• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-organized TiO2 Nanotube Arrays with Controllable Geometric Parameters for Highly Efficient PEC Water Splitting①

    2022-03-08 02:30:40WANGTianMingCHENYanXinTONGMeiHongLINShiWeiZHOUJingWenJIANGXiaLUCanZhong
    結(jié)構(gòu)化學(xué) 2022年1期

    WANG Tian-Ming CHEN Yan-Xin TONG Mei-Hong LIN Shi-Wei ZHOU Jing-Wen JIANG Xia LU Can-Zhong

    a (CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences, Fuzhou 350002, China)

    b (College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China)

    c (Xiamen Institute of Rare-earth Materials, Haixi Institutes,Chinese Academy of Sciences, Xiamen 361021, China)

    ABSTRACT In this report, a series of self-organized TiO2 nanotube arrays were prepared by anodization of titanium foil in mixed electrolytes composed of water, ethylene glycol, and NH4F. Their photoelectrochemical(PEC) performance as a photoanode was characterized by the PEC water-splitting hydrogen (H2) generation reaction. The internal relationship between the TiO2 nanotube arrays (TNTAs) morphology and their PEC performance was thoroughly investigated. Our results show that when the etching time is 10 hours, the length of the as-prepared TNTAs is about 20.78 μm and the measured photocurrent density is around 1.25 mA·cm-2 with applied bias voltage 0.6 V (vs. Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2 substrate without nanotubes architecture (0.00128 mA cm-2). More interestingly, the results of the IPCE measurement show that the band-gap of the as-prepared TNTAs is reduced from 3.20 to 2.83 eV. The corresponding optical response limit is also extended from 400 nm to TiO2 nanotube arrays is 510 nm, which indicates that the increasement of the TNTAs PEC performance benefits from the great improvement of its utilization of both the UV and visible light irradiation.

    Keywords: photoelectrochemistry, water-splitting, TiO2 nanotube arrays, H2;

    1 INTRODUCTION

    The photoelectrochemical (PEC) water-splitting has been considered as one of the most promising approaches for solar-to-hydrogen (STH) since it was discovered by Fujishima and Honda in 1972. Among a variety of the materials developed for PEC applications, titanium dioxide(TiO2) is the most promising one due to its high efficiency,low cost, chemical inert, and photostability[1-3]. The photoactivation of TiO2has been extensively investigated.However, the large band-gap and the fast recombination of photo-generated carriers of bulk TiO2lead to a decreased efficiency of its solar utilization. Great efforts have been made to enhance the absorption of visible light and the rapid transfer of photo-generated carriers to achieve high efficiency STH. It was found that a rational TiO2architecture with large internal surface area, good electrical transport, low charge carrier recombination losses and intimate contact between the semiconductor and the electrolyte can effectively improve the performance of TiO2in the solar assisted PEC water-splitting.TiO2nanotubes (TNT) and TiO2nanotube arrays (TNTAs)provide unique electronic properties, such as high surfacesurface-to-volume ratios and sizedependence properties,obvious quantum confinement effect and high electron mobility for PEC water splitting. The discovery of TNT with various interesting properties has stimulated the quest for the synthesis of TNT structures. Several recent studies indicate that titania nanotubes have improved properties compared to any other form of titania for the applications in photocatalysis[4-6], sensing[7-10], photoelectrolysis[9-11]and photovoltaics[12-14]. TNTA and TNTAs can be produced by a variety of methods, including deposition into a nanoporous alumina template[15-18], sol-gel transcription using organo-gelators as templates[19-20], seeded growth[21], hydrothermal processses[22-24]and electrochemical anodization. Among all the aforementioned nanotube fabrication methods, the method of highly ordered nanotube arrays made by the anodization of titanium in fluoride-based baths[25-31]has been demonstrated to have the most remarkable properties as the dimensions of TNTA and TNTAs can be precisely controlled. Uniform titania nanotube arrays with various pore sizes (22~110 nm),lengths (200~6000 nm), and wall thicknesses (7~34 nm)can be easily obtained by adjusting electrochemical conditions. Many literature reports[33-38]have given evidence of the unique properties and huge performance improvement of this material architecture method, which make it of considerable interests in both scientific researches and practical applications.

    In this work, a series of one-dimensional ordered TNTAs with different geometry parameters were prepared and their corresponding quantum efficiency and PEC performance as a photo-anode were characterized. Compared to the bulk TiO2substrate (0.00128 mA·cm-2at 0.6 Vvs.Ag/AgCl), the as-prepared TNTAs with 20.78m tube length present about 1.25 mA cm-2photocurrent density with applied bias voltage 0.6 V (vs. Ag/AgCl) under the simulated sunlight irradiation,showing a huge performance improvement. Our results imply that with the thickness of TNTAs lowing and the diameter of the TNT increasing, the absorption threshold of the TNTAs red-shifted to visible light.

