圖3D)??傊@些結(jié)果表明該預(yù)后預(yù)測模型是肝癌患者的一個重要的獨立預(yù)后因素,特別是在男性患者中具有更好的預(yù)測能力。
列線圖是臨床上用于準(zhǔn)確預(yù)測患者生存時間的方法,可根據(jù)列線圖中包含的每個預(yù)后因素的分值計算總評分。為了進(jìn)一步建立可應(yīng)用于預(yù)測肝癌患者總體生存率預(yù)測的直接定量方法,將預(yù)測模型評分和臨床特征參數(shù)進(jìn)行了多因素Cox比例風(fēng)險回歸分析,并構(gòu)建了列線圖(圖4A)。臨床特征參數(shù)包括年齡、性別、T、N和M分期。建立的列線圖顯示,相較于其他臨床特征參數(shù),預(yù)后預(yù)測評分模型貢獻(xiàn)了最大的風(fēng)險值(范圍為0~100)(圖4A),提示此預(yù)測模型在列線圖的所有變量中的作用最為重要。校準(zhǔn)曲線顯示,與參考線相比,實際和預(yù)測的1、3及5年生存率均較一致(圖4:B~D)。這些結(jié)果均提示了建立的肝癌缺氧相關(guān)lncRNA風(fēng)險評分列線圖的準(zhǔn)確性。
為了進(jìn)一步探究肝癌缺氧相關(guān)lncRNA可能參與調(diào)控的生物學(xué)過程,基于TCGA肝癌高風(fēng)險組和低風(fēng)險組樣本的基因表達(dá)數(shù)據(jù)進(jìn)行了GSEA分析。結(jié)果顯示,高風(fēng)險組肝癌顯著富集于與細(xì)胞的分裂增殖相關(guān)的信號通路,如姐妹染色單體分離、染色體組織的負(fù)調(diào)控和核分裂的負(fù)調(diào)控等(圖5A,附表4),提示高風(fēng)險評分反映了增殖信號的異?;罨?。而這些通路的異常活化與腫瘤的發(fā)生發(fā)展密切相關(guān)[24]。相反,低風(fēng)險組肝癌顯著富集于代謝相關(guān)通路,包括脂肪氧化、脂肪酸分解代謝過程、有機(jī)酸分解代謝過程和脂肪酸乙酰氨基甲酸分解代謝過程(圖5A,附表4),提示低風(fēng)險評分的患者保持了相對正常的肝功能。此外,通過enrichplot分析構(gòu)建的網(wǎng)絡(luò)圖的結(jié)果與這些發(fā)現(xiàn)一致:與細(xì)胞周期、代謝和氧化磷酸化相關(guān)的信號通路發(fā)生了異常(圖5B)。總之,這些結(jié)果為未來針對不同風(fēng)險的肝癌患者的個體化治療提供了參考。
圖3 缺氧相關(guān)lncRNA預(yù)后特征與肝癌患者臨床特征的相關(guān)性分析及分層生存分析
A:單因素(左)及多因素(右)Cox比例風(fēng)險回歸分析風(fēng)險模型評分和臨床特征與肝癌患者預(yù)后的關(guān)系。臨床特征包括年齡、性別、T(腫瘤大小)、N(淋巴結(jié)轉(zhuǎn)移)及M(遠(yuǎn)處轉(zhuǎn)移)分期。B~D:相關(guān)性分析分別按(B)年齡(≤60歲>60歲)、(C)性別(男性女性)和(D)T分期(T1和T2T3和T4)將TCGA肝癌樣本分組后比較組間肝癌缺氧相關(guān)風(fēng)險評分的差異,并評估肝癌缺氧相關(guān)風(fēng)險評分在分層后的生存預(yù)后價值。
圖4 基于缺氧相關(guān)lncRNA預(yù)后特征構(gòu)建的列線圖
A:包括缺氧相關(guān)的lncRNA預(yù)后特征風(fēng)險評分、年齡、性別、T、N及M分期等臨床病理參數(shù)在內(nèi)的肝癌患者1、3和5年生存概率預(yù)測的列線圖。B~D:校正曲線顯示了根據(jù)偏倚校正后的預(yù)后列線圖預(yù)測的肝癌患者1年生存概率(B)、3年生存概率(C)和5年生存概率(D)與實際生存率的一致性。
在上述12個與肝癌預(yù)后相關(guān)的lncRNA中,(miR-210宿主基因)在多因素Cox分析中顯示出與不良預(yù)后顯著的相關(guān)性(HR = 2.13,= 0.0030;圖2A)。miR-210是參與缺氧應(yīng)激的重要miRNA,其在多種腫瘤細(xì)胞和腫瘤組織中表達(dá)水平均上調(diào)[25]。作為實體瘤生物標(biāo)志物[26],miR-210可以調(diào)節(jié)腫瘤細(xì)胞的增殖[27]、凋亡[28]和轉(zhuǎn)移[29]。阻斷miR-210-5p可以逆轉(zhuǎn)缺氧誘導(dǎo)的線粒體自噬核心調(diào)節(jié)基因(ATPase family AAA-domain containing protein 3A,)表達(dá)水平的下調(diào),并通過促進(jìn)線粒體自噬增加肝癌細(xì)胞對索拉非尼的敏感性[30]?;诖?,進(jìn)一步評估了在肝癌中潛在的臨床意義。
首先,基于TCGA數(shù)據(jù)集研究了在肝癌組織中的表達(dá)水平變化。結(jié)果顯示,與癌旁非腫瘤肝臟組織相比,在肝癌組織中顯著上調(diào)表達(dá)(圖6A)。泛癌分析顯示,在TCGA大多數(shù)癌癥的癌組織中顯著上調(diào)表達(dá)(圖6B),如腎上腺皮質(zhì)癌(adrenocortical carcinoma, ACC)、腎透明細(xì)胞癌(kidney renal clear cell carcinoma, KIRC)和胰腺癌(pancreatic adenocarcinoma, PAAD)等;在少數(shù)幾種癌種中下調(diào)表達(dá),如急性髓細(xì)胞樣白血病(acute myeloid leukemia, LAML)、食管癌(esophageal carcinoma, ESCA)和皮膚黑色素瘤(skin cutaneous melanoma, SKCM)等。生存分析顯示,的高表達(dá)與肝癌患者的較短生存期顯著相關(guān)(HR = 1.98,= 0.00018;圖6A)。泛癌分析顯示,對腎上腺皮質(zhì)癌、結(jié)腸癌(colon adenocarcinoma, COAD)、腎嫌色細(xì)胞癌(kidney chromophobe, KICH)和胰腺癌也具有生存風(fēng)險的預(yù)測能力(圖6C)。然后,進(jìn)一步探究了在肝癌組織中上調(diào)表達(dá)的潛在機(jī)制。分析了TCGA肝癌組織的基因組拷貝數(shù)變化(copy number alteration, CNA)與的表達(dá)水平的相關(guān)性。結(jié)果顯示,的表達(dá)水平與其拷貝數(shù)顯著正相關(guān)(= 0.13,= 0.013;圖6D),提示的上調(diào)表達(dá)部分受其基因組拷貝數(shù)擴(kuò)增的調(diào)控。最后,評估了的表達(dá)水平和缺氧評分之間的相關(guān)性,結(jié)果顯示兩者呈顯著的正相關(guān)性(= 0.65,< 0.00001;圖6E)。
