• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Fluorination on the Crystal Structure, Stability and Gas Adsorption Property in Zinc(II)Metal-organic Frameworks①

    2022-03-08 02:31:06ZHANGXinCHENZhenXiaYANGYongTaiDENGMingLiWENGLinHong
    結(jié)構(gòu)化學 2022年1期

    ZHANG Xin CHEN Zhen-Xia YANG Yong-Tai DENG Ming-Li WENG Lin-Hong

    (Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,Department of Chemistry, Fudan University, Shanghai 200433, China)

    ABSTRACT Three zinc(II) metal-organic frameworks (xF-MAC-3) have been synthesized by using Zn(II) salts,3,5-dimethyl-1H-1,2,4-triazole (Hdmtrz) and different fluorination degree carboxylate ligands, which are analogic structures and can be described as (6,6)-connected pcu-b net. We find that the fluorine atoms have structural regulation effect on xF-MAC-3, which can not only enlarge the torsion angle of carboxylate ligands but also elevate the space group of structures. Besides, the CO2-273 K uptake increased from 23.21 cm3·g-1 (MAC-3) to 36.13 cm3·g-1 (4F-MAC-3) and H2-77 K uptake increased from 24.33 cm3·g-1 (MAC-3) to 59.79 cm3·g-1(4F-MAC-3), which means fluorination can enhance the gas adsorption uptake of xF-MAC-3 analogues.Furthermore, the results of fluorination in xF-MAC-3 analogues offer a potential way to study the ligand pre-functionalization effect on the structures and properties of MOFs analogues.

    Keywords: metal-organic frameworks, fluorine functionalization, X-ray crystallography, gas adsorption;

    1 INTRODUCTION

    Metal-organic frameworks (MOFs) are porous crystalline materials which are constructed by secondary building units(SBUs) and organic ligands[1-3]. In the last two decades, due to their permanent porosity, structural stability and easily functionalization, MOFs have been widely studied in the fields of applications such as gas adsorption and purification[4-6], catalysis[7-9], molecule sensing and recognition[10-12].

    Since fluorine atoms have the strongest electronegativity and small electron polarization, introducing fluorine-containing functional groups into MOFs can change the pore channel properties and lead to various applications[13-15], such as hydrocarbon separation[16-19], ionic conductivity[20]and,mostly important, H2and CO2adsorption[21-23]. Nevertheless,fluorination will largely change the acidity and coordination ability of the carboxylate ligand, so that fluorinated analogues of MOFs constructed by carboxylate ligands can hardly be synthesized[24-26]. In recent years, some fluorinated analogues of MOFs have been synthesized and the effects of fluorination on MOFs have been studied[27-29]. However, there are still some challenges to figure out the effect of fluorination in MOFs for crystal structures, stabilities, H2and CO2adsorption properties, which arouses our interests.

    Cheetham and co-workers investigated that a series of 3D fluorinated-MOFs can be synthesized by using perfluorinated carboxylates in combination with nonfluorinated nitrogen heterocyclic ligands such as imidazole[30], triazole[31], and both bipyridine[32]. Inspired by this, we synthesized three analogic structures (xF-MAC-3) based on our previous work[33]by using Zn(II) salts, 3,5-dimethyl-1H-1,2,4-triazole(Hdmtrz) and different fluorination degree carboxylate ligands.We also discuss the effects of fluorination on MOFs structure,thermal and chemical stability, H2and CO2adsorption properties in detail.

    2 EXPERIMENTAL

    2. 1 General materials and methods

    All reagents were purchased from commercial sources and used without further purification, except for 3,5-dimethyl-1H-1,2,4-triazole (HDmtrz) and 2,5-difluoroterephthalic acid(H2DFBDC), which were synthesized according to the references[34,35]. Fourier Transform Infrared Spectra (FT-IR)were performed on a ThermoFisher Nicolet iS10 FT-IR spectrometer in the range of 4000~400 cm-1with KBr pellets.Elemental analyses of C, N and H were tested on the Elementar Vario EL III. Powder X-ray diffraction (PXRD)was measured by using a Bruker D8 Advance diffractometer with Cu-Kαradiation (λ= 1.5406 ?). Thermogravimetric analyses (TGA) were carried out on SDT Q600 with the temperature range of 30~900 °C under N2flow at a heating rate 10 °C·min-1. Gas adsorption analyses were tested on the Micromeritics ASAP 2020 surface area analyzer. Before gas sorption, the as-made MOF samples (about 100 mg) were exchanged with dichloromethane (10 mL for three times) and then degassed at 140 °C for 10 hours.

    2. 2 X-ray crystallographic study

    Single-crystal X-ray diffraction (SC-XRD) of all compounds was performed on a Bruker D8 Venture MetalJet with Ga-Kαradiation (λ= 1.3414 ?) at 173 K. Data collection and reduction were performed with APEX III, and empirical absorption corrections were applied by the SADABS program.Structures were solved by direct methods using the SHELXS program and refined with the SHELXL program[36].Non-hydrogen atoms and N-bondedHatoms were directly obtained from a difference Fourier map.C-bonded H atoms were placed geometrically and refined as riding modes. Final refinements were carried out by full-matrix least-squares methods with anisotropic thermal parameters for all non-hydrogen atoms onF2. SQUEEZE method was used to consider the disorder in the channel of the structures[37].