    2 EXPERIMENTAL

    2. 1 Materials synthesis

    TNTAs were fabricated by secondary anodization (Fig. 1).Firstly, the Ti foil (99.0%) substrates were polished by emery paper up to 2500 mesh and were sonicated in an acetone ultrasound bath (KUNSHAN ULTRASONIC INSTRUMENT CO., LTD) followed by washing in soap solution and deionized water (Millipore water, 18 MΩcm) for 2 mines each and drying under nitrogen stream to remove the stains and the slight scratches on their surface. The pretreated titanium foils were then anodized at a constant potential of 60 V in a fluorinated glycol organic solution, which is composed of 0.35 wt% NH4F and 1.6 vol% H2O at 20 ℃ and in dual parallel electrode configuration with a titanium mesh cathode for 1 hour as the first step anodization. Before the secondary anodization, the TNTAs template was removed by ultrasonic treatment of the electrode in water for 30 min. Ti substrate without secondary etching was named as TNT-B as a reference group. The secondary electrochemical anodization etching was set at room temperature with 60 V for 1 hour(TNT-1), 6 hours (TNT-6), and 10 hours (TNT-10), respecttively. The anodized electrodes were then annealed by heating to 400 ℃ (0.8 ℃ min-1) in the air for 2 hours. After completing the heating and temperature holding process,TNTAs samples were cooled to room temperature naturally in the air.

    Fig. 1. Schematic illustration of the preparation process of TNTAs by secondary anodization

    In a typical electrochemical anodization process, the titanium metal foil was used as an etching anode, and the thickness of the surface oxide layer gradually increases during the oxidation process. A dense oxide film was formed on the surface of the titanium metal sheet, and the fluorinecontaining organic solution dissolved the oxide layer to form a fluoride ion metal complex ([TiF6]2-), which diffused along the etched pipe into the solution and finally formed an ordered array of TiO2nanotubes under an applied electric field.

    2. 2 Materials characterization

    The structure and morphology of the prepared TNTAs sample were characterized by a field emission scanning electron microscope (FE-SEM) operating at 2.0 kV equipped with field emission (Apreo SLoVac). The crystal phases and structures of as-prepared TNTAs was characterized by X-ray diffraction (XRD) on Rigaku Miniflex 600 X-ray diffratometer system, equipped with CuKα(λ= 0.15406 nm)radiation, which was scanned over the angular range of 20~80° (2θ) with a scanning speed of 5 ° min-1. Micro structural examinations were conducted on JEOL JEM-2100 transmission electron microscopy (TEM) operated at 120 kV.

    2. 3 Photoelectrochemical measurements

    The photocurrent density was measured with a CS350 electrochemical analyzer (Wuhan Corrtest Instrument Corp.,Ltd, China) in a standard quartz made three-electrode cell in a 0.1 M Na2SO4aqueous solution (pH = 7), in which the TNTAs is the working electrode, a Pt foil is a counter electrode and a Ag/AgCl (saturated KCl) is the reference electrode. A 300 W Xenon Lamp equipped with filter(AM1.5G) and power density 100 mW cm?2(PLS-SXE300D,Beijing Perfectlight Technology. Co., Ltd.) was used as an illumination source. The measured potentialvs.Ag/AgCl was converted to the reversible hydrogen electrode (RHE)according to the Nernst equation (1):

    E(vs.RHE) =E(vs.Ag/AgCl) + 0.0591 ×

    pH +E0(Ag/AgCl) (1)

    WhereE0(vs.RHE) = 0.1976 V at 25 ℃. The photocurrent reaction and incident photon to electron conversion efficiency(IPCE) spectra were obtained under the incident light with wavelength of 300~600 nm and intensity density of about 100 mW cm-2using a monochromator. IPCE was calculated from chronoamperometry measurements recorded photocurrent density, using the following equation (2):

    IPCE (%) = 1240 × [Iph/(λ×Pin)] × 100% (2)It is calculated as a function of the output photocurrent density (Iph, A cm?2) and incident light power density (Pin,W·cm?2) at each wavelengthλ(nm).

    Linear sweep voltammetry (LSV) was measured with a voltage scan speed of 0.005 V s-1, and the light was chopped by a shutter of 5 s-1. LSV test conditions were consistent with IPCE. In general, the applied bias photo-to-current efficiency(?) can be determined by equation (3).?represents the photoelectric conversion efficiency of a photoelectrode under an applied bias from a potentiostat.

    whereJphis the photocurrent density of photoelectrode measured under applied voltage,Eappmeans the applied bias potential between the working electrode and counter electrode, andPlightis the incident simulate sunlight power input.

