• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-organized TiO2 Nanotube Arrays with Controllable Geometric Parameters for Highly Efficient PEC Water Splitting①

    2022-03-08 02:30:40WANGTianMingCHENYanXinTONGMeiHongLINShiWeiZHOUJingWenJIANGXiaLUCanZhong
    結(jié)構(gòu)化學(xué) 2022年1期

    WANG Tian-Ming CHEN Yan-Xin TONG Mei-Hong LIN Shi-Wei ZHOU Jing-Wen JIANG Xia LU Can-Zhong

    a (CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences, Fuzhou 350002, China)

    b (College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China)

    c (Xiamen Institute of Rare-earth Materials, Haixi Institutes,Chinese Academy of Sciences, Xiamen 361021, China)

    ABSTRACT In this report, a series of self-organized TiO2 nanotube arrays were prepared by anodization of titanium foil in mixed electrolytes composed of water, ethylene glycol, and NH4F. Their photoelectrochemical(PEC) performance as a photoanode was characterized by the PEC water-splitting hydrogen (H2) generation reaction. The internal relationship between the TiO2 nanotube arrays (TNTAs) morphology and their PEC performance was thoroughly investigated. Our results show that when the etching time is 10 hours, the length of the as-prepared TNTAs is about 20.78 μm and the measured photocurrent density is around 1.25 mA·cm-2 with applied bias voltage 0.6 V (vs. Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2 substrate without nanotubes architecture (0.00128 mA cm-2). More interestingly, the results of the IPCE measurement show that the band-gap of the as-prepared TNTAs is reduced from 3.20 to 2.83 eV. The corresponding optical response limit is also extended from 400 nm to TiO2 nanotube arrays is 510 nm, which indicates that the increasement of the TNTAs PEC performance benefits from the great improvement of its utilization of both the UV and visible light irradiation.

    Keywords: photoelectrochemistry, water-splitting, TiO2 nanotube arrays, H2;

    1 INTRODUCTION

    The photoelectrochemical (PEC) water-splitting has been considered as one of the most promising approaches for solar-to-hydrogen (STH) since it was discovered by Fujishima and Honda in 1972. Among a variety of the materials developed for PEC applications, titanium dioxide(TiO2) is the most promising one due to its high efficiency,low cost, chemical inert, and photostability[1-3]. The photoactivation of TiO2has been extensively investigated.However, the large band-gap and the fast recombination of photo-generated carriers of bulk TiO2lead to a decreased efficiency of its solar utilization. Great efforts have been made to enhance the absorption of visible light and the rapid transfer of photo-generated carriers to achieve high efficiency STH. It was found that a rational TiO2architecture with large internal surface area, good electrical transport, low charge carrier recombination losses and intimate contact between the semiconductor and the electrolyte can effectively improve the performance of TiO2in the solar assisted PEC water-splitting.TiO2nanotubes (TNT) and TiO2nanotube arrays (TNTAs)provide unique electronic properties, such as high surfacesurface-to-volume ratios and sizedependence properties,obvious quantum confinement effect and high electron mobility for PEC water splitting. The discovery of TNT with various interesting properties has stimulated the quest for the synthesis of TNT structures. Several recent studies indicate that titania nanotubes have improved properties compared to any other form of titania for the applications in photocatalysis[4-6], sensing[7-10], photoelectrolysis[9-11]and photovoltaics[12-14]. TNTA and TNTAs can be produced by a variety of methods, including deposition into a nanoporous alumina template[15-18], sol-gel transcription using organo-gelators as templates[19-20], seeded growth[21], hydrothermal processses[22-24]and electrochemical anodization. Among all the aforementioned nanotube fabrication methods, the method of highly ordered nanotube arrays made by the anodization of titanium in fluoride-based baths[25-31]has been demonstrated to have the most remarkable properties as the dimensions of TNTA and TNTAs can be precisely controlled. Uniform titania nanotube arrays with various pore sizes (22~110 nm),lengths (200~6000 nm), and wall thicknesses (7~34 nm)can be easily obtained by adjusting electrochemical conditions. Many literature reports[33-38]have given evidence of the unique properties and huge performance improvement of this material architecture method, which make it of considerable interests in both scientific researches and practical applications.

    In this work, a series of one-dimensional ordered TNTAs with different geometry parameters were prepared and their corresponding quantum efficiency and PEC performance as a photo-anode were characterized. Compared to the bulk TiO2substrate (0.00128 mA·cm-2at 0.6 Vvs.Ag/AgCl), the as-prepared TNTAs with 20.78m tube length present about 1.25 mA cm-2photocurrent density with applied bias voltage 0.6 V (vs. Ag/AgCl) under the simulated sunlight irradiation,showing a huge performance improvement. Our results imply that with the thickness of TNTAs lowing and the diameter of the TNT increasing, the absorption threshold of the TNTAs red-shifted to visible light.

