• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Design and Property Prediction of High Density 4-Nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate Derivatives as the Potential High Energy Explosives①

    2022-03-08 02:30:50YANGJingPANGYuLIMinXinYANGGeFeiJIAJingXinMENGXingJunLIULiHuYANGXioChunGAOXioZhen
    結構化學 2022年1期

    YANG Jing PANG Yu LI Min-Xin YANG Ge-Fei JIA Jing-Xin MENG Xing-Jun LIU Li-Hu YANG Xio-Chun GAO Xio-Zhen

    a (Department of Chemistry, Tangshan Normal College, Tangshan 063000, China)

    b (School of Chemical Engineering and Light Industry,Guangdong University of Technology, Guangzhou 510006, China)

    c (Yangquan Municipal Key Laboratory of Quantum Manipulation,Shanxi Institute of Technology, Yangquan 045000, China)

    ABSTRACT To search for potential energetic materials with large energy density and acceptable thermodynamics and kinetics stability, twelve derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate (named A~L) are designed and analyzed by using density functional theory (DFT) calculations at the B3LYP/6-311G**level of theory. The molecular heats of formation (HOF), electronic structures, impact sensitivity (H50), oxygen balance (OB) and density (ρ) are investigated by isodesmic reaction method and physicochemical formulas.Furthermore, the detonation velocity (D) and detonation pressure (P) are calculated to study the detonation performance by Kamlet-Jacobs (K-J) equation. These results show that new molecule J (H50 = 36.9 cm, ρ = 1.90 g/cm3, Q = 1912.46 cal/g, P = 37.82 GPa, D = 9.22 km/s, OB = 0.00), compound A (H50 = 27.9 cm, ρ = 1.93 g/cm3,Q = 1612.93 cal/g, P = 38.90 GPa, D = 9.19 km/s) and compound H (H50 = 37.3 cm, ρ = 1.97 g/cm3, Q = 1505.06 cal/g, P = 37.20 GPa, D = 9.01 km/s) present promising effects that are far better RDX and HMX as the high energy density materials. Our calculations can provide useful information for the molecular synthesis of novel high energy density materials.

    Keywords: 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate, energetic materials, density functional theory, explosive; DOI: 10.14102/j.cnki.0254-5861.2011-3256

    1 INTRODUCTION

    The value of harnessing the power of energetic materials(EMs) has been realized for quite some time, resulting in their pervasive use in different commercial processes[1-3]. Advancements in energetic materials have also been driven by a need to find more powerful, stable, and reliable materials for military devices. These traditional energetic compounds are explored such as trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotrimethylenetrinitramine (RDX),cyclotetramethylene tetranitramine (HMX), 1,1-diamino-2,2-dinitroethylene (FOX-7) and triaminotrinitrobenzene(TATB). They consist of organic C–H–N–O molecules which combine both fuel (C–H backbone) and oxidizer (nitro (NO2)or nitrate (NO3)) groups within a single mole cule[4]. Afterwards, much work has been focused on the derivatives of these traditional high energy density materials (HEDMs).Although such investigations provide some important results,the demands of high energy and insensitivity are quite often contradictory to each other, making the development of novel HEDMs a challenging problem. Thus, systemic molecular design for high-nitrogen compound is still needed to explore

    3 RESULTS AND DISCUSSION

    3. 1 Heats of formation

    The basic structures are presented in Fig. 1. For the sake of discussion, all derivatives of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate are named A~L in sequence. Heat of formation (HOF) is a significant factor to reflect the energy content of a compound and molecular stability. High and positive HOF means high energy but less stability. The value of HOF (kJ/mol) is calculated based on formulas (2), (3) and(4), and the ultimate results are listed in Table 2. At the same time, Table 2 also lists the total energies (E0, a.u), zero-point energies (ZPE, a.u) and thermal corrections (HT, a.u) in the isodesmic reactions at the B3LYP/6-311G** level of theory.Besides, Table 2 presents the data of traditional energetic materials to compare our results in this section.