    2. 3 Syntheses

    2. 3. 1 3,5-Dimethyl-1H-1,2,4-triazole (HDmtrz)

    Acetamide (60 g, 1 mol) and 80 wt% hydrazine hydrate (30 g, 0.5 mol) were added into a 250 mL flask and heated at 120 °C for 3 h, when the reaction solution first turned pink and then became colorless. After that, the reaction temperature was increased to 180 °C for 3 h and about 30 mL of liquid was distilled. Finally, the temperature was further increased to 240 °C and colorless liquid was distilled, which was condensed on the tube as white solid product (8.98 g, 0.09 mol). Yield: 9%.1H NMR (DMSO-d6) showedδ= 13.13 (s,1H), 2.20 (s, 6H).

    2. 3. 2 2,5-Difluoroterephthalic acid (H2DFBDC)

    2,5-Difluoro-4-methylbenzoic acid (5.6 g, 33.5 mmol),N-bromosuccinimide (NBS, 29.5 g, 165 mmol) and benzoyl peroxide (BPO, 0.4 g) were added into 100 mL CCl4and refluxed at 120 °C for 48 h and the reaction system changed into orange color. The hot mixture was filtered and washed successively with hot CCl4, and the organic solution was extracted with 1 M HCl by three times, dried over anhydrous MgSO4, filtered and evaporated. The remaining orange solid was the intermediate product with the mess of 9.14 g.1H NMR (DMSO-d6):δ= 7.71 (q, 1H), 7.61 (q, 1H), 7.41 (s, 1H).

    The intermediate product (9.14 g) and sodium periodate(7.17 g, 33.5 mmol) were added into 50 mL 2% H2SO4and refluxed at 90 °C for 24 h. The product was subsequently cooled to room temperature and the cold mixture was filtered,then the precipitate was washed with water. The solids were recrystallized from acetic acid to gain white powder 3.47 g(17.5 mmol). Yield: 52.2%.1H NMR (DMSO-d6):δ= 7.68 (t, 2H).

    2. 3. 3 Zn2(BDC)2(Dmtrz)]·(CH3NH3)·2H2O (MAC-3)

    Zn(OAc)2·2H2O (75 mg, 0.2 mmol), terephthalic acid(H2BDC, 33 mg, 0.2 mmol) and HDmtrz (10 mg, 0.1 mmol)were added to 10 mLN,N-dimethylformamide (DMF) and stirred for 10 min. Then the solution was sealed in a Teflon-lined stainless-steel autoclave (15 mL) and heated at 140 °C for 3 days, followed by cooling down to room temperature. Colorless block crystals were collected by filtration. Yield: 75% based on the Zn(OAc)2·2H2O. Elemental analysis calculated for MAC-3 (Zn2C21H24N4O10, 623.19):C, 40.41; N, 8.98; H, 3.85%. Found: C, 40.50; N, 9.41; H,3.78%. FT-IR (cm-1): 3426m, 3059m, 2963m, 2794m, 2484w,1952w, 1632vs, 1599vs, 1492s, 1393vs, 1253w, 1136w,1099m, 10118m, 875w, 816m, 753s, 694w, 592w, 514m (Fig. 1b).

    2. 3. 4 Zn3(H2O)2(MeO)2(DFBDC)2(Dmtrz)]·(CH3)2NH2(2F-MAC-3)

    [Zn(NO3)2·6H2O (87 mg, 0.3 mmol), H2DFBDC (40 mg,0.2 mmol) and HDmtrz (10 mg, 0.1 mmol) were added to the mixture solution of DMF (2 mL) and methanol (MeOH, 8 mL), and the mixture was stirred for 10 min. Subsequently,the mixture was sealed in a Teflon-lined stainless-steel autoclave (15 mL) and heated at 90 °C for 12 h, followed by cooling down to room temperature. Colorless block crystals were collected by filtration. Yield: 60% based on the Zn(NO3)2·6H2O. Elemental analysis calculated for 2F-MAC-3 (Zn3C24H28N4O12F4, 836.61): C, 34.42; N, 6.69; H,3.35%. Found: C, 34.45; N, 6.65; H, 3.30%. FT-IR (cm-1):3411m, 3073w, 2978m, 2927w, 2878w, 2448w, 2033w,1646vs, 1588vs, 1486m, 1419vs, 1356s, 1264m, 1213m,1183s, 1121m, 1026w, 988w, 945w, 900m, 853m, 808s, 774s,706w, 657w, 529m (Fig. 1b).

    2. 3. 5 [Zn2(TFBDC)2(Dmtrz)]·H2O (4F-MAC-3)

    Zn(NO3)2·6H2O (87 mg, 0.3 mmol), 2,3,5,6-tetrafluoroterephthalic acid (H2TFBDC, 48 mg, 0.2 mmol) and HDmtrz (10 mg, 0.1 mmol) were added to the mixture solution ofN,N-diethylformamide (DEF, 2 mL) and MeOH (8 mL), and the mixture was stirred for 10 min. Then the mixture was sealed in a Teflon-lined stainless-steel autoclave (15 mL) and heated at 90 °C for 12 h, followed by cooling down to room temperature. Light purple block crystals were collected by filtration. Yield: 65% based on Zn(NO3)2·6H2O. Elemental analysis calculated for 4F-MAC-3 (Zn2C20H9N3O9F8, 718.04):C, 33.42; N, 5.84; H, 1.24%. Found: C, 33.50; N, 5.94; H,1.20%. FT-IR (cm-1): 3422m, 2921w, 2941w, 2874w, 2361w,1639vs, 1474m, 1419vs, 1356s, 1264m, 1213m, 1183s,1121m, 1026w, 988w, 945w, 900m, 853m, 808s, 774s, 706w,657w, 529m (Fig. 1b).