    2 EXPERIMENTAL

    2. 1 Materials synthesis

    TNTAs were fabricated by secondary anodization (Fig. 1).Firstly, the Ti foil (99.0%) substrates were polished by emery paper up to 2500 mesh and were sonicated in an acetone ultrasound bath (KUNSHAN ULTRASONIC INSTRUMENT CO., LTD) followed by washing in soap solution and deionized water (Millipore water, 18 MΩcm) for 2 mines each and drying under nitrogen stream to remove the stains and the slight scratches on their surface. The pretreated titanium foils were then anodized at a constant potential of 60 V in a fluorinated glycol organic solution, which is composed of 0.35 wt% NH4F and 1.6 vol% H2O at 20 ℃ and in dual parallel electrode configuration with a titanium mesh cathode for 1 hour as the first step anodization. Before the secondary anodization, the TNTAs template was removed by ultrasonic treatment of the electrode in water for 30 min. Ti substrate without secondary etching was named as TNT-B as a reference group. The secondary electrochemical anodization etching was set at room temperature with 60 V for 1 hour(TNT-1), 6 hours (TNT-6), and 10 hours (TNT-10), respecttively. The anodized electrodes were then annealed by heating to 400 ℃ (0.8 ℃ min-1) in the air for 2 hours. After completing the heating and temperature holding process,TNTAs samples were cooled to room temperature naturally in the air.

    Fig. 1. Schematic illustration of the preparation process of TNTAs by secondary anodization

    In a typical electrochemical anodization process, the titanium metal foil was used as an etching anode, and the thickness of the surface oxide layer gradually increases during the oxidation process. A dense oxide film was formed on the surface of the titanium metal sheet, and the fluorinecontaining organic solution dissolved the oxide layer to form a fluoride ion metal complex ([TiF6]2-), which diffused along the etched pipe into the solution and finally formed an ordered array of TiO2nanotubes under an applied electric field.

    2. 2 Materials characterization

    The structure and morphology of the prepared TNTAs sample were characterized by a field emission scanning electron microscope (FE-SEM) operating at 2.0 kV equipped with field emission (Apreo SLoVac). The crystal phases and structures of as-prepared TNTAs was characterized by X-ray diffraction (XRD) on Rigaku Miniflex 600 X-ray diffratometer system, equipped with CuKα(λ= 0.15406 nm)radiation, which was scanned over the angular range of 20~80° (2θ) with a scanning speed of 5 ° min-1. Micro structural examinations were conducted on JEOL JEM-2100 transmission electron microscopy (TEM) operated at 120 kV.

    2. 3 Photoelectrochemical measurements

    The photocurrent density was measured with a CS350 electrochemical analyzer (Wuhan Corrtest Instrument Corp.,Ltd, China) in a standard quartz made three-electrode cell in a 0.1 M Na2SO4aqueous solution (pH = 7), in which the TNTAs is the working electrode, a Pt foil is a counter electrode and a Ag/AgCl (saturated KCl) is the reference electrode. A 300 W Xenon Lamp equipped with filter(AM1.5G) and power density 100 mW cm?2(PLS-SXE300D,Beijing Perfectlight Technology. Co., Ltd.) was used as an illumination source. The measured potentialvs.Ag/AgCl was converted to the reversible hydrogen electrode (RHE)according to the Nernst equation (1):

    E(vs.RHE) =E(vs.Ag/AgCl) + 0.0591 ×

    pH +E0(Ag/AgCl) (1)

    WhereE0(vs.RHE) = 0.1976 V at 25 ℃. The photocurrent reaction and incident photon to electron conversion efficiency(IPCE) spectra were obtained under the incident light with wavelength of 300~600 nm and intensity density of about 100 mW cm-2using a monochromator. IPCE was calculated from chronoamperometry measurements recorded photocurrent density, using the following equation (2):

    IPCE (%) = 1240 × [Iph/(λ×Pin)] × 100% (2)It is calculated as a function of the output photocurrent density (Iph, A cm?2) and incident light power density (Pin,W·cm?2) at each wavelengthλ(nm).

    Linear sweep voltammetry (LSV) was measured with a voltage scan speed of 0.005 V s-1, and the light was chopped by a shutter of 5 s-1. LSV test conditions were consistent with IPCE. In general, the applied bias photo-to-current efficiency(?) can be determined by equation (3).?represents the photoelectric conversion efficiency of a photoelectrode under an applied bias from a potentiostat.

    whereJphis the photocurrent density of photoelectrode measured under applied voltage,Eappmeans the applied bias potential between the working electrode and counter electrode, andPlightis the incident simulate sunlight power input.