    The Mott-Schottky measurement results were used to illustrate the flat band potentials, which were usually equivalent to the position of the semiconductor conduction band. The frequency range of the electrochemical analyzer is 0.01~100000 Hz, the voltages increment is 0.005 V, and the AC amplitude is 10 mV. The working electrode was measured at 500, 1000, 1500, 2000, and 2500 Hz,respectively. The Schottky barrier can be used to express the position of the conduction band potential and calculate the flat band potential energy. The calculation expression of the Mott-Schottky model using parallel plate capacitors is as the following equation (4):

    In the parallel plate capacitor model,Cscrepresents the space charge layer capacitance,?means the inherent dielectric constant of semiconductors,?0is the dielectric constant in vacuum,NDstands for carrier concentration,Eapplis the applied bias voltage,EFBis the flat band potential, andkis the Boltzmann constant andTsignifythermodynamic temperature.

    3 RESULTS AND DISCUSSION

    FE-SEM and TEM were used to investigate the structure and morphology of the TNTAs. Fig. 2 shows the TNTAs samples with different tube lengths and pore diameters, as well as the Ti substrates with the surface arrays removed (Fig.2a). The top view and the side view of TNT-1, TNT-6 and TNT-10 are shown in Fig. 2b, 2c and 2d, respectively.Obviously, with the anodization time increasing, the length of the nanotube gradually increases from 3.422 to 20.78and the diameter increases from 52.35 to 102.35 nm. This effectively increases the effective reaction area between photocatalysis and water. Simultaneously increases the absorption efficiency of light, which greatly improves the light conversion efficiency of TiO2. Fig. 2e and 2f are the high resolution transmission electron microscope (HRTEM)of the TiO2nanotube (TNT-6). The lattice spacing of 0.36 nm observed in the TNTAs samples is consistent with the lattice spacing of TiO2(101).

    Fig. 2. SEM images of TNT-B (a), TNT-1 (b) , TNT-6 (c) and TNT-10 (d); TEM image (e) and HRTEM image (f) of TNT-6

    XRD patterns of the two TNTAs samples (TNT-10 and TNT-B) are shown in Fig. 3, which show that there are characteristic diffraction peaks of anatase TiO2at 2θ= 25.15°(101), 37.38° (004), and 47.78° (200). Obviously, the as-prepared ordered TNTAs are anatase, and the other appearing peaks come from the background of metallic titanium.

    Fig. 3. X-ray diffraction patterns of ordered TNTAs

    To better understand the synergistic effect of TNT architecture, systematic photoelectrochemical measurements were carried out on PEC anodes of TNT-B, TNT-1, TNT-6,and TNT-10, respectively. As shown in Fig. 4a, the measured photocurrent density of TNT-10 sample is around 1.25 mA cm-2with applied bias voltage 0.6 V (vs.Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2bulk substrate (TNT-B: 0.00128 mA cm-2).Furthermore, with the increase of the length of the ordered TNT, its measured photocurrent density increases as well, for example, the photocurrent density of the TNT-6 array is about 0.38 mA cm-2, the photocurrent density of the TNT-1 nanotube is about 0.06 mA cm-2. Fig. 4b shows the total percent photoelectric conversion efficiency () of TNT-10,TNT-6, TNT-1 and TNT-B under simulated sunlight irradiation. A maximum photoconversion efficiency of 1.03 %was observed at an applied potential of 0.6 Vvs.Ag/AgCl for the TNT-10 nanotube array sample, while it was only 0.01 %for the TNT-B at 0.6 Vvs.Ag/AgCl.

    Fig. 4. Linear sweep voltammogram (LSV) curves (a) and their corresponding photoelectric conversion efficiencies (b) of different nanotube arrays

    As shown in Fig. 5, the photocurrent densities of different TNTAs PEC-anodes were measured under monochromatic light irradiation. In addition, the incident monochromatic photon to current conversion efficiency (IPCE) can be given as a function of wavelength (k) as shown in equation (2).

    Fig. 5. Comparisons of different TNTAs samples at electrochemical noise mode (top) and at 0.6V applied voltage (vs. Ag/AgCl)mode (bottom): photocurrent density (a, b), the derived IPCE (%) spectra (c, d), and the band gap determination extracted from IPCE spectra by a function of (IPCE% h)1/2 vs. h (e, f)

    In particular, with the tube length of the as prepared TNTAs increases, the measured photocurrent density obtained with or without bias applied potential increases significantly, see Figs. 5a and 5d. The maximum photocurrent density of TNT-10 (19A cm-2at 365 nm) is around 1.5, 2 and 3.8 times higher than that of TNT-6 (12.6A cm-2at 360 nm), TNT-1(9.5A cm-2at 355 nm), and TNT-B (5A cm-2at 345 nm), respectively. Furthermore, with the increase of the length of the nanotube the TNTAs samples show a significant photo response red-shift in the wavelength range of 400~480 nm. All of these results give the insight that the TNTAs architecture highly enhances the PEC activity of the TiO2under both UV and visible light regions.