圖5 基于缺氧相關(guān)lncRNA構(gòu)建的預(yù)后特征的生物學(xué)意義
A:GSEA結(jié)果顯示,高風(fēng)險肝癌患者的細(xì)胞周期相關(guān)信號通路顯著富集,而低風(fēng)險肝癌患者的代謝信號通路顯著富集。根據(jù)肝癌缺氧相關(guān)lncRNA特征風(fēng)險評分將TCGA肝癌隊列中的患者分為高風(fēng)險和低風(fēng)險兩組,并通過GSEA鑒定與風(fēng)險評分相關(guān)的信號通路或生物學(xué)過程。NES和值由GSEA分析所得。B:GSEA顯著富集的信號通路的網(wǎng)絡(luò)圖。圓圈的大小代表了通路中包含的基因的數(shù)量;線的粗細(xì)代表了通路之間共有的基因的數(shù)量。NES,校正后的富集分?jǐn)?shù)(normalized enrichment score)。
為了進(jìn)一步探究是否參與缺氧應(yīng)激,采用qRT-PCR技術(shù)檢測了和其他幾個已被報道參與缺氧應(yīng)激過程的基因的表達(dá)水平。結(jié)果顯示,與常氧條件相比,缺氧條件下[31][32][33]和[34]的表達(dá)均顯著增加(圖6F)。值得注意的是,對TCGA肝癌組織樣本中和的表達(dá)水平進(jìn)行Pearson相關(guān)性分析,發(fā)現(xiàn)兩者呈顯著的正相關(guān)性(= 0.13,= 0.013)(圖6G)。綜上所述,作為miR-210的宿主基因,可能參與了肝癌細(xì)胞的缺氧應(yīng)激過程,進(jìn)而促進(jìn)肝癌的進(jìn)展。
近年來越來越多的研究已表明lncRNA參與了肝癌的進(jìn)展[35,36],為揭示腫瘤的發(fā)生發(fā)展機(jī)理提供了新的視角,也為肝癌的診治提供了新的候選靶點。TNM分期、血管侵犯和血清甲胎蛋白水平等常規(guī)臨床參數(shù)在一定程度上有助于預(yù)測患者的預(yù)后[37~39]。然而,由于肝癌的高度異質(zhì)性,迫切需要鑒定新的預(yù)后生物標(biāo)志物并建立更為準(zhǔn)確的預(yù)后預(yù)測模型。與采用單一的臨床病理參數(shù)相比,整合不同的生物標(biāo)志物并建立預(yù)后模型是預(yù)測腫瘤預(yù)后更為有效的方法。近年來,已經(jīng)有多個基于lncRNA建立的腫瘤預(yù)后模型被報道,包括Li等[40]的11基因模型、Li等[41]的12基因模型和Jin等[42]的6基因模型等。缺氧是實體腫瘤的一個重要特征,在包括肝癌在內(nèi)的多種癌癥進(jìn)展中均發(fā)揮重要作用[43~45]。以往研究顯示,許多與缺氧響應(yīng)相關(guān)的lncRNA參與了缺氧對腫瘤生物學(xué)行為的影響[46]。本研究旨在鑒定與肝癌微環(huán)境缺氧相關(guān)的lncRNA,并建立基于這些lncRNA的肝癌預(yù)后模型。
通過轉(zhuǎn)錄組整合分析鑒定到233個缺氧相關(guān)的lncRNA,并基于其中12個lncRNA建立了肝癌生存風(fēng)險預(yù)測模型。在這些特征性lncRNA中,有多個lncRNA已被報道參與調(diào)控缺氧介導(dǎo)的腫瘤進(jìn)展。例如,缺氧誘導(dǎo)的主效轉(zhuǎn)錄因子可直接與lncRNA啟動子結(jié)合并激活其轉(zhuǎn)錄;同時,通過內(nèi)源性競爭RNA機(jī)制促進(jìn)的表達(dá),從而上調(diào)的表達(dá),在肝癌細(xì)胞中形成一個反饋環(huán)路[47]。lncRNA高表達(dá)是肝癌患者不良預(yù)后的獨立危險因素;通過海綿作用吸附miR-125b-5,促進(jìn)的表達(dá),從而抑制肝癌細(xì)胞的凋亡[48]。此外,可通過靶向miR-103-RAB10軸促進(jìn)胃癌的進(jìn)展[49],并調(diào)控miR-378a-5pSERPINE1軸促進(jìn)結(jié)腸癌細(xì)胞上皮間質(zhì)轉(zhuǎn)化和對奧沙利鉑的耐藥性[50]。本研究顯示,在TCGA的大多數(shù)癌癥中表達(dá)上調(diào)。例如,已有研究報道lncRNA在肝癌中作為癌基因可促進(jìn)肝癌細(xì)胞的增殖、侵襲和遷移[51]??赏ㄟ^調(diào)節(jié)缺氧參與結(jié)直腸腺癌的進(jìn)展[52]。通過HMGA2-TGF-β/Wnt通路抑制miR-337-3p/137,從而促進(jìn)子宮內(nèi)膜癌的進(jìn)展[53]。調(diào)節(jié)miR-874-STAT3軸促進(jìn)非小細(xì)胞肺癌的進(jìn)展[54]。調(diào)控miR-503-5p-TRAF4軸促進(jìn)宮頸癌細(xì)胞的增殖和侵襲[55]。還可通過miR-125b-5p-HK2PKM2軸促進(jìn)胰腺癌細(xì)胞的糖酵解、細(xì)胞增殖和遷移[56]。同時,還被報道可以增強(qiáng)在三陰性乳腺癌中的翻譯,促進(jìn)Warburg效應(yīng)和腫瘤生長[57]。雖然其他特征性lncRNA(包括、、、和)在癌癥中的功能特征尚未有研究報道,但其與肝癌缺氧特征和預(yù)后的顯著相關(guān)性提示這些候選lncRNA值得開展深入的功能和機(jī)制研究。