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis and general characterization

    Zn2(BDC)2(Dmtrz)]·(CH3NH3)·2H2O (MAC-3) was synthesized by solvothermal method in DMF with the raw material ratio of Zn(OAc)2·2H2O:H2BDC:HDmtrz as 3:2:2 after referring to the previously reported method[33]. However,we failed to acquirexF-MAC-3 (x= 2 or 4) under the same synthesis conditions, which we believed that was mainly due to the introduction of fluorine atoms[38]. Due to the strongest electronegativity and electron polarization of the fluorine atom, the electronic density on the benzene ring and the ligand acidity would change after the introduction of the fluorine atom into the carboxylate ligand. As the number of fluorine atoms increases, the electronic density of the benzene ring would decrease while the ligand acidity would increase,which changed the coordination ability of the carboxylate ligand and affected the synthesis of MOF materials. Therefore,we used zinc nitrate with stronger coordination ability as the metal salt during the synthesis of 2F-MAC-3. We also introduced methanol with low boiling point and strong polarity into the solvent system and used milder reaction conditions to gain high quality 2F-MAC-3 single crystal.During the synthesis of 4F-MAC-3, we replaced DMF with DEF, which had better ligand solubility and helped to obtain the single-crystal test-qualified 4F-MAC-3 sample.

    The PXRD pattern ofxF-MAC-3 samples fitted well with the simulated data, confirming the pure phase of all samples(Fig. 1a). The existence of fluorine atoms in the structures was checked by using1H NMR and FT-IR spectroscopy. The FT-IR spectra of 2F-MAC-3 and 4F-MAC-3 had absorption peaks at 1182 and 989 cm-1, respectively, which could be ascribed as the stretching vibration peaks of C–F bonds,showing the presence of fluorine functionalized ligands(Fig. 1b)[39]. Furthermore, the disappearance of C–H non-planar deviational vibration peaks in the range of 950~780 cm-1in 4F-MAC-3 FT-IR spectrum also implied the absence of C–H bonds in 4F-MAC-3, certifying that the carboxylate ligand in 4F-MAC-3 is TFBDC[40]. The1H NMR spectroscopy showed the ligand composition ofxF-MAC-3 structures. The1H NMR spectra of MAC-3 and 2F-MAC-3 had two NMR peaks with different chemical shifts, where the peak atδ7.99 could be ascribed as the benzene ring hydrogen of carboxylate ligand (-PhH) and that atδ2.48 was the methyl hydrogen of the Dmtrz ligand (-CH3), respectively (Fig. 1c).The ratio of the two ligands closed to 1:1 calculated by the peak integrating area, which was consistent with the structural molecular formula results. There was only one peak in the1H NMR spectrum of 4F-MAC-3 atδ2.44, which was the methyl hydrogen (-CH3) of the Dmtrz ligand. The absence of other chemical shift peaks also proved that the carboxylate ligand in 4F-MAC-3 is TFBDC.

    Fig. 1. (a) PXRD pattern; (b) FT-IR spectra; (c) 1H NMR spectra of xF-MAC-3 (x = 0, 2, 4)

    3. 2 X-ray crystal structure

    As a prototype structure, single-crystal X-ray diffraction study revealed that MAC-3 crystallized in monoclinic system,C2/mspace group (Table S1). The asymmetric unit of MAC-3 contained two crystallographically independent Zn(II). Four carboxylate groups in BDC ligands andNatoms in Dmtrz ligands coordinated to Zn(1) and Zn(1)A(A: 1–x,y, 2–z),forming zinc paddle-wheel SBU [Zn2(COO)4N2]. Two Dmtrz ligands coordinated to Zn(2) and Zn(2)B(B: 1–x, 1–y, 1–z)viaaμ1,2-bridging mode to construct triazolate-dinuclear SBUs[Zn2(Dmtrz)2O4] (Fig. 2a). Two SBUs connected with each other to generate a 1D chain structure with a folding angleθof 168.78°, and such chains are linked by BDC ligands along thexandyaxes to form a 3D structure with a 7.0? × 7.0? channel along thecaxis (considering van der Waals radius,Fig. 2b). Considering paddle-wheel and triazolate-dinuclear as 6-connected SBUs, MAC-3 could be defined as a (6,6)-connectedpcu-b topology net (Fig. S1)[41].

    Fig. 2. (a) Secondary building units and organic ligands of xF-MAC-3; (b)~(d) Single-crystal structures of xF-MAC-3

    Based on the MAC-3 prototype structure, we replaced BDC ligand by fluorine-functionalized ligands to synthesize iso-structures and 2F-MAC-3 & 4F-MAC-3 were subsequently isolated (Fig. 2c, d, Fig. S2, 3 and Table S1). Distinct structural changes concerning the carboxylate ligands, 1D chain and SBUs are summarized in Table 1 and Fig. 1b, which mainly included (i) space group elevated fromC2/m(MAC-3)toImmm(2F-MAC-3 & 4F-MAC-3); (ii) the folding angleθof 1D chain changed from obtuse angle (168.78°) into straight angle (180°); (iii) the torsion angle in BDC ligands turned into right angle; (iv) trianzolate-dinuclear SBU changed into a novel zinc tetranuclear SBU when the BDC ligand was replaced by fluorine-functionalized DFBDC ligands. The 1D channel size of 2F-MAC-3 is 4.0? × 6.8? (considering van der Waals radius) which is smaller than MAC-3. The channel of 2F-MAC-3 is smaller than MAC-3 mainly caused by the larger zinc tetranuclear SBU in 2F-MAC-3, which reduced the size of 1D channel in MOFs. Furthermore, the 1D channel size of 4F-MAC-3 is 6.8? × 6.8? (considering van der Waals radius) which is slightly smaller than MAC-3. Considering the SBUs in 4F-MAC-3 are the same with MAC-3, the smaller 1D channel in 4F-MAC-3 is due to the relatively larger size of fluorine atoms.