    The Mott-Schottky measurement results were used to illustrate the flat band potentials, which were usually equivalent to the position of the semiconductor conduction band. The frequency range of the electrochemical analyzer is 0.01~100000 Hz, the voltages increment is 0.005 V, and the AC amplitude is 10 mV. The working electrode was measured at 500, 1000, 1500, 2000, and 2500 Hz,respectively. The Schottky barrier can be used to express the position of the conduction band potential and calculate the flat band potential energy. The calculation expression of the Mott-Schottky model using parallel plate capacitors is as the following equation (4):

    In the parallel plate capacitor model,Cscrepresents the space charge layer capacitance,?means the inherent dielectric constant of semiconductors,?0is the dielectric constant in vacuum,NDstands for carrier concentration,Eapplis the applied bias voltage,EFBis the flat band potential, andkis the Boltzmann constant andTsignifythermodynamic temperature.

    3 RESULTS AND DISCUSSION

    FE-SEM and TEM were used to investigate the structure and morphology of the TNTAs. Fig. 2 shows the TNTAs samples with different tube lengths and pore diameters, as well as the Ti substrates with the surface arrays removed (Fig.2a). The top view and the side view of TNT-1, TNT-6 and TNT-10 are shown in Fig. 2b, 2c and 2d, respectively.Obviously, with the anodization time increasing, the length of the nanotube gradually increases from 3.422 to 20.78and the diameter increases from 52.35 to 102.35 nm. This effectively increases the effective reaction area between photocatalysis and water. Simultaneously increases the absorption efficiency of light, which greatly improves the light conversion efficiency of TiO2. Fig. 2e and 2f are the high resolution transmission electron microscope (HRTEM)of the TiO2nanotube (TNT-6). The lattice spacing of 0.36 nm observed in the TNTAs samples is consistent with the lattice spacing of TiO2(101).

    Fig. 2. SEM images of TNT-B (a), TNT-1 (b) , TNT-6 (c) and TNT-10 (d); TEM image (e) and HRTEM image (f) of TNT-6

    XRD patterns of the two TNTAs samples (TNT-10 and TNT-B) are shown in Fig. 3, which show that there are characteristic diffraction peaks of anatase TiO2at 2θ= 25.15°(101), 37.38° (004), and 47.78° (200). Obviously, the as-prepared ordered TNTAs are anatase, and the other appearing peaks come from the background of metallic titanium.

    Fig. 3. X-ray diffraction patterns of ordered TNTAs

    To better understand the synergistic effect of TNT architecture, systematic photoelectrochemical measurements were carried out on PEC anodes of TNT-B, TNT-1, TNT-6,and TNT-10, respectively. As shown in Fig. 4a, the measured photocurrent density of TNT-10 sample is around 1.25 mA cm-2with applied bias voltage 0.6 V (vs.Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2bulk substrate (TNT-B: 0.00128 mA cm-2).Furthermore, with the increase of the length of the ordered TNT, its measured photocurrent density increases as well, for example, the photocurrent density of the TNT-6 array is about 0.38 mA cm-2, the photocurrent density of the TNT-1 nanotube is about 0.06 mA cm-2. Fig. 4b shows the total percent photoelectric conversion efficiency () of TNT-10,TNT-6, TNT-1 and TNT-B under simulated sunlight irradiation. A maximum photoconversion efficiency of 1.03 %was observed at an applied potential of 0.6 Vvs.Ag/AgCl for the TNT-10 nanotube array sample, while it was only 0.01 %for the TNT-B at 0.6 Vvs.Ag/AgCl.

    Fig. 4. Linear sweep voltammogram (LSV) curves (a) and their corresponding photoelectric conversion efficiencies (b) of different nanotube arrays

    As shown in Fig. 5, the photocurrent densities of different TNTAs PEC-anodes were measured under monochromatic light irradiation. In addition, the incident monochromatic photon to current conversion efficiency (IPCE) can be given as a function of wavelength (k) as shown in equation (2).

    Fig. 5. Comparisons of different TNTAs samples at electrochemical noise mode (top) and at 0.6V applied voltage (vs. Ag/AgCl)mode (bottom): photocurrent density (a, b), the derived IPCE (%) spectra (c, d), and the band gap determination extracted from IPCE spectra by a function of (IPCE% h)1/2 vs. h (e, f)

    In particular, with the tube length of the as prepared TNTAs increases, the measured photocurrent density obtained with or without bias applied potential increases significantly, see Figs. 5a and 5d. The maximum photocurrent density of TNT-10 (19A cm-2at 365 nm) is around 1.5, 2 and 3.8 times higher than that of TNT-6 (12.6A cm-2at 360 nm), TNT-1(9.5A cm-2at 355 nm), and TNT-B (5A cm-2at 345 nm), respectively. Furthermore, with the increase of the length of the nanotube the TNTAs samples show a significant photo response red-shift in the wavelength range of 400~480 nm. All of these results give the insight that the TNTAs architecture highly enhances the PEC activity of the TiO2under both UV and visible light regions.