    Fig. 1. All molecular structures of the title derivatives

    Table 2. Calculated Total Energies (E0, a.u.), Zero-point Energies (ZPE, a. u.), Thermal Corrections (HT, a. u.), and Solid Phase Heats of Formation (HOFs, Solid, kJ/mol) of Twelve New High Explosives Compared to Traditional Explosives

    As shown in Table 2, all derivatives of the title compound have positive HOFs, which is one of the requirements for energetic materials[20]. It is worth noting that not only all derivatives exhibit excellent HOFs but also all the corresponding values (326.75~1341.05 kJ/mol) are higher compared with TNT (–63.12 kJ/mol), RDX (79.00 kJ/mol),HMX (75.24 kJ/mol) and FOX-7 (–133.70 kJ/mol)[15,21].These values, especially for compound G, meet most military and civilian requirements. The HOFs decrease to the lowest value (326.75 kJ/mol) when about three nitroso groups are present on the substitution site. The HOFs then obtain maximum (1341.05 kJ/mol) as additional -N3group is added to the original skeleton because abundant N–N bonds also have positive effect for increasing the HOFs value. When the substituent is NO2, NH2, NHNH2, NHNO2, NNH2NO2or N3,an increase HOF value of its substituted compounds is large when compared with the unsubstituted case. While the substituent is NNO2NO2, ONO2, NNO2ONO2, OH, NF2or C(NO2)3, the case is quite different. As expected, the introduction of nitrogen rich groups (NO2, NH2, NHNH2,NHNO2, NNH2NO2, N3) results in higher heats of formation than their parent (559.59 kJ/mol), which means these designed materials are promising to apply in the future. This change trend of HOF can be arranged in the sequence G > C > E > B > D > A > F > K > J > I > H > L.

    3. 2 Molecular structures and electronic properties

    Our method to design new high energy density materials on years of experience is coupled with interdisciplinary computational way in this field. There are three concrete standards that a newly-designed energetic explosive should meet: (i) stable five-membered heterocyclic rings obtained in our designed structures in order to stop abrupt dissociation/decomposition of these rings, (ii) a relatively-high number of nitrogen and oxygen atoms to guarantee lower oxygen balance (OB) and higher heat of formation (HOF), (iii)a combination of amino and nitro groups to improve stability to mechanical impact and thermal stability of the final materials. What’s more, one advantage of these compounds designed by us is that each new organic molecule contains two heterocycles, which greatly improves the stability of the materials.

    The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) are called frontier molecular orbitals (FMOs). The energy gap(ELUMOHOMO) between HOMO and LUMO reflects the chemical reactivity, kinetic stability and optical polarizability of the compounds. The molecular frontier orbital energy levels and their gaps are contained in Table 3. It is obvious to see from Table 3 that HOMO energies vary from ?0.3027 to?0.3438 a.u. and LUMO from ?0.1106 to ?0.1602 a.u. for all new designed derivatives, and the frontier orbital energies differ from different compounds. Except for compound J, it is noteworthy that all the investigated molecules have higher energy gap than their parent and compound K with a NF2group has the maximum value. Thus, the contributions of the NF2group to the derivatives improve the stability of the compound and reduce their chemical activity. As shown in Table 3, the value of the investigated molecule J is less than the parent, indicating that the new designed molecule may be more sensitive than the parent. The differences predict that the chemical activity of the title compounds decreases in the following order: K > C > F > D > A > I > E > L > H > B >G > J. The low value ofELUMOHOMOmeans this electron transfer is easy from HOMO to LUMO. In other words, these molecules are more sensitive and chemically active and less stable.

    Table 3. Frontier Orbital Energies and Their Differences of Title Compounds at the B3LYP/6-311G** Level of Theory

    3. 3 Impact sensitivity

    Apart from the energies and structures, the sensitivity of energetic materials is also a key study of keen interest to researchers in the research area of high energy density materials. Here, we use characteristic height (H50) to evaluate the sensitivity of molecules. Theoretical prediction of impact sensitivity for energetic materials has long been considered a difficult study, because the sensitivity of organic compounds is relevant to their decomposition kinetics and thermodynamics, which is very complicated. Actually, a calculation using crystal volume factors to assess impact sensitivities of nitramine energetic is proposed by Politzer and co-workers,which give acceptable accuracy[18]. So, the impact sensitivities of new organic derivatives were also computed by using model 1 forH50values. Besides, according to previous study,some researchers found that the compounds are stabilized by the delocalization of electronic charge. The impact sensitivity can be relevant to the degree of charge separation and the presence of strongly positive electrostatic potential maxima on the molecular surface[19]. Thus, in order to further discuss whether our system fits the relevant models, we also calculate theH50values of the other four models in this work. TheH50values of all five models are listed in Table 4. We can clearly see a big vary between the values of different models, which may be caused by the different influence factors considered by each formula. Because these designed molecules have no specific experimental values forH50, we only compare these values using four models with the experimental values of parent compound. For the experimental value ofH50, the parent is 24 cm; for the theoretical value, model 1 is 39.1,model 2 is 126.1 cm, model 3 is 60.98 cm, model 4 is 1.49 cm,and model 5 is 0.13 cm. These results support model 1 is significant in predicting impact sensitivities for our system,and the factors of other models may be minor. So next, we will focus on model 1 because its prediction results are more accurate than those of other models in our system.