    There are two important differences in the chemistry of fluorine-functionalized BDC ligands compared to their nonfluorinated analogues, which caused the structural changes inxF-MAC-3 mentioned above. The first difference among three carboxylate ligands is the pKavalue. As discussed, the pKavalue of BDC-derived ligands decreases with the increasing number of fluorine atoms on the ligand, which means the acidities of 2F-MAC-3 & 4F-MAC-3 are stronger than MAC-3. So the fluorinated ligands can be deprotonated more easily and coordinated with zinc ions in a multidentate mode. This explains SBUs in MAC-3 are paddle-wheel and triazolate-dinuclear when SBUs in 2F-MAC-3 & 4F-MAC-3 are paddle-wheel and zinc tetranuclear. Secondly, in 2F-MAC-3 & 4F-MAC-3, the fluorine atoms of BDC ligands enlarge the torsion angle to a right angle, by which the carboxylate groups are twisted out of the benzene ring. This can be attributed to (i) an electrostatic repulsion effect between the fluorine atoms on the benzene ring and the lone-pair oxygen atoms on the carboxylate groups; (ii) the decrease in aromatic character of BDC ligands due to the electron-withdrawing nature of the fluorine atoms[42]. The two differences mentioned above cause the folding angleθof 1D chain inxF-MAC-3 (x= 2, 4) become a straight angle, thus inducing structures to crystallize in a higher symmetry space group (Fig. S4). This suggests that the introduction of fluorine atoms into ligand has a structure directing effect on the synthesizedxF-MAC-3.

    3. 3 Structural stability

    To study the porosity ofxF-MAC-3, we first investigated the thermal and solvent stability ofxF-MAC-3 to determine the activation conditions for gas adsorption test. The TGA analysis reveals that allxF-MAC-3 samples contain two weight loss peaks. The first one from room temperature to 200 °C shows about 25% weight loss, which can be attributed to the departure of guest molecules. The second weight loss peak from 250 to 600 °C results from the decomposition of the framework. For the increasing fluorination degree will weaken the C(-Phenyl)–C(Carboxylate)bond, the decarboxylation reaction will be easy to occur as the degree of fluorination increases, which makes the decomposition temperature significantly shift to lower temperature (420 °C for MAC-3 and 250 °C for 4F-MAC-3, Fig. 3a)[43]. From the variable temperature PXRD patterns ofxF-MAC-3, we can find that the structures will keep the crystallinity until 180 °C, which is consistent with the TGA data (Fig. 3b~d). ImmersingxF-MAC-3 into different solvents (e.g. dichloromethane,methanol, acetone, ethyl acetate) for 2 h, PXRD patterns show no significant changes, indicating thatxF-MAC-3 has good solvent stability and the fluorine-functionalized of the ligands doesn’t affect the solvent stability of the MAC-3 structure(Fig. S5).

    3. 4 Gas adsorption properties

    The N2-77 K adsorption isotherms ofxF-MAC-3 reveal the presence of microporous structures in the structures. The BET surfaces are 532 m2g-1(MAC-3), 459 m2g-1(2F-MAC-3) and 579 m2g-1(4F-MAC-3, Fig. 3a), respectively. For the channel ofxF-MAC-3 is occupied by cationic CH3NH3+molecules,the experimental BET surfaces are remarkably lower than the theoretical accessible surfaces calculated by Material Studio(van der Waals radius of the probe molecule: 1.84 ?;calculated supercell: 2 × 2 × 2 supercell)[44]. The void space ofxF-MAC-3 is calculated by PLATON software and the data are listed in Table S2[45]. The pore size distribution ofxF-MAC-3 is calculated by DFT model and the maximum pore sizes ofxF-MAC-3 are 5.52 ? (MAC-3), 5.88 ?(2F-MAC-3) and 5.73 ? (4F-MAC-3, Fig. 4b), respectively.

    Fig. 3. (a) TGA curves; (b) Variable temperature PXRD patterns of xF-MAC-3

    Fig. 4. (a) N2-77K adsorption isotherms; (b) Pore size distribution of xF-MAC-3

    H2and CO2adsorption experiments have been used to understand the relationship between gas adsorption capacity and fluorination degree ofxF-MAC-3. CO2-273 K adsorption experiments ofxF-MAC-3 are carried out under 800 mmHg and the uptake ofxF-MAC-3 amount is 23.21 cm3·g-1(1.04 mmol·g-1, MAC-3), 27.50 cm3·g-1(1.23 mmol·g-1,2F-MAC-3) and 36.13 cm3·g-1(1.61 mmol·g-1, 4F-MAC-3)respectively, which show that CO2uptake amount increases when fluorination degree increases on the carboxylate ligands(Fig. 5a~c).