    In order to deeper understand the interplay between the photocatalysis and the light absorption of four types of different length TNTAs, IPCE measurements were performed under monochromatic light irradiation. As shown in Fig. 5b,the maximum IPCE of TNT-10 obtained in the electrochemical noise mode (without any applied voltage) is around 28.89% at 354 nm. That is higher than that of the TNT-6 (17.66% at 353 nm), TNT-1 (15.52% at 350 nm) and TNT-B (9.7% at 350 nm). In addition, as shown in Fig. 5e,when 0.6 V (vs. Ag/AgCl) bias potential was applied on the TNTAs PEC anode, the peak IPCE of TNT-10 shifts to 42.98%at 355 nm, which is higher than that of the TNT-6 (37.91% at 354 nm), TNT-1 (33.82% at 352 nm) and TNT-B (21.99% at 350 nm). Meanwhile, the wavelength response cut-off range of TNT-10 red-shifts to 500 nm, see the inset curve in Fig.5(e).

    In comparison with the four samples, it indicates that the UV and visible lights are effectively used for STH, in which the absorption and transportation of photogenerated charge carriers were as efficient as the nanotube arrays, with the increase of the length and diameter. The band gaps of samples can be evaluated from the IPCE spectra by a Tauc plotting (IPCE%h)1/2versus photon energy (h)[39,40]as shown in Fig. 5c. The extracted band gaps of TNT-10, TNT-6,TNT-1 and TNT-B were found to be 3.04, 3.10, 3.15, and 3.20 eV at electrochemical noise measurement. Fig. 5f illustrates that the obtained band gaps were narrowed, which were 2.83, 2.88, 3.01, and 3.20 eV at 0.6 Vvs.Ag/AgCl.Interestingly, when the nanotube array exists, with the application of external voltage, the band gap gradually narrows. This phenomenon implies that the modification of TiO2nanotubes from both the morphology and the semiconductor band gap is very successful.

    The Mott-Schottky measurements were employed to evaluate the flat band potentialVfbof TNTA electrodes with different tube lengths, which as shown in Fig. 6.

    Fig. 6. Mott-Schottky plots of different TNTAs.

    The Mott-Schottky plots of the TNTAs and base exhibited a positive slope, which indicates that both electrodes aren-type semiconductors. Additionally, as the length of the nanotube increases, the flat-band potential of the nanotube array shifts negatively, which is conducive to hydrogen production. TheVfbof TNT-10, TNT-6, TNT-1 and TNT-B were observed at–0.81 V, –0.75 V, –0.65 V and –0.55 Vvs.Ag/AgCl,respectively. The flat potential (in the units of volts, V) can be referred to the position of the conduction band (in the units of electron volts, eV)[41,42]. Thus, as the length of the nanotube increases, theEfbshifts negatively, which is beneficial to the PEC water splitting.

    Based on the above results, we proposed the band structures of the as prepared TNTAs samples, TNT-B, TNT-1,TNT-6, and TNT-10 respectively, as shown in Fig. 7. As we can see, the length of TNT varies from 0 to 20.78m, the band gaps gradually narrows from 3.24 eV to 3.04 eV, and the photo-response wavelength limits from 400 to 480 nm.

    Fig. 7. Proposed band structure of TNTAs samples with different tube lengths and redox potentials for water splitting.Black and green dotted lines represent valence band of TNT-10 and TNT-B respectively.

    4 CONCLUSION

    In summary, the one-dimensional ordered TNTAs show a greater improvement in the light absorption range, and with the length of the nanotube increases, its absorption threshold red-shifted to visible light. By carefully investigated the internal relationship between the TiO2nanotube arrays(TNTAs) morphology and their PEC performance, we proved that when the anodization time goes to 10 hours, the length of the as prepared TNTAs is about 20.78 μm. The measured photocurrent density is around 1.25 mA cm-2with applied bias voltage 0.6 V (vs. Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2bulk substrate (0.00128 mA cm-2). More interestingly, the results of the IPCE measurement show that the band-gap of the as prepared TNTAs is reduced from 3.20 eV to 2.83 eV with applied bias voltage 0.6 V (vs. Ag/AgCl). The corresponding optical response limit is also extended from 400 nm to 510 nm, which implies that the increase of the PEC performance of the TNTAs is due to the great improvement of the utilization of both UV and visible light irradiation. Our findings show that the unique ordered nanotube array structure can further improve the response of TiO2to light under the action of a small applied bias, which is of great significance for electro-optic synergistic catalysis.