    In order to deeper understand the interplay between the photocatalysis and the light absorption of four types of different length TNTAs, IPCE measurements were performed under monochromatic light irradiation. As shown in Fig. 5b,the maximum IPCE of TNT-10 obtained in the electrochemical noise mode (without any applied voltage) is around 28.89% at 354 nm. That is higher than that of the TNT-6 (17.66% at 353 nm), TNT-1 (15.52% at 350 nm) and TNT-B (9.7% at 350 nm). In addition, as shown in Fig. 5e,when 0.6 V (vs. Ag/AgCl) bias potential was applied on the TNTAs PEC anode, the peak IPCE of TNT-10 shifts to 42.98%at 355 nm, which is higher than that of the TNT-6 (37.91% at 354 nm), TNT-1 (33.82% at 352 nm) and TNT-B (21.99% at 350 nm). Meanwhile, the wavelength response cut-off range of TNT-10 red-shifts to 500 nm, see the inset curve in Fig.5(e).

    In comparison with the four samples, it indicates that the UV and visible lights are effectively used for STH, in which the absorption and transportation of photogenerated charge carriers were as efficient as the nanotube arrays, with the increase of the length and diameter. The band gaps of samples can be evaluated from the IPCE spectra by a Tauc plotting (IPCE%h)1/2versus photon energy (h)[39,40]as shown in Fig. 5c. The extracted band gaps of TNT-10, TNT-6,TNT-1 and TNT-B were found to be 3.04, 3.10, 3.15, and 3.20 eV at electrochemical noise measurement. Fig. 5f illustrates that the obtained band gaps were narrowed, which were 2.83, 2.88, 3.01, and 3.20 eV at 0.6 Vvs.Ag/AgCl.Interestingly, when the nanotube array exists, with the application of external voltage, the band gap gradually narrows. This phenomenon implies that the modification of TiO2nanotubes from both the morphology and the semiconductor band gap is very successful.

    The Mott-Schottky measurements were employed to evaluate the flat band potentialVfbof TNTA electrodes with different tube lengths, which as shown in Fig. 6.

    Fig. 6. Mott-Schottky plots of different TNTAs.

    The Mott-Schottky plots of the TNTAs and base exhibited a positive slope, which indicates that both electrodes aren-type semiconductors. Additionally, as the length of the nanotube increases, the flat-band potential of the nanotube array shifts negatively, which is conducive to hydrogen production. TheVfbof TNT-10, TNT-6, TNT-1 and TNT-B were observed at–0.81 V, –0.75 V, –0.65 V and –0.55 Vvs.Ag/AgCl,respectively. The flat potential (in the units of volts, V) can be referred to the position of the conduction band (in the units of electron volts, eV)[41,42]. Thus, as the length of the nanotube increases, theEfbshifts negatively, which is beneficial to the PEC water splitting.

    Based on the above results, we proposed the band structures of the as prepared TNTAs samples, TNT-B, TNT-1,TNT-6, and TNT-10 respectively, as shown in Fig. 7. As we can see, the length of TNT varies from 0 to 20.78m, the band gaps gradually narrows from 3.24 eV to 3.04 eV, and the photo-response wavelength limits from 400 to 480 nm.

    Fig. 7. Proposed band structure of TNTAs samples with different tube lengths and redox potentials for water splitting.Black and green dotted lines represent valence band of TNT-10 and TNT-B respectively.

    4 CONCLUSION

    In summary, the one-dimensional ordered TNTAs show a greater improvement in the light absorption range, and with the length of the nanotube increases, its absorption threshold red-shifted to visible light. By carefully investigated the internal relationship between the TiO2nanotube arrays(TNTAs) morphology and their PEC performance, we proved that when the anodization time goes to 10 hours, the length of the as prepared TNTAs is about 20.78 μm. The measured photocurrent density is around 1.25 mA cm-2with applied bias voltage 0.6 V (vs. Ag/AgCl) under simulated sunlight irradiation, which is 976 times higher than that of the TiO2bulk substrate (0.00128 mA cm-2). More interestingly, the results of the IPCE measurement show that the band-gap of the as prepared TNTAs is reduced from 3.20 eV to 2.83 eV with applied bias voltage 0.6 V (vs. Ag/AgCl). The corresponding optical response limit is also extended from 400 nm to 510 nm, which implies that the increase of the PEC performance of the TNTAs is due to the great improvement of the utilization of both UV and visible light irradiation. Our findings show that the unique ordered nanotube array structure can further improve the response of TiO2to light under the action of a small applied bias, which is of great significance for electro-optic synergistic catalysis.