    Fig. 5. (a) Low-pressure CO2 adsorption isotherm at 258 and 273 K (solid line: adsorption isotherm;hollow line: desorption isotherm); (b) Adsorption heat (Qst) for xF-MAC-3

    To further investigate the effect of fluorination degree on CO2adsorption enthalpy (Qst), we preform 258 K CO2adsorption experiments and the isosteric heat of CO2adsorption is calculated from the Virial method (Fig. S6, Fig.5d~f)[46]. The near-zero coverageQstis 29.0, 27.5 and 26.1 kJ·mol-1for MAC-3, 2F-MAC-3 and 4F-MAC-3, respectively. The result illustrates that the interaction between the hostxF-MAC-3 frameworks and guest CO2molecules adsorption decrease as the degree of fluorination increases,which is caused by the lower electronic density on the benzene ring after using fluorine-functionalized ligands[42].

    H2-77 K adsorption experiment results show that the gas uptake amounts ofxF-MAC-3 increase form 24.33 cm3·g-1(MAC-3) to 59.79 cm3·g-1(4F-MAC-3) at 77 K and 1 atm(Fig. S7). Although the H2uptake amounts ofxF-MAC-3 are significantly lower than some classical electrically neutral frameworks due to the presence of anti-balance cation in the channel of structures, 4F-MAC-3 has the highest H2capacity among the ionic fluorinated-MOFs[31,47]. It is further demonstrated that the structural pore properties and adsorption performance can be tuned by functionalization of ligands in MOF materials.

    4 CONCLUSION

    In conclusion, we synthesized three different fluorination degree MOFs (xF-MAC-3) withpcu-b topology. Our studies revealed that the introduction of fluorine atoms into carboxylate ligands would not only enlarge the torsion angle of ligands but also elevate the space group ofxF-MAC-3,which indicated that fluorination is crucial for MOFs structures. Besides, the CO2and H2adsorption abilities ofxF-MAC-3 have a great enhancement after fluorination, in which the H2-77 K uptake of 4F-MAC-3 (59.79 cm3·g-1) is the highest among all anion fluorinated MOFs. Therefore, we do a systematic research on the effect of fluorination inxF-MAC-3, thus offering a potential way to study the ligand pre-functionalization effect on the structures and properties of MOFs analogues.