    国产精品久久久人人做人人爽| 极品少妇高潮喷水抽搐| 久久久久久久国产电影| 99久久人妻综合| 欧美+亚洲+日韩+国产| 飞空精品影院首页| 每晚都被弄得嗷嗷叫到高潮| 99国产极品粉嫩在线观看| 国产深夜福利视频在线观看| 精品亚洲成国产av| 欧美激情极品国产一区二区三区| 黄片大片在线免费观看| 久久人妻av系列| 欧美乱色亚洲激情| 国产在线观看jvid| 亚洲av第一区精品v没综合| 精品无人区乱码1区二区| 高潮久久久久久久久久久不卡| 国产精品一区二区精品视频观看| tube8黄色片| 丝袜美腿诱惑在线| aaaaa片日本免费| 啦啦啦在线免费观看视频4| 成人特级黄色片久久久久久久| 国产主播在线观看一区二区| 中国美女看黄片| 欧美另类亚洲清纯唯美| 亚洲精品一卡2卡三卡4卡5卡| 巨乳人妻的诱惑在线观看| 99精国产麻豆久久婷婷| 国产精品亚洲av一区麻豆| 亚洲成人手机| 精品亚洲成国产av| 免费人成视频x8x8入口观看| 成人18禁在线播放| 日韩中文字幕欧美一区二区| 99热只有精品国产| 欧美人与性动交α欧美精品济南到| 久久影院123| 国产精品98久久久久久宅男小说| 1024香蕉在线观看| 亚洲色图 男人天堂 中文字幕| 国产高清国产精品国产三级| 国产精品久久久久久精品古装| 亚洲精品一二三| 日韩人妻精品一区2区三区| 精品欧美一区二区三区在线| 午夜激情av网站| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻丝袜制服| 欧美日韩亚洲国产一区二区在线观看 | 丰满人妻熟妇乱又伦精品不卡| 又黄又爽又免费观看的视频| 国产高清激情床上av| 在线看a的网站| 首页视频小说图片口味搜索| 国产精品国产高清国产av | av天堂久久9| 一级a爱视频在线免费观看| 国产精品香港三级国产av潘金莲| 久久精品成人免费网站| 国产精品亚洲一级av第二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲黑人精品在线| 成人18禁高潮啪啪吃奶动态图| 国产精品免费视频内射| 人妻 亚洲 视频| 一级片免费观看大全| av网站在线播放免费| 热99国产精品久久久久久7| 久久久国产欧美日韩av| av网站免费在线观看视频| 大片电影免费在线观看免费| 一级黄色大片毛片| 宅男免费午夜| 日韩有码中文字幕| 在线观看舔阴道视频| av线在线观看网站| 性色av乱码一区二区三区2| 可以免费在线观看a视频的电影网站| av电影中文网址| 村上凉子中文字幕在线| 最近最新中文字幕大全免费视频| 国产高清videossex| 久久国产精品影院| 男女床上黄色一级片免费看| 三级毛片av免费| 黄色a级毛片大全视频| 国产99白浆流出| 亚洲精品粉嫩美女一区| 国产亚洲欧美98| 美国免费a级毛片| 涩涩av久久男人的天堂| 丝袜美腿诱惑在线| 国产片内射在线| 亚洲精品成人av观看孕妇| 一本一本久久a久久精品综合妖精| 91国产中文字幕| 人人妻人人添人人爽欧美一区卜| 好男人电影高清在线观看| 午夜福利免费观看在线| 欧美一级毛片孕妇| 天堂俺去俺来也www色官网| 欧美黑人欧美精品刺激| 精品一区二区三区四区五区乱码| 欧美性长视频在线观看| 91麻豆精品激情在线观看国产 | 久久午夜综合久久蜜桃| 精品电影一区二区在线| 亚洲aⅴ乱码一区二区在线播放 | 黄色 视频免费看| 亚洲av成人av| 最新在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 成年人免费黄色播放视频| 久久这里只有精品19| 天天躁日日躁夜夜躁夜夜| tube8黄色片| 久久亚洲真实| 久久国产精品人妻蜜桃| 日韩欧美国产一区二区入口| 天天操日日干夜夜撸| 国产片内射在线| 国产精品久久久久久精品古装| 久久久久久久午夜电影 | 国产亚洲精品一区二区www | 黄色怎么调成土黄色| 国产精品一区二区精品视频观看| 欧美av亚洲av综合av国产av| 亚洲欧美色中文字幕在线| www.999成人在线观看| 啪啪无遮挡十八禁网站| 日本vs欧美在线观看视频| 窝窝影院91人妻| 国产成人欧美| 黄色视频不卡| 久久香蕉激情| av国产精品久久久久影院| 国产精品亚洲一级av第二区| 亚洲国产毛片av蜜桃av| 国产免费av片在线观看野外av| 色94色欧美一区二区| 青草久久国产| 亚洲综合色网址| 9191精品国产免费久久| 久久久精品区二区三区| 久久狼人影院| 日韩欧美免费精品| 国产国语露脸激情在线看| 黑人欧美特级aaaaaa片| 一级黄色大片毛片| 美女午夜性视频免费| 欧美日韩乱码在线| 人妻久久中文字幕网| 