    In Table 4, these molecules haveH50values between 19.7 and 37.5 cm. Compound L with C(NO2)3group has the lowestH50, which means it is more sensitive, but compound B with the largest value is more stable. A NH2group appears in compound B, which may provide additional hydrogen bond interactions. Thereby, there is a significant increase inH50in this impact sensitivity. The impact sensitivityH50of these new molecules was nearly above 26 cm, and most of them were comparable with that of common explosives, RDX (26 cm)and HMX (29 cm)[22,23]. Besides, theH50values of all derivatives are higher than CL-20. The sensitivity increased with the number of oxygen atoms in different new groups. The phenomenon may result from oxides that have a strong power to attract electrons, thus reducing their impact sensitivity to some extent. However, owing to the complexity of assessing impact sensitivity, these views could be single rather than conclusive.

    Table 4. Calculated Impact Sensitivity (H50) of the Investigated Molecules and RDX, HMX and CL-20

    3. 4 Detonation performance

    Detonation velocity (D) and detonation pressure (P) are two key explosive parameters for a high energy density material. These parameters can be calculated by the Kamlet Jacobs empirical equations on the basis of the theoretical density (ρ) and heat of detonation (Q) of the energetic materials. TheQandρvalues of synthetic molecules can be measured experimentally, but for some new organic materials,they are very difficult to obtain experimentally. Thus, these twovalues of designed new compounds have to be shown firstly to gain key parameters. Therefore, the calculated densities (ρ), heats of detonation (Q), detonation velocities (D)and detonation pressures (P) of the designed molecules are shown in Table 5. At the same time, the experimental detonation performances of traditional energetic materials are listed in Table 5 for an intuitive comparison.

    From the table, we can see that values ofρ,Q,DandPare from 1.76 g/cm3(L) to 1.97 g/cm3(H), from 1011.45 cal/g (G)to 2083.31 cal/g (C), from 7.47 km/s (G) to 9.19 km/s (A),and from 24.28 GPa (G) to 38.9 GPa (A), respectively. By comparing theρvalue of parent and these new title compounds, we found that the density of most of the molecules is much higher than the density of parent. Besides,theρvalue of the parent is close to that of compound E.Further work was focused on improving the detonation performance of the title compounds by introducing energetic groups which resulted in the second-generation of agent defeat weapons. The introduction of NF2is a successful strategy, with the molecular density rising from 1.86 g/cm3(parent) to 1.98 g/cm3(K), which is better than that of TNT(1.64 g/cm3), RDX (1.80 g/cm3), HMX (1.90 g/cm3), and FOX-7 (1.89 g/cm3)[24]. As we know, a molecular density close to 2.0 g/cm3is desirable until now in the field of explosive. Thus, molecule K is glamorous from the viewpoint of density. As expected, the introduction of nitrogen rich groups leads to higher density than these common explosives have. Compounds A (1.93 g/cm3), F (1.92 g/cm3), H (1.97 g/cm3) and I (1.96 g/cm3) also show better density. After evaluating the physicochemical properties of the title compounds, including density and HOF, our attention has been turned to their detonation properties. As shown in Table 4, the calculated detonation velocity and detonation pressure of compound A are 9.19 km/s and 38.9 GPa, respectively,which are much superior to those of TATB (8.11 km/s and 32.4 GPa), TNT (6.95 km/s and 19.00 GPa) and RDX (8.75 km/s and 34.7 GPa)[24]. The detonation velocity and pressure of all compounds are also superior to those of TNT. But compound G (24.28 GPa) has lower detonation pressure than HMX (39.2 GPa), FOX-7 (35.9 GPa), and RDX (34.9 GPa)[24].