    一级a爱视频在线免费观看| 丝袜在线中文字幕| 午夜福利高清视频| 精品国产亚洲在线| 亚洲国产日韩欧美精品在线观看 | 亚洲成av人片免费观看| 欧美黑人巨大hd| 丝袜人妻中文字幕| 久久天躁狠狠躁夜夜2o2o| 国产精品久久视频播放| 99久久精品国产亚洲精品| 精品午夜福利视频在线观看一区| 国产视频内射| 国产高清videossex| 国产高清有码在线观看视频 | 高清在线国产一区| 久久 成人 亚洲| 亚洲国产欧美网| 欧美不卡视频在线免费观看 | 国内精品久久久久精免费| 国产成人欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品 欧美亚洲| 国产成人啪精品午夜网站| 精品欧美一区二区三区在线| 18禁裸乳无遮挡免费网站照片 | 岛国视频午夜一区免费看| 精品国产一区二区三区四区第35| 久久精品夜夜夜夜夜久久蜜豆 | 在线观看午夜福利视频| 视频在线观看一区二区三区| 日韩三级视频一区二区三区| 日本a在线网址| 国产精品久久久久久人妻精品电影| 亚洲av熟女| 国产成人影院久久av| 欧美zozozo另类| 在线观看午夜福利视频| 非洲黑人性xxxx精品又粗又长| 亚洲第一欧美日韩一区二区三区| 人妻丰满熟妇av一区二区三区| 国产精品亚洲美女久久久| 久热爱精品视频在线9| 午夜福利高清视频| 欧美黄色片欧美黄色片| av视频在线观看入口| 免费看十八禁软件| 成年免费大片在线观看| 国产av一区在线观看免费| 国产亚洲av嫩草精品影院| 午夜日韩欧美国产| 黄网站色视频无遮挡免费观看| 身体一侧抽搐| 国产成人欧美| 老熟妇乱子伦视频在线观看| 亚洲一区高清亚洲精品| 真人一进一出gif抽搐免费| 嫁个100分男人电影在线观看| 国产亚洲精品久久久久5区| 成在线人永久免费视频| 成人免费观看视频高清| avwww免费| 久久久久精品国产欧美久久久| 亚洲熟妇中文字幕五十中出| 午夜a级毛片| 国产三级在线视频| 波多野结衣高清无吗| 国产精品综合久久久久久久免费| 夜夜夜夜夜久久久久| 青草久久国产| 桃红色精品国产亚洲av| 香蕉丝袜av| 99精品欧美一区二区三区四区| 国产精品香港三级国产av潘金莲| 亚洲成人精品中文字幕电影| 国产精品二区激情视频| cao死你这个sao货| 国产97色在线日韩免费| 在线国产一区二区在线| 757午夜福利合集在线观看| 美女国产高潮福利片在线看| 亚洲一区中文字幕在线| 国产99久久九九免费精品| 成人国产综合亚洲| 亚洲专区字幕在线| 999久久久国产精品视频| 99久久久亚洲精品蜜臀av| 欧美一区二区精品小视频在线| 久热这里只有精品99| 午夜福利免费观看在线| 好男人在线观看高清免费视频 | 在线永久观看黄色视频| 一夜夜www| 国产色视频综合| 美女 人体艺术 gogo| 国产区一区二久久| 午夜久久久在线观看| 精品久久久久久久人妻蜜臀av| 一级黄色大片毛片| 久久精品夜夜夜夜夜久久蜜豆 | 99久久国产精品久久久| 一级毛片女人18水好多| 久久婷婷成人综合色麻豆| 亚洲人成网站在线播放欧美日韩| 日韩成人在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 在线观看免费午夜福利视频| 我的亚洲天堂| 欧美日韩黄片免| 男人舔女人下体高潮全视频| 成在线人永久免费视频| 中文字幕精品亚洲无线码一区 | 国产高清videossex| 99久久99久久久精品蜜桃| 女同久久另类99精品国产91| 欧美黑人精品巨大| cao死你这个sao货| 18禁黄网站禁片午夜丰满| 一级片免费观看大全| а√天堂www在线а√下载| 亚洲性夜色夜夜综合| 男人操女人黄网站| 一本一本综合久久| 男女那种视频在线观看| 亚洲熟女毛片儿| 美女免费视频网站| 日本免费a在线| 可以在线观看的亚洲视频| 夜夜躁狠狠躁天天躁| 国产精品98久久久久久宅男小说| 熟女电影av网| 久久精品aⅴ一区二区三区四区| or卡值多少钱| 一进一出抽搐动态| 真人做人爱边吃奶动态| 久久精品91蜜桃| 中文字幕人成人乱码亚洲影| 嫩草影院精品99| 亚洲成av人片免费观看| 精品久久久久久成人av| 国产亚洲精品av在线| 国产午夜福利久久久久久| 久久亚洲精品不卡| 69av精品久久久久久| 黄色片一级片一级黄色片| 成人18禁在线播放| 美女国产高潮福利片在线看| 亚洲国产毛片av蜜桃av| 丝袜美腿诱惑在线| av片东京热男人的天堂| 国产1区2区3区精品| 午夜两性在线视频| 97人妻精品一区二区三区麻豆 | 国内少妇人妻偷人精品xxx网站 | 每晚都被弄得嗷嗷叫到高潮| 国产成人av激情在线播放| av福利片在线| 亚洲片人在线观看| 亚洲国产欧美网| 国产日本99.免费观看| 成人午夜高清在线视频 | 伦理电影免费视频| www.www免费av| 国产一区二区三区在线臀色熟女| 巨乳人妻的诱惑在线观看| 成人三级黄色视频| 精品国产亚洲在线| 中文字幕人成人乱码亚洲影| 亚洲九九香蕉| 在线观看日韩欧美| 成人国语在线视频| 精品卡一卡二卡四卡免费| 欧美精品亚洲一区二区| 男人舔女人下体高潮全视频| 精品久久久久久久末码| 日本一本二区三区精品| 侵犯人妻中文字幕一二三四区| 老司机在亚洲福利影院| 亚洲自拍偷在线| 一个人免费在线观看的高清视频| 欧美色视频一区免费| 午夜久久久在线观看| 超碰成人久久| 国产一区二区三区视频了| 久久国产乱子伦精品免费另类| 一区二区三区高清视频在线| 91麻豆精品激情在线观看国产| 高清毛片免费观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人免费电影在线观看| 宅男免费午夜| 欧美成人一区二区免费高清观看 | www.www免费av| 国产aⅴ精品一区二区三区波| 国产精品1区2区在线观看.