A:在TCGA肝癌癌組織及癌旁組織中的表達(dá)水平和高表達(dá)組和低表達(dá)組的Kaplan-Meier生存曲線。值通過方差分析進(jìn)行計算。樣本按照的表達(dá)中值分為高表達(dá)和低表達(dá)組。組間差異采用秩和檢驗。B:在TCGA多種癌癥的腫瘤及TCGA和GTEx非腫瘤組織中的表達(dá)水平。值通過方差分析進(jìn)行計算。*:<0.01。C:TCGA泛癌隊列中基于的表達(dá)水平的患者生存分析。HR和值由Cox比例風(fēng)險回歸分析確定。D:TCGA肝癌組織中基因拷貝數(shù)與其表達(dá)水平間的相關(guān)性。采用Spearman相關(guān)分析確定和值。E:TCGA肝癌組織中表達(dá)水平與缺氧評分間的相關(guān)性。采用Spearman相關(guān)分析確定和值。F:缺氧條件下和腫瘤缺氧相關(guān)基因表達(dá)水平顯著增加。分別在常氧和氧氣濃度2%條件下培養(yǎng)24 h。G:TCGA肝癌組織中表達(dá)水平與表達(dá)水平間的相關(guān)性。T,腫瘤樣本;N,癌旁對照樣本;ACC,腎上腺皮質(zhì)癌;BLCA,膀胱尿路上皮癌;BRCA,乳腺浸潤癌;CESC,宮頸鱗癌和腺癌;CHOL,膽管癌;COAD,結(jié)腸癌;DLBC,彌漫性大B細(xì)胞淋巴瘤;ESCA,食管癌;GBM,多形成性膠質(zhì)細(xì)胞瘤;HNSC,頭頸鱗狀細(xì)胞癌;KICH,腎嫌色細(xì)胞癌;KIRC,腎透明細(xì)胞癌;KIRP,腎乳頭狀細(xì)胞癌;LAML,急性髓細(xì)胞樣白血病;LGG,腦低級別膠質(zhì)瘤;LIHC,肝細(xì)胞肝癌;LUAD,肺腺癌;LUSC,肺鱗癌;MESO,間皮瘤;OV,卵巢漿液性囊腺癌;PAAD,胰腺癌;PCPG,嗜鉻細(xì)胞瘤和副神經(jīng)節(jié)瘤;PRAD,前列腺癌;READ,直腸腺癌;SARC,肉瘤;SKCM,皮膚黑色素瘤;STAD,胃癌;TGCT,睪丸癌;THCA,甲狀腺癌;THYM,胸腺癌;UCEC,子宮內(nèi)膜癌;UCS,子宮肉瘤;UVM,葡萄膜黑色素瘤。
本研究也存在一定的局限性。首先,本研究的預(yù)后模型是基于公共數(shù)據(jù)庫的回顧性數(shù)據(jù)集所構(gòu)建,因此,還需要更多的前瞻性的數(shù)據(jù)來驗證其潛在的臨床價值。其次,僅僅考慮單一特征(比如缺氧)來構(gòu)建預(yù)后模型的內(nèi)在弱點是不可避免的,因為肝癌中的許多突出的預(yù)后基因可能已被排除在外。再次,本研究主要基于TCGA的數(shù)據(jù)集,其中大多數(shù)患者是白人或亞洲人,將本研究的發(fā)現(xiàn)拓展到其他種族的患者需要非常謹(jǐn)慎。最后,本研究的所有分析都是描述性的,需要進(jìn)一步的功能實驗來闡明這12個與肝癌缺氧相關(guān)的lncRNA的潛在機(jī)制。
總之,本研究構(gòu)建了一個基于缺氧相關(guān)lncRNA的肝癌患者的預(yù)后預(yù)測模型,該模型初步顯示了較好的臨床應(yīng)用潛力。為了進(jìn)一步證實其預(yù)后預(yù)測效果,該模型未來還需要在更大的隊列中進(jìn)行驗證。
附加材料見文章電子版www.chinagene.cn。
[1] Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012., 2015, 65(2): 87–108.S
[2] Yuen VW, Wong CC. Hypoxia-inducible factors and innate immunity in liver cancer., 2020, 130(10): 5052–5062.
[3] Shimamoto K, Tanimoto K, Fukazawa T, Nakamura H, Kanai A, Bono H, Ono H, Eguchi H, Hirohashi N. GLIS1, a novel hypoxia-inducible transcription factor, promotes breast cancer cell motility via activation of WNT5A., 2020, 41(9): 1184–1194.
[4] Huang JL, Zheng L, Hu YW, Wang Q. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma., 2014, 35(3): 507–514.
[5] Standaert L, Adriaens C, Radaelli E, Van Keymeulen A, Blanpain C, Hirose T, Nakagawa S, Marine JC. The long noncoding RNA Neat1 is required for mammary gland development and lactation., 2014, 20(12): 1844–1849.
[6] Wang Y, Chen WY, Lian JY, Zhang HB, Yu B, Zhang MJ, Wei FQ, Wu JH, Jiang JX, Jia YS, Mo F, Zhang SR, Liang XD, Mou XZ, Tang JM. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α., 2020, 27(2): 695–710.
[7] Wang XW, Li L, Zhao KM, Lin QY, Li HY, Xue XT, Ge WJ, He HJ, Liu D, Xie H, Wu Q, Hu Y. A novel LncRNA HITT forms a regulatory loop with HIF-1α to modulate angiogenesis and tumor growth., 2020, 27(4): 1431–1446.
[8] Zeng Z, Xu FY, Zheng H, Cheng P, Chen QY, Ye Z, Zhong JX, Deng SJ, Liu ML, Huang K, Li Q, Li W, Hu YH, Wang F, Wang CY, Zhao G. LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α., 2019, 9(18): 5298–5314.
[9] Deng SJ, Chen HY, Ye Z, Deng SC, Zhu S, Zeng Z, He C, Liu ML, Huang K, Zhong JX, Xu FY, Li Q, Liu Y, Wang CY, Zhao G. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription., 2018, 37(44): 5811–5828.