九色亚洲精品在线播放| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 成年人午夜在线观看视频| 国产欧美日韩一区二区三| 欧美色视频一区免费| 亚洲午夜理论影院| 久久天堂一区二区三区四区| 99在线人妻在线中文字幕 | 国产日韩欧美亚洲二区| 电影成人av| 精品国产乱子伦一区二区三区| 韩国精品一区二区三区| 人成视频在线观看免费观看| 久久热在线av| 国产精品影院久久| 99riav亚洲国产免费| 欧美最黄视频在线播放免费 | 另类亚洲欧美激情| 亚洲免费av在线视频| 777久久人妻少妇嫩草av网站| 人妻一区二区av| 极品人妻少妇av视频| 亚洲国产精品合色在线| videosex国产| 高清在线国产一区| 国产一区有黄有色的免费视频| 1024视频免费在线观看| 咕卡用的链子| 亚洲男人天堂网一区| av片东京热男人的天堂| 悠悠久久av| 久久人妻福利社区极品人妻图片| 我的亚洲天堂| 欧美在线黄色| 成年人黄色毛片网站| 精品久久久精品久久久| 欧美黑人欧美精品刺激| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的| 欧美av亚洲av综合av国产av| 欧美日韩视频精品一区| 曰老女人黄片| 91成年电影在线观看| 欧美另类亚洲清纯唯美| 国产男靠女视频免费网站| 1024视频免费在线观看| 久久精品亚洲熟妇少妇任你| 啦啦啦 在线观看视频| 人妻久久中文字幕网| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 91精品国产国语对白视频| 亚洲第一av免费看| 亚洲人成伊人成综合网2020| 欧美日韩精品网址| 黑丝袜美女国产一区| 色尼玛亚洲综合影院| 日韩免费av在线播放| 久久99一区二区三区| 黄色a级毛片大全视频| 91成人精品电影| a级毛片在线看网站| 美女福利国产在线| 久久天堂一区二区三区四区| 亚洲综合色网址| 三上悠亚av全集在线观看| 满18在线观看网站| 天天躁日日躁夜夜躁夜夜| 免费在线观看完整版高清| 很黄的视频免费| www日本在线高清视频| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人色综图| 国产成人影院久久av| netflix在线观看网站| 精品国产美女av久久久久小说| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 91成年电影在线观看| 制服人妻中文乱码| 成年动漫av网址| x7x7x7水蜜桃| 建设人人有责人人尽责人人享有的| 欧美激情高清一区二区三区| 国产1区2区3区精品| 一区二区日韩欧美中文字幕| 夜夜夜夜夜久久久久| 超碰97精品在线观看| 久久久久久久精品吃奶| 午夜日韩欧美国产| 91精品三级在线观看| 成人三级做爰电影| 女人高潮潮喷娇喘18禁视频| 一区在线观看完整版| 亚洲一区中文字幕在线| 免费高清在线观看日韩| 脱女人内裤的视频| 高清视频免费观看一区二区| 国产精品 欧美亚洲| 日韩欧美国产一区二区入口| 99精品久久久久人妻精品| 一边摸一边抽搐一进一出视频| 久久香蕉国产精品| 一级毛片女人18水好多| 国产一卡二卡三卡精品| 国产精品免费大片| 亚洲国产精品sss在线观看 | 国产成人啪精品午夜网站| 十八禁高潮呻吟视频| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 男女之事视频高清在线观看| 精品卡一卡二卡四卡免费| 亚洲成人国产一区在线观看| 美女扒开内裤让男人捅视频| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| 高清黄色对白视频在线免费看| 丰满迷人的少妇在线观看| 亚洲av成人不卡在线观看播放网| 国产精品成人在线| 黄网站色视频无遮挡免费观看| 男女下面插进去视频免费观看| 看黄色毛片网站| 精品乱码久久久久久99久播| 欧美大码av| 欧美av亚洲av综合av国产av| 十分钟在线观看高清视频www| 老熟妇仑乱视频hdxx| 十八禁人妻一区二区| 欧美性长视频在线观看| 免费女性裸体啪啪无遮挡网站| 脱女人内裤的视频| 久久久久精品人妻al黑| xxx96com| 亚洲视频免费观看视频| 一级片'在线观看视频| 久久精品国产a三级三级三级| 欧美日韩成人在线一区二区| 一二三四在线观看免费中文在| 俄罗斯特黄特色一大片| 国产成人精品久久二区二区免费| 亚洲成av片中文字幕在线观看| 国产精品永久免费网站| 精品视频人人做人人爽| 高清av免费在线| 精品人妻1区二区| 在线观看日韩欧美| 热re99久久精品国产66热6| 午夜亚洲福利在线播放| 欧美人与性动交α欧美软件| 