    Furthermore, oxygen balance (OB) is also an important parameter for energetic materials to determine whether the compounds are oxygen-enriched or oxygen-poor. Here, for a compound with molecular formula CaHbOcNd, the oxygen balance can be represented as equation (9)[25]:

    Table 5. Calculated Detonation Properties and Nitrogen Content of the Title Compounds and Reference Compounds TNT, RDX, HMX, FOX-7 and CL-20

    4 CONCLUSION

    A family of new organic molecules of 4-nitro-5-(5-nitro-1,2,4-triazol-3-yl)-2H-1,2,3-triazolate are designed. The molecular structures, electronic properties, heat of formation(HOF), impact sensitivity (H50), density (ρ), detonation velocity (D) and detonation pressure (P) of all new compounds are completely characterized by theoretical calculation at the B3LYP/6-311G** level of theory. Besides,oxygen balance (OB) and nitrogen content for all compounds are discussed in this paper. It is noteworthy that all title compounds have excellent HOFs and higherDandPvalues than TNT. Eight of them (A, C, D, E, F, H, I, J) have higherPvalues than RDX (34.70 GPa) and FOX-7 (34.00 GPa), and three of them (A, E, J) have higherDvalues than HMX (9.10 km/s). The good detonation performances of these compounds are caused by outstanding density. Surprisingly, more than half of these derivatives have higher density over 1.80 g/cm3.

    Based on the above results, we can see that new molecule J(H50= 36.9 cm,ρ= 1.90 g/cm3,Q= 1912.46 cal/g,P= 37.82 GPa,D= 9.22 km/s, OB = 0.00), compound A (H50= 27.9 cm,ρ= 1.93 g/cm3,Q= 1612.93 cal/g,P= 38.90 GPa,D= 9.19 km/s) and compound H (H50= 37.3 cm,ρ=1.97 g/cm3,Q=1505.06 cal/g,P= 37.20 GPa,D= 9.01 km/s) can be considered as potential candidates in terms of the energetic material. Especially for compound J, the good balance of detonation performance and sensitivity, plus the environmental oxygen balance, contribute to its practical application as a promising primary explosive. It is a green and powerful alternative to the toxic and sensitive explosives.