[10] Liang YR, Song XJ, Li YM, Chen B, Zhao WJ, Wang LJ, Zhang HW, Liu Y, Han DW, Zhang N, Ma TT, Wang YJ, Ye FZ, Luo D, Li XY, Yang QF. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis., 2020, 19(1): 85.
[11] Dong L, Cao X, Luo Y, Zhang GQ, Zhang DD. A positive feedback loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF- 1α plays a role in the progression of ovarian cancer., 2020, 10: 1713.
[12] Hua Q, Mi BM, Xu F, Wen J, Zhao L, Liu JJ, Huang G. Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis., 2020, 10(11): 4762–4778.
[13] Winter SC, Buffa FM, Silva P, Miller C, Valentine HR, Turley H, Shah KA, Cox GJ, Corbridge RJ, Homer JJ, Musgrove B, Slevin N, Sloan P, Price P, West CM, Harris AL. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers., 2007, 67(7): 3441–3449.
[14] Eustace A, Mani N, Span PN, Irlam JJ, Taylor J, Betts GNJ, Denley H, Miller CJ, Homer JJ, Rojas AM, Hoskin PJ, Buffa FM, Harris AL, Kaanders JHAM, West CML. A 26-gene hypoxia signature predicts benefit from hypoxia- modifying therapy in laryngeal cancer but not bladder cancer., 2013, 19(17): 4879–4888.
[15] H?nzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data., 2013, 14: 7.
[16] Sun ZL, Jing CY, Xiao CT, Li TC. An autophagy-related long non-coding RNA prognostic signature accurately predicts survival outcomes in bladder urothelial carcinoma patients., 2020, 12(15): 15624–15637.
[17] Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation., 2014, 35(29): 1925–1931.
[18] Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks., 2013, 32(30): 5381–5397.
[19] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles., 2005, 102(43): 15545–15550.
[20] Zhang CJ, Zheng YX, Li X, Hu X, Qi F, Luo J. Genome-wide mutation profiling and related risk signature for prognosis of papillary renal cell carcinoma., 2019, 7(18): 427.
[21] Tang FZ, Li CW, Kang BX, Gao G, Li C, Zhang ZM. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses., 2017, 45(W1): W98–W102.
[22] Kim S, Kang D, Huo ZG, Park Y, Tseng GC. Meta- analytic principal component analysis in integrative omics application., 2018, 34(8): 1321–1328.
[23] Tang R, Wu JC, Zheng LM, Li ZR, Zhou KL, Zhang ZS, Xu DF, Chen C. Long noncoding RNA RUSC1-AS-N indicates poor prognosis and increases cell viability in hepatocellular carcinoma., 2018, 22(2): 388–396.
[24] Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy., 2015, 6: 157.
[25] Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. microRNA: emerging therapeutic targets in acute ischemic diseases., 2010, 125(1): 92–104.
[26] Feng S, He AB, Wang DL, Kang B. Diagnostic significance of miR-210 as a potential tumor biomarker of human cancer detection: an updated pooled analysis of 30 articles., 2019, 12: 479–493.
[27] Kim JH, Park SG, Song SY, Kim JK, Sung JH. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2., 2013, 4(4): e588.
[28] Yang W, Sun T, Cao JP, Liu FJ, Tian Y, Zhu W. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro., 2012, 318(8): 944–954.
[29] Ying Q, Liang LH, Guo WJ, Zha RP, Tian Q, Huang SL, Yao J, Ding J, Bao MY, Ge C, Yao M, Li JJ, He XH. Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma., 2011, 54(6): 2064–2075.
[30] Wu H, Wang T, Liu YQ, Li X, Xu SL, Wu CT, Zou HB, Cao MF, Jin GX, Lang JY, Wang B, Liu BH, Luo XL, Xu C. Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent axis., 2020, 39(1): 274.
[31] Ebright RY, Zachariah MA, Micalizzi DS, Wittner BS, Niederhoffer KL, Nieman LT, Chirn B, Wiley DF, Wesley B, Shaw B, Nieblas-Bedolla E, Atlas L, Szabolcs A, Iafrate AJ, Toner M, Ting DT, Brastianos PK, Haber DA, Maheswaran S. HIF1A signaling selectively supports proliferation of breast cancer in the brain., 2020, 11(1): 6311.
[32] Lin YT, Wu KJ. Epigenetic regulation of epithelial- mesenchymal transition: focusing on hypoxia and TGF-β signaling., 2020, 27(1): 39.
[33] Wang XX, Che XF, Yu Y, Cheng Y, Bai M, Yang ZC, Guo QQ, Xie XC, Li DN, Guo M, Hou KZ, Guo WD, Qu XJ, Cao L. Hypoxia-autophagy axis induces VEGFA by peritoneal mesothelial cells to promote gastric cancer peritoneal metastasis through an integrin α5-fibronectin pathway., 2020, 39(1): 221.
[34] Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW, Cortez MA. Altered cancer metabolism in mechanisms of immunotherapy resistance., 2019, 195: 162–171.
[35] Chen BW, Zhou Y, Wei T, Wen L, Zhang YB, Shen SC, Zhang J, Ma T, Chen W, Ni L, Wang Y, Bai XL, Liang TB. lncRNA-POIR promotes epithelial-mesenchymal transition and suppresses sorafenib sensitivity simultaneously in hepatocellular carcinoma by sponging miR-182-5p., 2021, 122(1): 130–142.
[36] Sun Z, Xue SL, Zhang MY, Xu H, Hu XM, Chen SH, Liu YY, Guo MZ, Cui HM. Aberrant NSUN2-mediated m(5)C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma., 2020, 39(45): 6906–6919.
[37] Cai HY, Zhang Y, Zhang HY, Cui C, Li CH, Lu SC. Prognostic role of tumor mutation burden in hepatocellular carcinoma after radical hepatectomy., 2020, 121(6): 1007–1014.
[38] Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors., 2018, 6(1): 157.
[39] Liu GM, Zeng HD, Zhang CY, Xu JW. Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma., 2019, 19: 138.
[40] Li XY, Jin F, Li Y. A novel autophagy-related lncRNA prognostic risk model for breast cancer., 2021, 25(1): 4–14.
[41] Li XY, Li Y, Yu XM, Jin F. Identification and validation of stemness-related lncRNA prognostic signature for breast cancer., 2020, 18(1): 331.
[42] Jin LP, Li CY, Liu T, Wang L. A potential prognostic prediction model of colon adenocarcinoma with recurrence based on prognostic lncRNA signatures., 2020, 14(1): 24.