    日韩视频在线欧美| 成人影院久久| 18禁黄网站禁片午夜丰满| 国产成人影院久久av| 电影成人av| 母亲3免费完整高清在线观看| 日本a在线网址| 亚洲av欧美aⅴ国产| 色精品久久人妻99蜜桃| 国产又爽黄色视频| 国产精品免费视频内射| 侵犯人妻中文字幕一二三四区| 曰老女人黄片| 欧美精品啪啪一区二区三区| 老司机深夜福利视频在线观看| 美国免费a级毛片| 亚洲午夜理论影院| 免费日韩欧美在线观看| 在线观看66精品国产| 成年版毛片免费区| 久久国产精品影院| 超碰97精品在线观看| 欧美亚洲日本最大视频资源| 每晚都被弄得嗷嗷叫到高潮| 三上悠亚av全集在线观看| 人人妻,人人澡人人爽秒播| 无遮挡黄片免费观看| 人妻 亚洲 视频| 捣出白浆h1v1| 精品久久久久久久毛片微露脸| 欧美日韩亚洲综合一区二区三区_| 中文字幕人妻丝袜制服| 日本a在线网址| 夜夜爽天天搞| 久久亚洲真实| 亚洲人成电影观看| 成人黄色视频免费在线看| 久久久国产成人免费| 亚洲人成电影免费在线| 日韩一卡2卡3卡4卡2021年| 亚洲成a人片在线一区二区| 精品午夜福利视频在线观看一区 | 69精品国产乱码久久久| 国产成人av教育| 色综合欧美亚洲国产小说| 夫妻午夜视频| 久久久久久久久免费视频了| 国精品久久久久久国模美| 一本久久精品| 美女国产高潮福利片在线看| 激情在线观看视频在线高清 | 美女视频免费永久观看网站| 18禁观看日本| 日韩制服丝袜自拍偷拍| 99国产极品粉嫩在线观看| 午夜免费成人在线视频| 国产一区有黄有色的免费视频| 女人高潮潮喷娇喘18禁视频| 免费看a级黄色片| 国产精品香港三级国产av潘金莲| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线观看99| 精品福利永久在线观看| 久久久久国内视频| bbb黄色大片| 国产成人免费观看mmmm| 亚洲avbb在线观看| 91老司机精品| 亚洲国产欧美网| 国产精品99久久99久久久不卡| 亚洲精品在线美女| 日韩欧美国产一区二区入口| 国产又色又爽无遮挡免费看| 人妻一区二区av| 一个人免费在线观看的高清视频| av网站免费在线观看视频| 亚洲五月婷婷丁香| aaaaa片日本免费| 成人影院久久| 精品少妇久久久久久888优播| 99精品在免费线老司机午夜| 一本久久精品| 久热爱精品视频在线9| 精品国产超薄肉色丝袜足j| av线在线观看网站| 极品少妇高潮喷水抽搐| 国产精品香港三级国产av潘金莲| 亚洲男人天堂网一区| 91成年电影在线观看| 国产伦人伦偷精品视频| 久久精品91无色码中文字幕| 麻豆国产av国片精品| 免费不卡黄色视频| 伦理电影免费视频| 成人精品一区二区免费| 一本大道久久a久久精品| 在线观看66精品国产| 每晚都被弄得嗷嗷叫到高潮| 男女午夜视频在线观看| 搡老岳熟女国产| 天堂动漫精品| 性色av乱码一区二区三区2| 久久久久国内视频| 69精品国产乱码久久久| 夜夜夜夜夜久久久久| 国产亚洲午夜精品一区二区久久| 国产在线精品亚洲第一网站| 一级毛片精品| av不卡在线播放| 一区二区三区激情视频| www.自偷自拍.com| 久久精品熟女亚洲av麻豆精品| 欧美黑人欧美精品刺激| 91av网站免费观看| 国产精品自产拍在线观看55亚洲 | 欧美日韩视频精品一区| 99热网站在线观看| 国产人伦9x9x在线观看| 亚洲国产欧美网| 欧美日韩黄片免| 国产日韩欧美亚洲二区| 高清视频免费观看一区二区| 丝袜美腿诱惑在线| 中文欧美无线码| 午夜激情久久久久久久| 午夜免费鲁丝| 不卡av一区二区三区| 999久久久精品免费观看国产| 涩涩av久久男人的天堂| 一本一本久久a久久精品综合妖精| 欧美激情高清一区二区三区| 欧美亚洲 丝袜 人妻 在线| 日韩中文字幕视频在线看片| 午夜免费鲁丝| 国产精品熟女久久久久浪| 老司机靠b影院| 国产精品久久久av美女十八| 亚洲精品美女久久久久99蜜臀| 51午夜福利影视在线观看| 久久香蕉激情| www.