| 久久人人精品亚洲av| 亚洲中文av在线| 好男人在线观看高清免费视频 | 中文字幕久久专区| 久久香蕉精品热| 男人舔女人下体高潮全视频| 国产精品免费视频内射| 欧美人与性动交α欧美精品济南到| 757午夜福利合集在线观看| 久久精品人妻少妇| 免费在线观看完整版高清| 国产成人精品无人区| 久久久国产精品麻豆| 黄色女人牲交| 成人午夜高清在线视频 | 久久久国产精品麻豆| 国产成人精品久久二区二区91| 久久久国产成人精品二区| 在线播放国产精品三级| 亚洲一区二区三区色噜噜| 免费高清视频大片| 欧美激情高清一区二区三区| 青草久久国产| 91国产中文字幕| 国产精品久久视频播放| 国产极品粉嫩免费观看在线| 久久国产亚洲av麻豆专区| 亚洲 国产 在线| 午夜福利免费观看在线| 十分钟在线观看高清视频www| 午夜日韩欧美国产| 99re在线观看精品视频| 午夜福利在线观看吧| 正在播放国产对白刺激| av电影中文网址| 欧美日本亚洲视频在线播放| 国产一区二区激情短视频| 日韩有码中文字幕| 日日爽夜夜爽网站| 国产精品久久久久久亚洲av鲁大| 少妇裸体淫交视频免费看高清 | 性色av乱码一区二区三区2| 国产精品自产拍在线观看55亚洲| 国产精品一区二区精品视频观看| 国产精品98久久久久久宅男小说| 超碰成人久久| 国产视频一区二区在线看| 亚洲国产欧美日韩在线播放| 97人妻精品一区二区三区麻豆 | 国产免费av片在线观看野外av| АⅤ资源中文在线天堂| 成人免费观看视频高清| 人成视频在线观看免费观看| 无人区码免费观看不卡| 一本综合久久免费| 午夜福利欧美成人| 最近最新免费中文字幕在线| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2 | 亚洲国产精品久久男人天堂| 日本成人三级电影网站| 久久久久久国产a免费观看| 免费人成视频x8x8入口观看| 亚洲第一欧美日韩一区二区三区| 中文字幕最新亚洲高清| 少妇粗大呻吟视频| 久久亚洲精品不卡| 每晚都被弄得嗷嗷叫到高潮| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 国产黄色小视频在线观看| 99精品久久久久人妻精品| 中文字幕高清在线视频| 日韩成人在线观看一区二区三区| 国产国语露脸激情在线看| 久久国产亚洲av麻豆专区| 午夜福利在线在线| 超碰成人久久| 搡老岳熟女国产| 精品乱码久久久久久99久播| 露出奶头的视频| 欧美成人一区二区免费高清观看 | 久9热在线精品视频| 日本熟妇午夜| 午夜福利欧美成人| 一本一本综合久久| 国产亚洲精品av在线| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲成人久久爱视频| 久久人妻av系列| a在线观看视频网站| 国产av不卡久久| 88av欧美| 午夜视频精品福利| 午夜福利免费观看在线| 淫妇啪啪啪对白视频| 国产亚洲精品综合一区在线观看 | 久久天堂一区二区三区四区| 亚洲七黄色美女视频| 操出白浆在线播放| 久久久久久久久免费视频了| 国产一区二区在线av高清观看| 视频在线观看一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产乱人伦免费视频| 亚洲欧美日韩高清在线视频| 亚洲精品中文字幕在线视频| 国产亚洲精品第一综合不卡| 美女免费视频网站| 国产午夜精品久久久久久| 国内揄拍国产精品人妻在线 | 天天躁夜夜躁狠狠躁躁| 亚洲av成人不卡在线观看播放网| 18禁观看日本| 一进一出好大好爽视频| 每晚都被弄得嗷嗷叫到高潮| 中文亚洲av片在线观看爽| 午夜福利18| 国产精品日韩av在线免费观看| 最近在线观看免费完整版| 国产熟女午夜一区二区三区| cao死你这个sao货| 久久久久国产一级毛片高清牌| 久久精品国产综合久久久| 亚洲欧美精品综合一区二区三区| 久久精品人妻少妇| 岛国视频午夜一区免费看| 亚洲欧美一区二区三区黑人| 国产精品九九99| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产清高在天天线| 天堂√8在线中文| 国产亚洲av嫩草精品影院| 欧美最黄视频在线播放免费| 亚洲专区中文字幕在线| 久久久久久国产a免费观看| 久久久精品欧美日韩精品| 欧美乱妇无乱码| 欧美zozozo另类| 成年免费大片在线观看| 国产熟女xx| 午夜福利18| 亚洲av第一区精品v没综合| 日本 av在线| 亚洲性夜色夜夜综合| 黄片小视频在线播放| 亚洲七黄色美女视频| 老司机福利观看| 欧美色欧美亚洲另类二区| 亚洲欧美日韩高清在线视频| 亚洲三区欧美一区| 欧美精品啪啪一区二区三区| 日韩欧美国产一区二区入口| 亚洲av日韩精品久久久久久密| 久久久久久久精品吃奶| 99久久无色码亚洲精品果冻| 国产熟女午夜一区二区三区| 成年免费大片在线观看| 丁香六月欧美| 无限看片的www在线观看| 国产真人三级小视频在线观看| 国产黄色小视频在线观看| www国产在线视频色| 国产国语露脸激情在线看| av福利片在线| 欧美中文日本在线观看视频| 日本一区二区免费在线视频| 亚洲欧洲精品一区二区精品久久久| 久久久国产成人精品二区| xxx96com| av免费在线观看网站| 一级a爱片免费观看的视频| 亚洲狠狠婷婷综合久久图片| 在线天堂中文资源库| 国产成人精品无人区| xxxwww97欧美| 欧美黑人精品巨大| 久久久久久久午夜电影| 黄片大片在线免费观看| 男人舔女人下体高潮全视频| 日日夜夜操网爽| 国产单亲对白刺激| 黑丝袜美女国产一区| 最近最新免费中文字幕在线| 天堂动漫精品| 91成人精品电影| 日韩欧美 国产精品| 亚洲国产欧美日韩在线播放| 97碰自拍视频| 久久婷婷人人爽人人干人人爱| 亚洲中文av在线| 国产激情偷乱视频一区二区| 日韩成人在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 99在线视频只有这里精品首页| 黄色丝袜av网址大全| 成人特级黄色片久久久久久久| 丰满的人妻完整版| 视频在线观看一区二区三区| 在线播放国产精品三级| 中文字幕最新亚洲高清| 国产精品国产高清国产av| 久久久国产欧美日韩av| 国产精品自产拍在线观看55亚洲| 桃色一区二区三区在线观看| 免费在线观看视频国产中文字幕亚洲| 久久亚洲精品不卡| 哪里可以看免费的av片| 国产伦人伦偷精品视频| 男女视频在线观看网站免费 | 欧美黄色片欧美黄色片| 亚洲av成人不卡在线观看播放网| 美女大奶头视频| 久久久久久久精品吃奶| 一本久久中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧洲精品一区二区精品久久久| 欧美乱色亚洲激情| 