[43] Niklasson CU, Fredlund E, Monni E, Lindvall JM, Kokaia Z, Hammarlund EU, Bronner ME, Mohlin S. Hypoxia inducible factor-2α importance for migration, proliferation, and self-renewal of trunk neural crest cells., 2021, 250(2): 191–236.
[44] Liu OH, Kiema M, Beter M, Yl?-Herttuala S, Laakkonen JP, Kaikkonen MU. Hypoxia-mediated regulation of histone demethylases affects angiogenesis-associated functions in endothelial cells., 2020, 40(11): 2665–2677.
[45] Renfrow JJ, Soike MH, West JL, Ramkissoon SH, Metheny-Barlow L, Mott RT, Kittel CA, D'agostino Jr RB, Tatter SB, Laxton AW, Frenkel MB, Hawkins GA, Herpai D, Sanders S, Sarkaria JN, Lesser GJ, Debinski W, Strowd RE. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor., 2020, 10(1): 15195.
[46] Yu AJ, Zhao LW, Kang QM, Li J, Chen K, Fu H. Transcription factor HIF1α promotes proliferation, migration, and invasion of cholangiocarcinoma via long noncoding RNA H19/microRNA-612/Bcl-2 axis., 2020, 224: 26–39.
[47] Wang L, Sun LK, Liu RY, Mo HY, Niu YS, Chen TX, Wang YF, Han SS, Tu KS, Liu QG. Long non-coding RNA MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop promotes hepatocellular carcinoma progression., 2021, 40(1): 72.
[48] Hu B, Yang XB, Yang X, Sang XT. LncRNA CYTOR affects the proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by regulating the miR-125b-5p/KIAA1522 axis., 2020, 13(2): 2626–2639.
[49] Wei F, Wang Y, Zhou Y, Li Y. Long noncoding RNA CYTOR triggers gastric cancer progression by targeting miR-103/RAB10., 2021, 53(8): 1044–1054.
[50] Yang JL, Ma Q, Zhang MM, Zhang WF. LncRNA CYTOR drives L-OHP resistance and facilitates the epithelial- mesenchymal transition of colon carcinoma cells via modulating miR-378a-5p/SERPINE1., 2021, 20(14): 1415–1430.
[51] Wang Y, Li WJ, Chen XY, Li Y, Wen PH, Xu F. MIR210HG predicts poor prognosis and functions as an oncogenic lncRNA in hepatocellular carcinoma., 2019, 111: 1297–1301.
[52] He ZY, Dang J, Song AL, Cui X, Ma ZJ, Zhang ZT. Identification of LINC01234 and MIR210HG as novel prognostic signature for colorectal adenocarcinoma., 2019, 234(5): 6769–6777.
[53] Ma J, Kong FF, Yang D, Yang H, Wang CC, Cong R, Ma XX. LncRNA MIR210HG promotes the progression of endometrial cancer by sponging miR-337-3p/137 via the HMGA2-TGF-β/Wnt pathway., 2021, 24: 905–922.
[54] Bu L, Zhang LB, Tian M, Zheng ZB, Tang HJ, Yang QJ. LncRNA MIR210HG facilitates non-small cell lung cancer progression through directly regulation of miR-874/STAT3 axis., 2020, 18(3): 1559325820918052.
[55] Wang AH, Jin CH, Cui GY, Li HY, Wang Y, Yu JJ, Wang RF, Tian XY. MIR210HG promotes cell proliferation and invasion by regulating miR-503-5p/TRAF4 axis in cervical cancer., 2020, 12(4): 3205– 3217.
[56] Yu TZ, Li GP, Wang CG, Gong GQ, Wang LW, Li CY, Chen Y, Wang XL. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis., 2021, 18(12): 2513–2530.
[57] Du Y, Wei N, Ma RL, Jiang SH, Song D. Long noncoding RNA MIR210HG promotes the warburg effect and tumor growth by enhancing HIF-1α translation in triple-negative breast cancer., 2020, 10: 580176.
附表1 TCGA中肝癌患者的臨床信息
Supplementary Table 1 Summary of clinical information of HCC patients in TCGA
特征樣本量(n=367)比例(%) 年齡(歲) > 6019452.9 ≤ 6017347.1 性別 女11932.4 男24867.6 T分類 T1(< 2厘米)18149.3 T2(2~5厘米)9225.1 T3(≥ 5厘米)7821.3 T4(靠近肝臟的血管和/或器官和/或內(nèi)臟腹膜侵犯)133.5 NA30.8 N分類 N0(附近的淋巴結(jié)沒有癌細(xì)胞)24967.8 N1(肝臟附近淋巴結(jié)的癌細(xì)胞)41.1 NA11431.1 M分類 M0(沒有癌細(xì)胞已經(jīng)擴(kuò)散到肝外的跡象)26471.9 M1(癌細(xì)胞存在于身體其他器官,如肺部或骨骼)30.8 NA10027.3
T,腫瘤大?。籒,淋巴結(jié);M,遠(yuǎn)端轉(zhuǎn)移;NA,缺乏數(shù)據(jù)(not available)。
附表2 腫瘤缺氧相關(guān)編碼基因集
Supplementary Table 2 List of the hypoxia-related coding genes in tumors