精华液| 国产免费视频播放在线视频| 国产精品一区二区精品视频观看| 天天躁夜夜躁狠狠躁躁| 他把我摸到了高潮在线观看 | 亚洲成人手机| 侵犯人妻中文字幕一二三四区| 久久精品国产a三级三级三级| 人妻一区二区av| 69av精品久久久久久 | 女人被躁到高潮嗷嗷叫费观| tube8黄色片| 日本黄色日本黄色录像| 纵有疾风起免费观看全集完整版| 久久香蕉激情| 成人18禁高潮啪啪吃奶动态图| 午夜福利影视在线免费观看| 999久久久精品免费观看国产| 黑人巨大精品欧美一区二区蜜桃| 亚洲av美国av| 一级片免费观看大全| 亚洲精品乱久久久久久| 啦啦啦在线免费观看视频4| 下体分泌物呈黄色| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| 高清毛片免费观看视频网站 | 另类精品久久| 午夜福利欧美成人| 日韩熟女老妇一区二区性免费视频| a级毛片在线看网站| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕最新亚洲高清| 欧美国产精品va在线观看不卡| 日韩欧美国产一区二区入口| 午夜福利,免费看| 国产成人精品无人区| 色婷婷av一区二区三区视频| 人人澡人人妻人| 久热爱精品视频在线9| 巨乳人妻的诱惑在线观看| 亚洲av电影在线进入| 香蕉国产在线看| 久久ye,这里只有精品| h日本视频在线播放| 免费看a级黄色片| 老汉色av国产亚洲站长工具| 九色成人免费人妻av| 无遮挡黄片免费观看| 免费看光身美女| 99久久国产精品久久久| 亚洲 欧美 日韩 在线 免费| 男人和女人高潮做爰伦理| 精品免费久久久久久久清纯| 天天躁日日操中文字幕| 女人被狂操c到高潮| 国产伦精品一区二区三区四那| 成人特级黄色片久久久久久久| 五月伊人婷婷丁香| 香蕉丝袜av| 精品一区二区三区四区五区乱码| 国内精品久久久久精免费| 国产精品亚洲一级av第二区| 男人舔女人下体高潮全视频| 国产伦人伦偷精品视频| 国产97色在线日韩免费| 日韩欧美在线乱码| 一进一出抽搐gif免费好疼| 精华霜和精华液先用哪个| 久久久久久大精品| 一级作爱视频免费观看| 一级毛片女人18水好多| 国产极品精品免费视频能看的| 国产蜜桃级精品一区二区三区| 51午夜福利影视在线观看| 亚洲第一欧美日韩一区二区三区| 91九色精品人成在线观看| 国产爱豆传媒在线观看| 亚洲中文av在线| 日韩有码中文字幕| 国内精品久久久久精免费| 国产99白浆流出| 欧美午夜高清在线| 天天躁日日操中文字幕| 精品午夜福利视频在线观看一区| 久久久久久大精品| 国产亚洲av嫩草精品影院| 国内久久婷婷六月综合欲色啪| 在线十欧美十亚洲十日本专区| 最好的美女福利视频网| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 欧美最黄视频在线播放免费| 国产一区二区三区视频了| 丰满的人妻完整版| 夜夜爽天天搞| 久久伊人香网站| 在线a可以看的网站| 国产免费av片在线观看野外av| 最近最新中文字幕大全免费视频| 中文字幕精品亚洲无线码一区| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 天堂动漫精品| 久久午夜亚洲精品久久| 亚洲av成人精品一区久久| 亚洲 欧美 日韩 在线 免费| 亚洲,欧美精品.| 欧美成狂野欧美在线观看| 男女那种视频在线观看| 国产亚洲av高清不卡| 美女黄网站色视频| 十八禁人妻一区二区| 亚洲av成人精品一区久久| 日本黄色视频三级网站网址| 国产精品一及| 男人的好看免费观看在线视频| 国产精品一区二区免费欧美| 亚洲国产高清在线一区二区三| 亚洲,欧美精品.| 精品欧美国产一区二区三| 国产激情欧美一区二区| 久久精品人妻少妇| 九九热线精品视视频播放| 久久久久性生活片| 91在线观看av| 亚洲精品一区av在线观看| 日韩欧美免费精品| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 亚洲熟妇中文字幕五十中出| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 精品人妻1区二区| 叶爱在线成人免费视频播放| 欧美一级毛片孕妇| 国产黄片美女视频| 久久中文看片网| 国产欧美日韩一区二区精品| 脱女人内裤的视频| 大型黄色视频在线免费观看| 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 国产精品久久久久久精品电影| 久久九九热精品免费| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 51午夜福利影视在线观看| svipshipincom国产片| 国产高潮美女av| 一个人免费在线观看的高清视频| 久久精品国产99精品国产亚洲性色| 欧美激情久久久久久爽电影| 日本 av在线| 夜夜爽天天搞| 国产又黄又爽又无遮挡在线| 动漫黄色视频在线观看| 九色成人免费人妻av| 国产97色在线日韩免费| 天天一区二区日本电影三级| 亚洲片人在线观看| 国产成人影院久久av| 久久久精品大字幕| 一区二区三区高清视频在线| 舔av片在线| 精品午夜福利视频在线观看一区| 老熟妇乱子伦视频在线观看| 黄片小视频在线播放| 国产麻豆成人av免费视频| 国产免费男女视频| 