    亚洲中文av在线| 老熟妇仑乱视频hdxx| 亚洲精品中文字幕在线视频| 18美女黄网站色大片免费观看| xxxhd国产人妻xxx| 中国美女看黄片| www.999成人在线观看| 在线观看免费视频日本深夜| 欧美日韩瑟瑟在线播放| 黑人猛操日本美女一级片| 亚洲av熟女| 男女床上黄色一级片免费看| 午夜日韩欧美国产| 精品一区二区三区四区五区乱码| 啪啪无遮挡十八禁网站| 久久国产乱子伦精品免费另类| 真人做人爱边吃奶动态| av网站在线播放免费| 久久草成人影院| 男人的好看免费观看在线视频 | 成熟少妇高潮喷水视频| 亚洲国产欧美一区二区综合| 黄色女人牲交| 日韩视频一区二区在线观看| 日韩视频一区二区在线观看| 国产av精品麻豆| 69av精品久久久久久| 露出奶头的视频| 午夜福利欧美成人| 天天躁夜夜躁狠狠躁躁| 久久国产精品男人的天堂亚洲| 日韩中文字幕欧美一区二区| 亚洲三区欧美一区| 夜夜看夜夜爽夜夜摸 | a级毛片在线看网站| 99riav亚洲国产免费| 久久天躁狠狠躁夜夜2o2o| 欧美乱妇无乱码| 精品午夜福利视频在线观看一区| 国产三级在线视频| 天堂动漫精品| 久久久国产成人免费| 伦理电影免费视频| 麻豆成人av在线观看| 巨乳人妻的诱惑在线观看| 90打野战视频偷拍视频| 男人操女人黄网站| 脱女人内裤的视频| 麻豆一二三区av精品| 真人一进一出gif抽搐免费| 日韩大尺度精品在线看网址 | 国产成+人综合+亚洲专区| 国产片内射在线| 精品欧美一区二区三区在线| 热99re8久久精品国产| 成人黄色视频免费在线看| 人成视频在线观看免费观看| 嫩草影院精品99| 国产三级黄色录像| 色综合站精品国产| 十八禁网站免费在线| 国产精品九九99| 国内毛片毛片毛片毛片毛片| 亚洲中文av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲在线自拍视频| 三上悠亚av全集在线观看| 老汉色∧v一级毛片| 亚洲av片天天在线观看| 90打野战视频偷拍视频| 亚洲美女黄片视频| 岛国在线观看网站| 免费观看精品视频网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧洲精品一区二区精品久久久| 久久精品亚洲av国产电影网| 黄色a级毛片大全视频| 久热爱精品视频在线9| 日韩精品免费视频一区二区三区| 午夜福利在线观看吧| 自拍欧美九色日韩亚洲蝌蚪91| 欧美中文综合在线视频| 97人妻天天添夜夜摸| 国产一区在线观看成人免费| 久久99一区二区三区| 狂野欧美激情性xxxx| 欧美 亚洲 国产 日韩一| 国产三级在线视频| 天堂中文最新版在线下载| 97超级碰碰碰精品色视频在线观看| 国产在线精品亚洲第一网站| 午夜精品国产一区二区电影| 99国产综合亚洲精品| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩高清在线视频| 午夜精品国产一区二区电影| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 变态另类成人亚洲欧美熟女 | 国产免费现黄频在线看| 亚洲成国产人片在线观看| 国产伦一二天堂av在线观看| av视频免费观看在线观看| 亚洲精华国产精华精| 久久伊人香网站| 国产乱人伦免费视频| 亚洲片人在线观看| 午夜免费激情av| 最近最新中文字幕大全电影3 | 久久国产精品人妻蜜桃| 999久久久国产精品视频| 国产免费现黄频在线看| av网站在线播放免费| 亚洲专区字幕在线| 91麻豆精品激情在线观看国产 | 国产深夜福利视频在线观看| 日日干狠狠操夜夜爽| 精品午夜福利视频在线观看一区| 日韩中文字幕欧美一区二区| 亚洲av电影在线进入| x7x7x7水蜜桃| 美女国产高潮福利片在线看| 国产蜜桃级精品一区二区三区| 麻豆av在线久日| 搡老乐熟女国产| 黄色 视频免费看| 国产免费现黄频在线看| 精品久久久久久成人av| 在线观看www视频免费| 美女高潮喷水抽搐中文字幕| 欧美日韩一级在线毛片| 又黄又粗又硬又大视频| 国产精品久久久人人做人人爽| 久久精品成人免费网站| 日日摸夜夜添夜夜添小说| 黑人巨大精品欧美一区二区蜜桃| 午夜福利欧美成人| 欧美日本亚洲视频在线播放| 国产xxxxx性猛交| 国产伦人伦偷精品视频| 成人影院久久| 好男人电影高清在线观看| 久久久精品欧美日韩精品| 美女 人体艺术 gogo| 无限看片的www在线观看| 波多野结衣av一区二区av| 欧美成人性av电影在线观看| 两个人看的免费小视频| 老熟妇仑乱视频hdxx| 国产亚洲欧美在线一区二区| bbb黄色大片| av电影中文网址| 美女午夜性视频免费| 欧美在线一区亚洲| 久久青草综合色| 午夜免费成人在线视频| cao死你这个sao货| 日日摸夜夜添夜夜添小说| 村上凉子中文字幕在线| 丝袜人妻中文字幕| 成人精品一区二区免费| 国产蜜桃级精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产成人精品久久二区二区免费| 亚洲国产毛片av蜜桃av| 真人一进一出gif抽搐免费| 国产av一区在线观看免费| 91精品国产国语对白视频| 色婷婷av一区二区三区视频| 在线看a的网站| 中亚洲国语对白在线视频| 超色免费av| 99热国产这里只有精品6| 青草久久国产| 国产熟女午夜一区二区三区| 99热国产这里只有精品6| 熟女少妇亚洲综合色aaa.