MTX1ADORA2BAK3ALDOAANGPTL4C20orf20MRPS17PGFPGK1 P4HA1PFKFB4PGAM1PVRSLC16A1SLC2A1TEAD4TPBGTPI1 GAPDGMFBGSSHES2HIG2 IL8KCTD11KRT17PEDS1 PSMA7PSMB7PSMD2PTGFRNPYGLRANRNF24RNPS1RUVBL2 ANLNVEGFLOC56901S100A3B4GALT2VEZTLRP2BPSIP1BCAR1 MGC14560SLC6A10BMS1LANKRD9MGC17624SLC6A8BNIP3C14orf156MGC2408 HOMER1C15orf25MIFSMILEHSPC163CA12MRPL14SNX24IMP-2 NUDT15SPTBKIAA1393LDHALDLRMGC2654MNAT1NDRG1NME1 COL4A5CORO1CCTENDKFZP564D166DPM2EIF2S1PAWRPDZK11PLAU PPARDPPP2CZPPP4R1TFAP2CTIMM23TMEM30BTPD52L2VAPBXPO5 ANLNBNC1C20orf20CA9CDKN3COL4A6DCBLD1ENO1FAM83B GNAI1HIG2KCTD11KRT17LDHAMPRS17P4HA1PGAM1PGK1 AFARP1TUBB2LOC149464S100A10AD-003SLCO1B3CA9CDCA4PLEKHG3 ALDOAFOSL1SDC1SLC16A1SLC2A1TPI1VEGFA
附表3 20個在肝癌中具有潛在預(yù)后價值的缺氧相關(guān)的lncRNAs
Supplementary Table 3 20 hypoxia-associated lncRNAs with prognostic value in HCCs
LncRNARhoHR (95% CI)P類型 AC004816.10.60421.83 (1.29~2.60)0.00076風(fēng)險 AC008622.20.86332.37 (1.66~3.40)< 0.0001風(fēng)險 AC009275.10.60051.82 (1.28~2.59)0.00083風(fēng)險 AC012676.10.75182.12 (1.49~3.02)< 0.0001風(fēng)險 AC015908.3–0.70350.49 (0.35~0.71)0.0001保護(hù) AC020915.20.75232.12 (1.48~3.04)< 0.0001風(fēng)險 AC026401.30.61281.85 (1.30~2.63)0.00068風(fēng)險 AC073573.1–0.60680.55 (0.38~0.78)0.00093保護(hù) AC114803.10.95142.59 (1.81~3.71)< 0.0001風(fēng)險 CYTOR0.79932.22 (1.56~3.18)< 0.0001風(fēng)險 DANCR0.70932.03 (1.43~2.90)< 0.0001風(fēng)險 GIHCG0.73312.08 (1.46~2.97)< 0.0001風(fēng)險 MAFG.DT0.54511.72 (1.22~2.44)0.0022風(fēng)險 MAPKAPK5-AS10.91342.49 (1.73~2.59)< 0.0001風(fēng)險 MIR210HG0.72222.06 (1.44~2.95)< 0.0001風(fēng)險 MIR4435.2HG0.69802.01 (1.41~2.86)0.00011風(fēng)險 MYG1-AS10.53951.72 (1.21~2.43)0.0025風(fēng)險 PRR7-AS10.81262.25 (1.59~3.19)< 0.0001風(fēng)險 SNHG30.62181.86 (1.31~2.65)0.00054風(fēng)險 TMEM220-AS1–0.46730.63 (0.44~0.89)0.0089保護(hù)
LncRNA,長鏈非編碼RNA(long non-coding RNA);,spearman相關(guān)性系數(shù);HR,風(fēng)險比(hazard ratio);CI,可信區(qū)間(confidence interval)。
附表4 基于TCGA中肝癌樣本風(fēng)險評分的GSEA結(jié)果
Supplementary Table 4 GSEA results based on the risk score in HCCs from TCGA
基因集基因集大小NESP GO_RETROGRADE_VESICLE_MEDIATED_TRANSPORT_GOLGI_TO_ER772.340 GO_NEGATIVE_REGULATION_OF_MITOTIC_CELL_CYCLE1981.820 GO_REGULATION_OF_PROTEASOMAL_UBIQUITIN_DEPENDENT_PROTEIN_CATABOLIC_ PROCESS1461.810 GO_POSITIVE_REGULATION_OF_CELL_CYCLE_PROCESS2431.810 GO_NUCLEAR_CHROMOSOME_SEGREGATION2181.810 GO_TUBULIN_BINDING2631.780 GO_MICROTUBULE_BASED_MOVEMENT1991.770 GO_MICROTUBULE3971.770 GO_SPINDLE_MIDZONE271.810.0020 GO_REGULATION_OF_CELL_DIVISION2661.800.0021 GO_NEGATIVE_REGULATION_OF_ORGANELLE_ORGANIZATION3841.770.0021 GO_REGULATION_OF_DNA_DEPENDENT_DNA_REPLICATION411.810.0040 GO_NUCLEAR_UBIQUITIN_LIGASE_COMPLEX421.810.0041 GO_POSITIVE_REGULATION_OF_G1_S_TRANSITION_OF_MITOTIC_CELL_CYCLE241.780.0041 GO_CONDENSED_CHROMOSOME1831.770.0043
續(xù)附表4
基因集基因集大小NESP GO_RECOMBINATIONAL_REPAIR701.780.0063 GO_CONDENSED_CHROMOSOME_CENTROMERIC_REGION941.780.0064 GO_POSITIVE_REGULATION_OF_MITOTIC_NUCLEAR_DIVISION511.770.0064 GO_SPINDLE_ASSEMBLY681.810.0081 GO_HETEROCHROMATIN661.770.0083 GO_CELL_CYCLE_G2_M_PHASE_TRANSITION1321.810.0084 GO_MITOTIC_CELL_CYCLE_CHECKPOINT1381.800.013 GO_SPINDLE_LOCALIZATION381.780.014 GO_POSITIVE_REGULATION_OF_CHROMOSOME_SEGREGATION251.770.014 GO_MEMBRANE_DISASSEMBLY461.790.021 GO_REGULATION_OF_TELOMERE_MAINTENANCE621.810.023 GO_CHROMOSOMAL_REGION3101.790.023 GO_SPLICEOSOMAL_COMPLEX1631.780.033 GO_RNA_SPLICING3351.790.038 GO_LIPID_OXIDATION68–2.150 GO_MICROBODY132–2.130 GO_FATTY_ACID_CATABOLIC_PROCESS71–2.130 GO_FATTY_ACID_BETA_OXIDATION49–2.100 GO_MICROBODY_PART92–2.080 GO_COENZYME_BINDING175–2.070 GO_ORGANIC_ACID_CATABOLIC_PROCESS202–2.030 GO_FLAVIN_ADENINE_DINUCLEOTIDE_BINDING73–2.020 GO_MICROBODY_MEMBRANE58–2.000 GO_METHIONINE_METABOLIC_PROCESS18–1.990 GO_COFACTOR_BINDING258–1.970 GO_MICROBODY_LUMEN44–1.970 GO_AMINO_ACID_BETAINE_METABOLIC_PROCESS18–1.940 GO_LIPID_HOMEOSTASIS107–1.890 GO_BILE_ACID_METABOLIC_PROCESS35–1.890 GO_REGULATION_OF_FATTY_ACID_OXIDATION27–1.840 GO_BILE_ACID_BIOSYNTHETIC_PROCESS20–1.820 GO_CELLULAR_ALDEHYDE_METABOLIC_PROCESS83–1.820 GO_ACYLGLYCEROL_HOMEOSTASIS29–1.820 GO_MONOOXYGENASE_ACTIVITY91–1.800 GO_DRUG_METABOLIC_PROCESS39–1.780 GO_POSITIVE_REGULATION_OF_FATTY_ACID_METABOLIC_PROCESS33–1.780 GO_NITROGEN_CYCLE_METABOLIC_PROCESS15–1.750 GO_STEROID_HYDROXYLASE_ACTIVITY31–1.700 GO_IRON_ION_BINDING158–1.700 GO_EPOXYGENASE_P450_PATHWAY18–1.690