精品国产乱码久久久久久男人| 窝窝影院91人妻| 一本一本久久a久久精品综合妖精| 欧美国产精品一级二级三级| 80岁老熟妇乱子伦牲交| 男女高潮啪啪啪动态图| 午夜福利乱码中文字幕| 法律面前人人平等表现在哪些方面| 欧美精品高潮呻吟av久久| 人人妻人人澡人人看| 精品国产超薄肉色丝袜足j| 亚洲五月天丁香| 国产精品乱码一区二三区的特点 | 日韩欧美三级三区| 久久ye,这里只有精品| 国产真人三级小视频在线观看| 久久久久久亚洲精品国产蜜桃av| av免费在线观看网站| 精品免费久久久久久久清纯 | 久久精品国产亚洲av香蕉五月 | 日本欧美视频一区| 18禁裸乳无遮挡动漫免费视频| 亚洲精品在线观看二区| 精品无人区乱码1区二区| 久久久久久人人人人人| 视频区图区小说| 身体一侧抽搐| 男人操女人黄网站| 婷婷成人精品国产| 成人黄色视频免费在线看| 久久久精品区二区三区| 欧美乱妇无乱码| 亚洲精品成人av观看孕妇| 日韩人妻精品一区2区三区| 激情在线观看视频在线高清 | 成人特级黄色片久久久久久久| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 午夜福利在线观看吧| av免费在线观看网站| 啪啪无遮挡十八禁网站| 一级黄色大片毛片| 欧美亚洲 丝袜 人妻 在线| 国产精品99久久99久久久不卡| 人成视频在线观看免费观看| 国产精品1区2区在线观看. | 757午夜福利合集在线观看| 性色av乱码一区二区三区2| 又黄又粗又硬又大视频| 久久人妻熟女aⅴ| 天天躁日日躁夜夜躁夜夜| 黑丝袜美女国产一区| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 啦啦啦在线免费观看视频4| 日韩三级视频一区二区三区| 亚洲中文日韩欧美视频| 18在线观看网站| 精品福利观看| 中亚洲国语对白在线视频| 曰老女人黄片| 最新的欧美精品一区二区| 一级黄色大片毛片| 青草久久国产| 老熟妇仑乱视频hdxx| 国产欧美日韩综合在线一区二区| 亚洲精品在线观看二区| 久久久久视频综合| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 无遮挡黄片免费观看| 国产成人欧美在线观看 | 成人影院久久| 亚洲精品美女久久久久99蜜臀| 人人澡人人妻人| 亚洲男人天堂网一区| 精品久久久久久久久久免费视频 | 欧美日韩乱码在线| 欧美不卡视频在线免费观看 | 制服人妻中文乱码| 亚洲av美国av| 亚洲 欧美一区二区三区| 美女高潮到喷水免费观看| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 一级毛片精品| 国内毛片毛片毛片毛片毛片| 国产精品国产高清国产av | 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 久久久国产欧美日韩av| 精品午夜福利视频在线观看一区| 国产av一区二区精品久久| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 在线观看免费高清a一片| videosex国产| 不卡av一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | www.999成人在线观看| 亚洲精品av麻豆狂野| 亚洲av电影在线进入| 午夜91福利影院| 男女之事视频高清在线观看| av免费在线观看网站| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 欧美日韩福利视频一区二区| 91成人精品电影| 老司机福利观看| 亚洲精品久久成人aⅴ小说| 成人影院久久| 亚洲精品国产精品久久久不卡| 久久国产亚洲av麻豆专区| 国产精品九九99| 亚洲欧美一区二区三区久久| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 日韩大码丰满熟妇| 亚洲成人免费电影在线观看| 国产精华一区二区三区| 纯流量卡能插随身wifi吗| 热99re8久久精品国产| av中文乱码字幕在线| 久久久久国产一级毛片高清牌| 久久亚洲精品不卡| 9色porny在线观看| 国产三级黄色录像| 国产亚洲精品一区二区www | 精品电影一区二区在线| 精品国产一区二区久久| 日韩成人在线观看一区二区三区| 成人18禁在线播放| 少妇裸体淫交视频免费看高清 | 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩成人在线一区二区| 18禁观看日本| 大码成人一级视频| 久久中文看片网| 淫妇啪啪啪对白视频| 久久精品国产清高在天天线| 婷婷丁香在线五月| 