| 亚洲精品久久午夜乱码| 精品卡一卡二卡四卡免费| 在线观看舔阴道视频| 中文字幕高清在线视频| 9热在线视频观看99| 亚洲人成网站在线播放欧美日韩| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区91| 国产成人一区二区三区免费视频网站| 久久国产精品影院| 一个人免费在线观看的高清视频| 男女高潮啪啪啪动态图| 成人国产一区最新在线观看| 久久精品91无色码中文字幕| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 操美女的视频在线观看| 亚洲精品国产区一区二| 亚洲国产精品一区二区三区在线| 久久国产亚洲av麻豆专区| 成人三级黄色视频| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 俄罗斯特黄特色一大片| 人人澡人人妻人| 人人妻,人人澡人人爽秒播| 精品久久久久久久久久免费视频 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一卡2卡3卡4卡5卡精品中文| 美国免费a级毛片| 欧美黑人精品巨大| 亚洲免费av在线视频| 欧美精品亚洲一区二区| 亚洲精品国产精品久久久不卡| 久久久国产成人精品二区 | 国产国语露脸激情在线看| 免费在线观看视频国产中文字幕亚洲| 国产午夜精品久久久久久| www国产在线视频色| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲av高清一级| 久久国产精品人妻蜜桃| 大型黄色视频在线免费观看| 一区二区三区精品91| 精品国产国语对白av| 男女做爰动态图高潮gif福利片 | 国产成人一区二区三区免费视频网站| 黄网站色视频无遮挡免费观看| 淫秽高清视频在线观看| 欧美久久黑人一区二区| 精品一区二区三卡| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲一级av第二区| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 欧美在线黄色| 久久这里只有精品19| 国产精品一区二区精品视频观看| 免费女性裸体啪啪无遮挡网站| 最近最新中文字幕大全电影3 | 757午夜福利合集在线观看| 长腿黑丝高跟| 搡老乐熟女国产| 国产亚洲精品第一综合不卡| 69精品国产乱码久久久| 又紧又爽又黄一区二区| 天堂中文最新版在线下载| 日韩大尺度精品在线看网址 | 91av网站免费观看| 美女福利国产在线| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 亚洲欧美激情在线| 18禁美女被吸乳视频| 一级毛片女人18水好多| 在线永久观看黄色视频| 国产亚洲欧美精品永久| 亚洲少妇的诱惑av| 一进一出抽搐动态| 动漫黄色视频在线观看| 18美女黄网站色大片免费观看| 国产熟女xx| 黄片小视频在线播放| 精品久久蜜臀av无| 久久欧美精品欧美久久欧美| 久久香蕉激情| 在线观看www视频免费| 最近最新中文字幕大全免费视频| 搡老熟女国产l中国老女人| 久久中文看片网| 大码成人一级视频| 国产av在哪里看| 国产精品偷伦视频观看了| 亚洲专区字幕在线| 黑丝袜美女国产一区| 精品第一国产精品| 男女做爰动态图高潮gif福利片 | xxxhd国产人妻xxx| 日韩欧美三级三区| 黑人猛操日本美女一级片| 成人三级黄色视频| 亚洲成a人片在线一区二区| 久久婷婷成人综合色麻豆| 色精品久久人妻99蜜桃| 欧美 亚洲 国产 日韩一| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全电影3 | 变态另类成人亚洲欧美熟女 | 国产精品久久电影中文字幕| 久久国产精品男人的天堂亚洲| 午夜老司机福利片| 国产高清视频在线播放一区| 欧美精品一区二区免费开放| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 国产激情欧美一区二区| 天堂动漫精品| 