亚洲美女视频黄频| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 国产高潮美女av| 成人特级av手机在线观看| 两人在一起打扑克的视频| 天天一区二区日本电影三级| 国产欧美日韩一区二区三| 后天国语完整版免费观看| 日韩欧美在线乱码| 少妇丰满av| 欧美成人一区二区免费高清观看 | 少妇丰满av| а√天堂www在线а√下载| av女优亚洲男人天堂 | 99久久精品热视频| 91av网站免费观看| 99热这里只有精品一区 | 天堂动漫精品| 久久这里只有精品19| 亚洲最大成人中文| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 欧美激情久久久久久爽电影| 在线免费观看的www视频| 狂野欧美白嫩少妇大欣赏| 无限看片的www在线观看| 国产精品av视频在线免费观看| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 五月伊人婷婷丁香| а√天堂www在线а√下载| www.熟女人妻精品国产| 两个人的视频大全免费| 成人特级av手机在线观看| 久久精品国产99精品国产亚洲性色| 国产乱人伦免费视频| 九色成人免费人妻av| 91麻豆av在线| 亚洲精品在线美女| 天天添夜夜摸| 美女扒开内裤让男人捅视频| 色哟哟哟哟哟哟| 久久中文字幕人妻熟女| 国产久久久一区二区三区| 一进一出抽搐gif免费好疼| 狠狠狠狠99中文字幕| 亚洲av成人精品一区久久| 国产野战对白在线观看| 桃红色精品国产亚洲av| 亚洲 欧美一区二区三区| 亚洲自拍偷在线| 淫秽高清视频在线观看| 久久久国产成人精品二区| 免费av不卡在线播放| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品一区av在线观看| 精品久久久久久久末码| 人人妻人人看人人澡| 最新中文字幕久久久久 | 窝窝影院91人妻| 男人舔女人下体高潮全视频| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 久久中文看片网| 久久久国产成人精品二区| 全区人妻精品视频| 亚洲av电影在线进入| 伦理电影免费视频| 国产精品久久久久久亚洲av鲁大| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦韩国在线观看视频| 美女午夜性视频免费| 国产淫片久久久久久久久 | 一二三四社区在线视频社区8| 在线看三级毛片| 麻豆成人av在线观看| 成在线人永久免费视频| 午夜久久久久精精品| 亚洲av成人不卡在线观看播放网| 免费搜索国产男女视频| 欧美高清成人免费视频www| 久久精品aⅴ一区二区三区四区| 午夜激情福利司机影院| 黄色成人免费大全| 亚洲狠狠婷婷综合久久图片| 国产aⅴ精品一区二区三区波| 久久久国产欧美日韩av| 毛片女人毛片| 国产免费男女视频| 亚洲熟妇中文字幕五十中出| 色av中文字幕| 久久久久久九九精品二区国产| 欧美黑人巨大hd| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影 | 99热只有精品国产| 又爽又黄无遮挡网站| 一进一出抽搐gif免费好疼| 欧美黑人巨大hd| 亚洲午夜理论影院| 18禁国产床啪视频网站| 又爽又黄无遮挡网站| ponron亚洲| 久久久久国内视频| 老司机深夜福利视频在线观看| 99精品欧美一区二区三区四区| 最新在线观看一区二区三区| 欧美三级亚洲精品| av视频在线观看入口| 欧美日本视频| 男女床上黄色一级片免费看| 99久久综合精品五月天人人| 999久久久国产精品视频| 18美女黄网站色大片免费观看| 亚洲成av人片在线播放无| 99精品欧美一区二区三区四区| 欧美另类亚洲清纯唯美| 久久久久亚洲av毛片大全| 久久九九热精品免费| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 淫妇啪啪啪对白视频| 最新中文字幕久久久久 | 午夜日韩欧美国产| 88av欧美| 亚洲国产中文字幕在线视频| 日本与韩国留学比较| 亚洲人成电影免费在线| 一级黄色大片毛片| 免费观看人在逋| 中文字幕高清在线视频| 免费电影在线观看免费观看| 免费看日本二区| 亚洲专区中文字幕在线| 国产亚洲精品久久久com| h日本视频在线播放| 制服丝袜大香蕉在线| 日日摸夜夜添夜夜添小说| 亚洲国产精品合色在线| 91字幕亚洲| 高清毛片免费观看视频网站| 亚洲专区字幕在线| 视频区欧美日本亚洲| 久久国产精品人妻蜜桃| 亚洲国产看品久久| 国产视频内射| 国产精品综合久久久久久久免费| 成人无遮挡网站| 