不卡一级毛片| 免费高清视频大片| 两性夫妻黄色片| 看片在线看免费视频| 亚洲一区二区三区色噜噜| videosex国产| 1024视频免费在线观看| 精品久久久久久久久久久久久 | 国产亚洲av嫩草精品影院| 国产久久久一区二区三区| 搞女人的毛片| 精品久久久久久,| 亚洲精华国产精华精| 国产av又大| 麻豆一二三区av精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成伊人成综合网2020| 成人一区二区视频在线观看| 99国产精品99久久久久| 午夜福利18| 亚洲av成人av| 99热6这里只有精品| 不卡av一区二区三区| 一区二区三区高清视频在线| 午夜激情av网站| 亚洲成人精品中文字幕电影| 亚洲黑人精品在线| 国产aⅴ精品一区二区三区波| 久久久国产精品麻豆| 亚洲av成人一区二区三| 看片在线看免费视频| 亚洲国产精品合色在线| 午夜福利高清视频| 男人舔奶头视频| АⅤ资源中文在线天堂| 狠狠狠狠99中文字幕| 欧美黑人巨大hd| 国产av在哪里看| 久久久久精品国产欧美久久久| 日本一本二区三区精品| 在线观看www视频免费| 国产一区二区三区视频了| 99久久久亚洲精品蜜臀av| bbb黄色大片| 欧美黄色淫秽网站| 欧美色欧美亚洲另类二区| 在线观看日韩欧美| 99热6这里只有精品| 免费观看精品视频网站| 国产av一区二区精品久久| 日本一本二区三区精品| 亚洲片人在线观看| 在线看三级毛片| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人成人乱码亚洲影| 欧美人与性动交α欧美精品济南到| 国产精品1区2区在线观看.| av在线天堂中文字幕| 欧美一级a爱片免费观看看 | 亚洲男人天堂网一区| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合 | 欧美日韩亚洲国产一区二区在线观看| 成人国产一区最新在线观看| 免费看美女性在线毛片视频| 亚洲人成电影免费在线| 亚洲中文字幕日韩| 久久久久久久精品吃奶| 在线av久久热| 桃色一区二区三区在线观看| 日韩免费av在线播放| 国产亚洲精品第一综合不卡| 免费在线观看黄色视频的| 国产精品1区2区在线观看.| 少妇裸体淫交视频免费看高清 | 亚洲欧美日韩无卡精品| 色播亚洲综合网| 久久 成人 亚洲| 国产精品一区二区三区四区久久 | 一区二区三区国产精品乱码| 国产野战对白在线观看| a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 国产av不卡久久| 午夜久久久在线观看| 97人妻精品一区二区三区麻豆 | 国产一区二区三区在线臀色熟女| 欧美丝袜亚洲另类 | 免费电影在线观看免费观看| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看| 十八禁人妻一区二区| 欧美精品亚洲一区二区| 久久亚洲真实| 精品一区二区三区av网在线观看| 久久久精品欧美日韩精品| 一级毛片精品| 欧美av亚洲av综合av国产av| 国产成人精品久久二区二区91| 香蕉久久夜色| 亚洲九九香蕉| 亚洲一区二区三区不卡视频| 一个人免费在线观看的高清视频| 国产亚洲欧美98| 久久欧美精品欧美久久欧美| 免费电影在线观看免费观看| 精品第一国产精品| 老熟妇仑乱视频hdxx| 亚洲av第一区精品v没综合| 亚洲av第一区精品v没综合| 香蕉久久夜色| 国产精品av久久久久免费| 国产激情久久老熟女| 欧美av亚洲av综合av国产av| 黑丝袜美女国产一区| 波多野结衣巨乳人妻| 国产一卡二卡三卡精品| 啦啦啦韩国在线观看视频| 亚洲人成电影免费在线| 18美女黄网站色大片免费观看| 精品少妇一区二区三区视频日本电影| 白带黄色成豆腐渣| 好男人在线观看高清免费视频 | 色播在线永久视频| 97人妻精品一区二区三区麻豆 | 亚洲精品久久成人aⅴ小说| 丰满人妻熟妇乱又伦精品不卡| 白带黄色成豆腐渣| 国产精品 国内视频| 啪啪无遮挡十八禁网站| 成人一区二区视频在线观看| 美女免费视频网站| 久久久久国产一级毛片高清牌| 12—13女人毛片做爰片一| 国产色视频综合| av电影中文网址| 俄罗斯特黄特色一大片| 日韩国内少妇激情av| 满18在线观看网站| 久久久久精品国产欧美久久久| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 热99re8久久精品国产| 国产成人啪精品午夜网站| 成人特级黄色片久久久久久久| 99国产极品粉嫩在线观看| www.www免费av| 我的亚洲天堂| av中文乱码字幕在线| 18美女黄网站色大片免费观看| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 国产在线观看jvid| 亚洲成国产人片在线观看| 国产午夜福利久久久久久| 亚洲人成77777在线视频| 中文在线观看免费www的网站 | 999久久久精品免费观看国产| 亚洲狠狠婷婷综合久久图片| 高清在线国产一区| 大型黄色视频在线免费观看| 国产精华一区二区三区| 无遮挡黄片免费观看| 久久九九热精品免费| 久久热在线av| 村上凉子中文字幕在线| 亚洲国产精品999在线| 国产又爽黄色视频| 久久天躁狠狠躁夜夜2o2o| 亚洲av中文字字幕乱码综合 | 黄色视频,在线免费观看| 在线看三级毛片| 色在线成人网| 一夜夜www| 激情在线观看视频在线高清| 欧美日韩福利视频一区二区| 91字幕亚洲| 久久人妻av系列| 亚洲av成人av| 中文字幕精品免费在线观看视频| 亚洲七黄色美女视频| 国产1区2区3区精品| a在线观看视频网站| 中文字幕高清在线视频| 日韩高清综合在线| 欧美成人午夜精品| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 婷婷丁香在线五月| 少妇被粗大的猛进出69影院| 母亲3免费完整高清在线观看| 国产亚洲精品久久久久久毛片| 国产色视频综合| 少妇粗大呻吟视频| 成人国语在线视频| 狠狠狠狠99中文字幕| 亚洲国产欧美一区二区综合| 真人做人爱边吃奶动态| 在线观看免费日韩欧美大片| 男男h啪啪无遮挡| 两性夫妻黄色片| 两个人免费观看高清视频|