續(xù)附表4
基因集基因集大小NESP GO_OXYGEN_BINDING47–1.670 GO_ARACHIDONIC_ACID_MONOOXYGENASE_ACTIVITY15–1.660 GO_PEROXISOME_ORGANIZATION32–2.000.0020 GO_PROTEIN_DEGLYCOSYLATION21–1.970.0020 GO_REGULATION_OF_TRIGLYCERIDE_METABOLIC_PROCESS32–1.900.0020 GO_SERINE_FAMILY_AMINO_ACID_METABOLIC_PROCESS41–1.890.0020 GO_2_OXOGLUTARATE_METABOLIC_PROCESS20–1.880.0020 GO_REGULATION_OF_TRIGLYCERIDE_BIOSYNTHETIC_PROCESS17–1.880.0020 GO_CELLULAR_AMINO_ACID_CATABOLIC_PROCESS111–1.870.0020 GO_ALPHA_AMINO_ACID_CATABOLIC_PROCESS94–1.870.0020 GO_PYRIDOXAL_PHOSPHATE_BINDING51–1.860.0020 GO_SULFUR_AMINO_ACID_METABOLIC_PROCESS40–1.840.0020 GO_REGULATION_OF_CHOLESTEROL_METABOLIC_PROCESS22–1.840.0020 GO_ACYL_COA_DEHYDROGENASE_ACTIVITY17–1.820.0020 GO_GLYOXYLATE_METABOLIC_PROCESS27–1.810.0020 GO_REGULATION_OF_MITOCHONDRIAL_FISSION17–1.730.0020 GO_ENERGY_RESERVE_METABOLIC_PROCESS72–1.680.0020 GO_BILE_ACID_TRANSMEMBRANE_TRANSPORTER_ACTIVITY15–1.660.0020 GO_SULFUR_AMINO_ACID_BIOSYNTHETIC_PROCESS19–1.860.0021 GO_REGULATION_OF_GLUCOSE_METABOLIC_PROCESS104–1.800.0021 GO_BLOOD_COAGULATION_INTRINSIC_PATHWAY17–1.770.0021 GO_ORGANIC_HYDROXY_COMPOUND_TRANSPORT155–1.670.0021 GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_PAIRED_DONORS_WITH_INCORPORATION_OR_REDUCTION_OF_MOLECULAR_OXYGEN_REDUCED_FLAVIN_OR_FLAVOPROTEIN_AS_ONE_DONOR_AND_INCORPORATION_OF_ONE_ATOM_OF_OXYGEN26–1.650.0021 GO_FATTY_ACYL_COA_BINDING30–1.870.0039 GO_FATTY_ACID_BETA_OXIDATION_USING_ACYL_COA_DEHYDROGENASE18–1.790.0040 GO_BILE_ACID_AND_BILE_SALT_TRANSPORT31–1.760.0040 GO_GLUCAN_METABOLIC_PROCESS58–1.750.0040 GO_REGULATION_OF_LIPID_CATABOLIC_PROCESS50–1.740.0040 GO_CELLULAR_LIPID_CATABOLIC_PROCESS148–1.840.0041 GO_SMALL_MOLECULE_CATABOLIC_PROCESS325–1.830.0041 GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_PAIRED_DONORS_WITH_INCORPORATION_OR_REDUCTION_OF_MOLECULAR_OXYGEN149–1.750.0041 GO_RESPONSE_TO_XENOBIOTIC_STIMULUS104–1.740.0041 GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_PAIRED_DONORS_WITH_INCORPORATION_OR_REDUCTION_OF_MOLECULAR_OXYGEN_NAD_P_H_AS_ONE_DONOR_AND_INCORPORATION_OF_ONE_ATOM_OF_OXYGEN36–1.730.0041 GO_BLOOD_COAGULATION_FIBRIN_CLOT_FORMATION24–1.730.0041 GO_DRUG_TRANSMEMBRANE_TRANSPORT19–1.680.0041 GO_GLUTAMATE_METABOLIC_PROCESS28–1.690.0042 GO_ALPHA_AMINO_ACID_METABOLIC_PROCESS226–1.800.0060 GO_PROTEIN_ACTIVATION_CASCADE67–1.780.0060
續(xù)附表4
基因集基因集大小NESP GO_ALDEHYDE_DEHYDROGENASE_NAD_ACTIVITY19–1.720.0060 GO_ANDROGEN_METABOLIC_PROCESS30–1.720.0062 GO_TRANSCRIPTION_FACTOR_ACTIVITY_DIRECT_LIGAND_REGULATED_SEQUENCE_ SPECIFIC_DNA_BINDING48–1.670.0062 GO_BRANCHED_CHAIN_AMINO_ACID_METABOLIC_PROCESS23–1.780.0079 GO_MANNOSIDASE_ACTIVITY15–1.760.0079 GO_REACTIVE_NITROGEN_SPECIES_METABOLIC_PROCESS19–1.760.0079 GO_STEROL_TRANSPORT50–1.690.0081 GO_GLYCINE_METABOLIC_PROCESS17–1.680.0082 GO_MONOCARBOXYLIC_ACID_TRANSMEMBRANE_TRANSPORTER_ACTIVITY45–1.640.0083 GO_STEROID_METABOLIC_PROCESS232–1.780.0085 GO_S_ADENOSYLMETHIONINE_METABOLIC_PROCESS18–1.730.010 GO_CELLULAR_AMINO_ACID_BIOSYNTHETIC_PROCESS91–1.730.010 GO_FATTY_ACID_METABOLIC_PROCESS287–1.700.010 GO_TRANSMEMBRANE_RECEPTOR_PROTEIN_SERINE_THREONINE_KINASE_ACTIVITY17–1.680.010 GO_BENZENE_CONTAINING_COMPOUND_METABOLIC_PROCESS24–1.680.010 GO_REGULATION_OF_GLUCONEOGENESIS37–1.810.012 GO_ALPHA_AMINO_ACID_BIOSYNTHETIC_PROCESS75–1.730.012 GO_MONOCARBOXYLIC_ACID_METABOLIC_PROCESS491–1.710.012 GO_THIOESTER_METABOLIC_PROCESS83–1.700.012 GO_PROTEIN_LIPID_COMPLEX39–1.700.012 GO_PLATELET_DENSE_GRANULE20–1.710.013 GO_ARGININE_METABOLIC_PROCESS17–1.660.013 GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS328–1.750.014 GO_REGULATION_OF_CELLULAR_KETONE_METABOLIC_PROCESS170–1.680.014 GO_TRICARBOXYLIC_ACID_METABOLIC_PROCESS37–1.820.016 GO_ASPARTATE_FAMILY_AMINO_ACID_METABOLIC_PROCESS55–1.800.016 GO_REGULATION_OF_PROTEIN_ACTIVATION_CASCADE34–1.760.016 GO_NEGATIVE_REGULATION_OF_MITOCHONDRION_ORGANIZATION39–1.710.016 GO_POSITIVE_REGULATION_OF_TRIGLYCERIDE_METABOLIC_PROCESS20–1.710.017 GO_RESPONSE_TO_MERCURY_ION15–1.690.017 GO_REGULATION_OF_FATTY_ACID_METABOLIC_PROCESS85–1.650.017 GO_STEROL_HOMEOSTASIS57–1.770.019 GO_STEROL_METABOLIC_PROCESS121–1.710.019 GO_REGULATION_OF_LIPOPROTEIN_LIPASE_ACTIVITY15–1.640.019 GO_MITOCHONDRIAL_MATRIX406–1.840.020 GO_DICARBOXYLIC_ACID_METABOLIC_PROCESS99–1.730.020 GO_PROTEIN_HOMOTETRAMERIZATION59–1.730.020 GO_COMPLEMENT_ACTIVATION45–1.670.020 GO_POSITIVE_REGULATION_OF_LIPID_CATABOLIC_PROCESS25–1.690.021 GO_COFACTOR_METABOLIC_PROCESS329–1.660.024