亚洲欧洲精品一区二区精品久久久| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| 亚洲专区中文字幕在线| 69精品国产乱码久久久| 亚洲成人久久性| 嫁个100分男人电影在线观看| 757午夜福利合集在线观看| av在线天堂中文字幕 | 亚洲男人天堂网一区| 欧美日韩亚洲国产一区二区在线观看| 99re在线观看精品视频| av网站在线播放免费| 欧美日本亚洲视频在线播放| 亚洲国产欧美一区二区综合| 精品国产乱子伦一区二区三区| 999久久久精品免费观看国产| 久久精品aⅴ一区二区三区四区| 满18在线观看网站| 夫妻午夜视频| 亚洲一区中文字幕在线| 80岁老熟妇乱子伦牲交| www.www免费av| 亚洲精品久久午夜乱码| 午夜视频精品福利| 90打野战视频偷拍视频| 亚洲欧美激情综合另类| 老司机深夜福利视频在线观看| 精品国产美女av久久久久小说| 高清黄色对白视频在线免费看| 制服人妻中文乱码| 久久香蕉精品热| 久久久久久久午夜电影 | 在线永久观看黄色视频| 高清在线国产一区| 亚洲国产看品久久| 成人亚洲精品av一区二区 | 丰满迷人的少妇在线观看| 国产蜜桃级精品一区二区三区| 人妻久久中文字幕网| 国产野战对白在线观看| 国产区一区二久久| 在线视频色国产色| 少妇的丰满在线观看| 久久人人精品亚洲av| 老司机午夜十八禁免费视频| 国产av在哪里看| 精品一区二区三区四区五区乱码| 国产男靠女视频免费网站| x7x7x7水蜜桃| 亚洲伊人色综图| 在线观看免费午夜福利视频| 韩国精品一区二区三区| e午夜精品久久久久久久| 久久人人97超碰香蕉20202| 国产欧美日韩一区二区精品| 日韩免费av在线播放| 日韩有码中文字幕| 自线自在国产av| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 久久九九热精品免费| 一边摸一边做爽爽视频免费| 交换朋友夫妻互换小说| 日韩视频一区二区在线观看| 久久 成人 亚洲| 久久香蕉国产精品| 国产亚洲精品综合一区在线观看 | 亚洲自偷自拍图片 自拍| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 久久中文字幕人妻熟女| 欧美乱色亚洲激情| 亚洲七黄色美女视频| 欧美乱色亚洲激情| 中文字幕另类日韩欧美亚洲嫩草| 91九色精品人成在线观看| 美女高潮到喷水免费观看| 欧美最黄视频在线播放免费 | 国产aⅴ精品一区二区三区波| 80岁老熟妇乱子伦牲交| 欧美另类亚洲清纯唯美| 80岁老熟妇乱子伦牲交| 欧美久久黑人一区二区| 国产午夜精品久久久久久| 天堂影院成人在线观看| 精品乱码久久久久久99久播| 我的亚洲天堂| 欧美激情极品国产一区二区三区| 美女福利国产在线| 国产精品二区激情视频| 日日夜夜操网爽| 女性生殖器流出的白浆| av电影中文网址| 男女之事视频高清在线观看| 美女国产高潮福利片在线看| 国产黄色免费在线视频| 麻豆久久精品国产亚洲av | 美女午夜性视频免费| 欧美另类亚洲清纯唯美| 在线永久观看黄色视频| 午夜免费鲁丝| 国产精品爽爽va在线观看网站 | 精品国产一区二区久久| 男女午夜视频在线观看| aaaaa片日本免费| 亚洲成人免费av在线播放| 国产区一区二久久| av在线播放免费不卡| 亚洲精品国产一区二区精华液| 精品人妻在线不人妻| 国产精品永久免费网站| a级片在线免费高清观看视频| www.精华液| 两个人免费观看高清视频| 国产高清国产精品国产三级| 国产精品一区二区三区四区久久 | 亚洲人成电影免费在线| 最好的美女福利视频网| 熟女少妇亚洲综合色aaa.| 在线永久观看黄色视频| 免费观看精品视频网站| 黄色视频,在线免费观看| 欧美 亚洲 国产 日韩一| 国产成人精品无人区| 欧美日韩av久久| 1024视频免费在线观看| 黄色 视频免费看| 国产成人av教育| 人人妻,人人澡人人爽秒播| 女人被狂操c到高潮| 国产不卡一卡二| 国产av一区在线观看免费| 亚洲男人天堂网一区| 日日摸夜夜添夜夜添小说| 无限看片的www在线观看| 俄罗斯特黄特色一大片| 手机成人av网站| 中国美女看黄片| 身体一侧抽搐| 操美女的视频在线观看| 在线观看免费视频网站a站| 女人精品久久久久毛片| 三上悠亚av全集在线观看| 黄色成人免费大全| 五月开心婷婷网| 免费久久久久久久精品成人欧美视频| 18禁观看日本| 国产精品成人在线| 欧美国产精品va在线观看不卡| www.999成人在线观看| 午夜久久久在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩一级在线毛片| 亚洲成人免费电影在线观看| 久久久久久久精品吃奶| 无限看片的www在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲五月色婷婷综合| 