成人国产综合亚洲| 国产精品精品国产色婷婷| 亚洲欧美日韩高清在线视频| 黄色女人牲交| 欧美一级毛片孕妇| 日本五十路高清| 女警被强在线播放| 国产午夜福利久久久久久| 亚洲黑人精品在线| 国产精品乱码一区二三区的特点| or卡值多少钱| 一级毛片精品| 日本精品一区二区三区蜜桃| 法律面前人人平等表现在哪些方面| 精品久久久久久,| xxxwww97欧美| 亚洲av成人不卡在线观看播放网| 又大又爽又粗| 免费无遮挡裸体视频| 黄频高清免费视频| 久久久久久久久中文| 九色成人免费人妻av| 精品一区二区三区av网在线观看| 亚洲片人在线观看| 精品久久蜜臀av无| av天堂在线播放| 国产成人av教育| 麻豆久久精品国产亚洲av| 丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看 | 国产亚洲欧美98| 亚洲 国产 在线| 成年人黄色毛片网站| 黄色成人免费大全| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看 | 国产熟女xx| 国产精品爽爽va在线观看网站| 国产探花在线观看一区二区| 亚洲av免费在线观看| 色尼玛亚洲综合影院| 国产高清激情床上av| 人妻久久中文字幕网| 丁香欧美五月| 亚洲第一欧美日韩一区二区三区| 男人舔奶头视频| 99久久国产精品久久久| 国产爱豆传媒在线观看| 好男人在线观看高清免费视频| 日本黄色视频三级网站网址| 欧美xxxx黑人xx丫x性爽| 国产乱人伦免费视频| 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又免费观看的视频| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 久久久久久大精品| 99久久精品一区二区三区| 国产精品九九99| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 天堂网av新在线| 亚洲av美国av| 两个人看的免费小视频| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 91麻豆精品激情在线观看国产| 国产aⅴ精品一区二区三区波| 在线免费观看的www视频| 黑人欧美特级aaaaaa片| 久久天堂一区二区三区四区| 亚洲天堂国产精品一区在线| 欧美午夜高清在线| 国产人伦9x9x在线观看| 1024香蕉在线观看| 真实男女啪啪啪动态图| 99精品欧美一区二区三区四区| 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 美女被艹到高潮喷水动态| 国产午夜精品久久久久久| 国产激情偷乱视频一区二区| 久久香蕉国产精品| 一区二区三区国产精品乱码| 成在线人永久免费视频| 亚洲专区字幕在线| cao死你这个sao货| 亚洲精品一卡2卡三卡4卡5卡| 18美女黄网站色大片免费观看| 亚洲人成网站在线播放欧美日韩| a在线观看视频网站| 日韩中文字幕欧美一区二区| 男人和女人高潮做爰伦理| 亚洲 欧美 日韩 在线 免费| 欧美色视频一区免费| 久久久久久人人人人人| 女警被强在线播放| av中文乱码字幕在线| 成年免费大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 校园春色视频在线观看| 精品国产美女av久久久久小说| 久久国产精品人妻蜜桃| www.999成人在线观看| 丁香六月欧美| 久久久久久大精品| 特级一级黄色大片| 色播亚洲综合网| 亚洲熟女毛片儿| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 欧美色欧美亚洲另类二区| 丁香欧美五月| 精品久久久久久成人av| 久久这里只有精品中国| 天堂影院成人在线观看| 五月玫瑰六月丁香| 国产av麻豆久久久久久久| 天天添夜夜摸| 免费看光身美女| 国产精品 国内视频| 亚洲人成网站在线播放欧美日韩| 久久久色成人| 又粗又爽又猛毛片免费看| 欧美丝袜亚洲另类 | 麻豆国产97在线/欧美| 成人精品一区二区免费| 亚洲狠狠婷婷综合久久图片| 超碰成人久久| 欧美成人一区二区免费高清观看 | 嫁个100分男人电影在线观看| 老汉色∧v一级毛片| 午夜激情福利司机影院| 亚洲国产精品999在线| 国产成人啪精品午夜网站| 99热只有精品国产| 精品国内亚洲2022精品成人| 欧美性猛交黑人性爽| 超碰成人久久| 亚洲国产欧美一区二区综合| 国产午夜福利久久久久久| 亚洲人成伊人成综合网2020| 少妇人妻一区二区三区视频| 伦理电影免费视频| 国产高清视频在线观看网站| netflix在线观看网站|