續(xù)附表4
基因集基因集大小NESP GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_THE_CH_CH_GROUP_OF_DONORS57–1.770.025 GO_QUATERNARY_AMMONIUM_GROUP_TRANSPORT18–1.740.025 GO_SIGNAL_PEPTIDE_PROCESSING24–1.710.027 GO_GLUCAN_BIOSYNTHETIC_PROCESS25–1.680.027 GO_RETROGRADE_TRANSPORT_VESICLE_RECYCLING_WITHIN_GOLGI23–1.720.028 GO_NAD_BINDING53–1.690.029 GO_NUCLEOSIDE_BISPHOSPHATE_METABOLIC_PROCESS37–1.700.030 GO_ENDOCYTIC_VESICLE_LUMEN17–1.640.030 GO_LIGASE_ACTIVITY_FORMING_CARBON_SULFUR_BONDS40–1.650.035 GO_TRIGLYCERIDE_RICH_LIPOPROTEIN_PARTICLE19–1.650.035 GO_ASPARTATE_FAMILY_AMINO_ACID_BIOSYNTHETIC_PROCESS23–1.660.036 GO_COENZYME_A_METABOLIC_PROCESS17–1.650.041 GO_2_IRON_2_SULFUR_CLUSTER_BINDING21–1.650.044
NES,校正后的富集分?jǐn)?shù)(normalized enrichment score)。
附表5 PCR引物的序列信息
Supplementary Table 5 Primers for RT-qPCR assays
基因正義(5′→3′)反義 (5′→3′) MIR210HGTGAGTAGGAACTCTGGGCGACCACAATGGGAAGGAGGCAT HIF1AAGAGGTTGAGGGACGGAGATGCACCAAGCAGGTCATAGGT TGFBGTCTCCCAAGGAAAGGTAGGCTCTTGAGTCCCTCGCATCC AKTGCGGCAGGACCGAGCAGGTCTTGATGTACTCCCCTCG VEGFAGTCCTGGAGCGTGTACGTTGCTTCCGGGCTCGGTGATTTA ACTINAGAGCCTCGCCTTTGCCGATAGAGCCTCGCCTTTGCCGAT
引物根據(jù)人類參考基因組(基于hg19)設(shè)計。
Prognostic and predictive value of the hypoxia-associated long non-coding RNA signature in hepatocellular carcinoma
Min Cheng1,3, Jing Zhang4, Pengbo Cao2, Gangqiao Zhou1,2,3
Hepatocellular carcinoma (HCC) is a common cancer worldwide. Hypoxia is an important feature of solid tumors, including HCC, and is also an important factor involved in malignancy progression. However, the identification of hypoxia-related long non-coding RNA (lncRNAs) and their prognostic value in HCC have not been systematically investigated. The aim of this study is to identify the features based on the hypoxia-related lncRNAs and evaluate their predictive value for HCC prognosis. Based on the integrated analysis of HCC transcriptome data from The Cancer Genome Atlas (TCGA), we had identified 233 potential hypoxia-related lncRNAs. We further evaluated the prognostic value of these lncRNAs and optimally established a 12-lncRNA (,,,,,,,,,,and) prognostic risk model. The Cox proportional hazards regression analysis revealed that the hypoxia risk score is a novel independent prognostic predictor for HCC patients, which outperforms the traditional clinical pathological factors. Gene set enrichment analysis (GSEA) showed that the hypoxia risk score reflects the activation of biological features related to cell proliferation and the inactivation of lipid metabolism processes. In summary, we had constructed a risk score model based on 12 hypoxia-related lncRNAs, which might be a promising prognostic predictor for HCC patients and highlight their potential roles in the prevention and treatment of this malignancy.
hepatocellular carcinoma; hypoxia; long non-coding RNA; prognostic model
2021-12-02;
2022-01-11;
2022-01-19
國家重點研發(fā)計劃(編號:2017YFA0504301)和國家自然科學(xué)基金重大研究計劃重點項目(編號:91440206)資助[Supported by the National Key Research and Development Program of China (No. 2017YFA0504301) and the Major Research Plan of the National Natural Science Foundation of China (No. 91440206)]
程敏,碩士研究生,專業(yè)方向:流行病與衛(wèi)生統(tǒng)計學(xué)。E-mail: 18351990262@139.com
曹鵬博,博士,副研究員,研究方向: 醫(yī)學(xué)遺傳與基因組學(xué)。E-mail: birchcpb@163.com
周鋼橋,博士,研究員,研究方向:醫(yī)學(xué)遺傳與基因組學(xué)。E-mail: zhougq114@126.com
10.16288/j.yczz.21-416
(責(zé)任編委:宋旭)