欧美成人午夜精品| 美女高潮喷水抽搐中文字幕| 成人18禁在线播放| 天天影视国产精品| 国产熟女午夜一区二区三区| 亚洲欧美激情在线| 两性夫妻黄色片| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 女性被躁到高潮视频| 18禁美女被吸乳视频| 黄色怎么调成土黄色| 免费在线观看完整版高清| 成人18禁在线播放| av欧美777| 久久草成人影院| 午夜影院日韩av| 欧美日韩视频精品一区| 亚洲精品中文字幕在线视频| 丝袜人妻中文字幕| 久久国产精品影院| av超薄肉色丝袜交足视频| 手机成人av网站| 日日干狠狠操夜夜爽| 咕卡用的链子| 色综合站精品国产| 亚洲欧美日韩高清在线视频| 80岁老熟妇乱子伦牲交| 国产成人欧美在线观看| ponron亚洲| 一区在线观看完整版| 少妇 在线观看| cao死你这个sao货| 国产精品乱码一区二三区的特点 | av有码第一页| 一级毛片精品| 天堂√8在线中文| 精品久久久久久久久久免费视频 | 精品熟女少妇八av免费久了| 悠悠久久av| 99精品久久久久人妻精品| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 久久国产精品男人的天堂亚洲| 91大片在线观看| 国产一区二区三区在线臀色熟女 | 中文字幕人妻熟女乱码| 欧美在线黄色| 免费在线观看日本一区| а√天堂www在线а√下载| 动漫黄色视频在线观看| 亚洲成a人片在线一区二区| 国产精品久久久人人做人人爽| 中文字幕av电影在线播放| 久久99一区二区三区| 999精品在线视频| 久久精品国产99精品国产亚洲性色 | 一边摸一边抽搐一进一出视频| 国产精品偷伦视频观看了| 最好的美女福利视频网| 最新美女视频免费是黄的| 日韩视频一区二区在线观看| 国产视频一区二区在线看| 很黄的视频免费| 国产精品久久久人人做人人爽| 真人做人爱边吃奶动态| 亚洲精华国产精华精| 好男人电影高清在线观看| 国产激情久久老熟女| 国产精品九九99| 9热在线视频观看99| 精品熟女少妇八av免费久了| 99热国产这里只有精品6| 亚洲自拍偷在线| 国产在线精品亚洲第一网站| 午夜亚洲福利在线播放| 国产一区二区三区视频了| 老司机午夜福利在线观看视频| 欧美老熟妇乱子伦牲交| 一本综合久久免费| 欧美精品一区二区免费开放| 在线观看一区二区三区激情| 国产精品 欧美亚洲| 午夜福利一区二区在线看| 久久午夜综合久久蜜桃| 深夜精品福利| 亚洲色图综合在线观看| 欧美激情极品国产一区二区三区| 色综合婷婷激情| 视频在线观看一区二区三区| 亚洲精品一区av在线观看| 91大片在线观看| 香蕉丝袜av| 亚洲中文字幕日韩| 桃色一区二区三区在线观看| 91麻豆精品激情在线观看国产 | 麻豆av在线久日| 亚洲伊人色综图| 久久午夜综合久久蜜桃| 中文字幕人妻丝袜制服| 麻豆久久精品国产亚洲av | 99国产精品免费福利视频| 国产激情欧美一区二区| 久久久精品欧美日韩精品| 欧美 亚洲 国产 日韩一| 91av网站免费观看| 精品国产国语对白av| 91成年电影在线观看| 老司机深夜福利视频在线观看| 日韩人妻精品一区2区三区| 亚洲一区二区三区色噜噜 | 免费在线观看黄色视频的| 亚洲精品一区av在线观看| 欧美丝袜亚洲另类 | 啦啦啦在线免费观看视频4| 亚洲性夜色夜夜综合| 一边摸一边抽搐一进一出视频| 99riav亚洲国产免费| 悠悠久久av| 色婷婷av一区二区三区视频| 日本五十路高清| 国产单亲对白刺激| 国产免费av片在线观看野外av| 国产成人av激情在线播放| 女生性感内裤真人,穿戴方法视频| 女人爽到高潮嗷嗷叫在线视频| а√天堂www在线а√下载| 亚洲五月色婷婷综合| 69精品国产乱码久久久| 男女午夜视频在线观看| 日韩欧美在线二视频| 宅男免费午夜| 一级毛片女人18水好多| 久久久精品欧美日韩精品| 国产精品乱码一区二三区的特点 | 又大又爽又粗| 纯流量卡能插随身wifi吗| 久久草成人影院| 亚洲视频免费观看视频| 国产激情欧美一区二区| 欧美日韩乱码在线| 欧美精品亚洲一区二区| 嫁个100分男人电影在线观看| 一进一出抽搐gif免费好疼 | 99久久人妻综合| 精品日产1卡2卡| 黄色女人牲交| 真人做人爱边吃奶动态| 日本免费a在线| 亚洲va日本ⅴa欧美va伊人久久| 久久精品成人免费网站| 国产精品综合久久久久久久免费 | 欧美日韩视频精品一区| 黄色 视频免费看| 性少妇av在线| 一区福利在线观看| 国产激情欧美一区二区| 51午夜福利影视在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲人成电影免费在线| 欧美av亚洲av综合av国产av| 亚洲精品国产一区二区精华液|