国产精品久久久久久精品古装| 欧美亚洲日本最大视频资源| 99国产精品一区二区蜜桃av | 久久精品aⅴ一区二区三区四区| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 99riav亚洲国产免费| 欧美不卡视频在线免费观看 | 国产成人系列免费观看| 日本一区二区免费在线视频| 丰满饥渴人妻一区二区三| 夜夜爽天天搞| 欧美乱色亚洲激情| 亚洲性夜色夜夜综合| 亚洲 欧美一区二区三区| 美女高潮喷水抽搐中文字幕| 美女扒开内裤让男人捅视频| 国产又爽黄色视频| 日本vs欧美在线观看视频| 亚洲全国av大片| 一级作爱视频免费观看| 欧美日韩黄片免| 丝袜人妻中文字幕| av免费在线观看网站| 夜夜爽天天搞| 色老头精品视频在线观看| 51午夜福利影视在线观看| 亚洲自偷自拍图片 自拍| 黄色视频,在线免费观看| 美女福利国产在线| 五月开心婷婷网| 免费一级毛片在线播放高清视频 | 动漫黄色视频在线观看| 香蕉国产在线看| 韩国精品一区二区三区| 夫妻午夜视频| 亚洲熟妇熟女久久| 欧美乱色亚洲激情| 亚洲五月婷婷丁香| 免费看a级黄色片| www.精华液| 中文字幕人妻丝袜一区二区| 成人永久免费在线观看视频| 午夜福利在线观看吧| 国产欧美日韩一区二区三区在线| 成人三级做爰电影| 日本黄色日本黄色录像| 久久精品亚洲精品国产色婷小说| 欧美亚洲 丝袜 人妻 在线| 亚洲av成人不卡在线观看播放网| 夫妻午夜视频| 久久久国产精品麻豆| 成年版毛片免费区| 成人黄色视频免费在线看| 免费黄频网站在线观看国产| xxx96com| 91av网站免费观看| 精品国产超薄肉色丝袜足j| 99久久精品国产亚洲精品| 国产精品久久久人人做人人爽| 免费一级毛片在线播放高清视频 | 亚洲中文av在线| 亚洲一区中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 搡老岳熟女国产| 制服人妻中文乱码| 久久中文字幕人妻熟女| 日韩中文字幕欧美一区二区| 国产97色在线日韩免费| 国产不卡av网站在线观看| 99久久99久久久精品蜜桃| 中亚洲国语对白在线视频| 伊人久久大香线蕉亚洲五| 欧美成人免费av一区二区三区 | 黑人猛操日本美女一级片| 国产精品.久久久| 又黄又爽又免费观看的视频| 在线观看日韩欧美| 亚洲精品久久成人aⅴ小说| 久久 成人 亚洲| 满18在线观看网站| 国产精品综合久久久久久久免费 | 国产精品一区二区免费欧美| 精品国产乱码久久久久久男人| 黄网站色视频无遮挡免费观看| 亚洲免费av在线视频| 午夜福利,免费看| 国产免费男女视频| 久久九九热精品免费| 国产一区有黄有色的免费视频| 精品一区二区三区av网在线观看| 亚洲av第一区精品v没综合| 老汉色∧v一级毛片| 老司机福利观看| 国产午夜精品久久久久久| 色婷婷久久久亚洲欧美| 精品熟女少妇八av免费久了| av在线播放免费不卡| 久久青草综合色| 午夜亚洲福利在线播放| 免费在线观看影片大全网站| 亚洲精品国产一区二区精华液| 黄片小视频在线播放| 两个人看的免费小视频| 美女高潮到喷水免费观看| 欧美不卡视频在线免费观看 | 日本vs欧美在线观看视频| 宅男免费午夜| 99国产精品一区二区三区| 成年人黄色毛片网站| 国产一区在线观看成人免费| 脱女人内裤的视频| av网站免费在线观看视频| 老熟女久久久| 正在播放国产对白刺激| 日韩欧美免费精品| 免费在线观看影片大全网站| 午夜成年电影在线免费观看| 亚洲性夜色夜夜综合| 在线观看www视频免费| 精品午夜福利视频在线观看一区| av有码第一页| 欧美成人午夜精品| 女人精品久久久久毛片| 亚洲精品美女久久久久99蜜臀| 欧美不卡视频在线免费观看 | 日韩免费高清中文字幕av| 波多野结衣一区麻豆| 精品一区二区三卡| 丁香六月欧美| 又大又爽又粗| 新久久久久国产一级毛片| 高潮久久久久久久久久久不卡| 人成视频在线观看免费观看| 人人妻,人人澡人人爽秒播| 欧美大码av| 亚洲av日韩在线播放| 嫩草影视91久久| 中文字幕最新亚洲高清| 久久中文字幕一级| 成人av一区二区三区在线看| 亚洲国产中文字幕在线视频| 国产av精品麻豆| 亚洲精品在线美女| 男女高潮啪啪啪动态图| 日韩欧美一区二区三区在线观看 | 99re6热这里在线精品视频| 成年版毛片免费区| 亚洲成a人片在线一区二区| 亚洲av成人av| 在线观看66精品国产| 狂野欧美激情性xxxx| 久久久久久久午夜电影 | 人妻一区二区av| 下体分泌物呈黄色| 夜夜夜夜夜久久久久| 欧美日本中文国产一区发布| 亚洲欧美日韩另类电影网站| 欧美黄色淫秽网站| 捣出白浆h1v1| 侵犯人妻中文字幕一二三四区| 久久草成人影院| 国产成人精品在线电影|