• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural and Magnetic Characterization of Two New Coordination Compounds Based on a Fluorene Derivative Ligand①

    2022-03-08 02:30:44YANGQingFengYUEKiWANGZhiHuiLAIXioYongWANGXioZhongQINLing
    結(jié)構(gòu)化學(xué) 2022年1期

    YANG Qing-Feng YUE Ki WANG Zhi-Hui LAI Xio-Yong WANG Xio-Zhong QIN Ling

    a (State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China)

    b (Chongqing Changfeng Chemical Industrial Co., Ltd., Chongqing 401220, China)

    ABSTRACT Two new coordination compounds [Co(FDC)2(H2O)2]n (1) and [Cu(FDC)2(2,2?-bpy)]·DMF·H2O(2) (HFDC = 9-fluorenone-4-carboxylic acid, bpy = 2,2?-bipyridine, DMF = N,N-dimethylformamide) were prepared by the reactions of corresponding metal salts with a fluorene derivative ligand of HFDC. Both compounds were thoroughly analyzed by X-ray single-crystal diffraction, elemental analysis, IR spectra, PXRD and thermal analysis. Compound 1 features a 1D structure. Via two kinds of O?H···O hydrogen bonds, such 1D chains self-assemble into a 3D supramolecular structure stabilized by the offset face-to-face π···π interactions.Compound 2 features a dinuclear structure which, via O?H···O and C?H···O hydrogen bonds, self-assembles into a 2D supramolecular layer strengthened by strong face-to-face π···π interactions. And variable-temperature magnetic susceptibilities of 1 and 2 indicate weak antiferromagnetic interactions between the Co(II) and Cu(II)metal ions.

    Keywords: low-dimensional coordination compounds, fluorene derivative, magnetic properties;

    1 INTRODUCTION

    Molecular magnetism is an interdisciplinary field of research that has attracted great attention for decades, with studies focusing on revealing the diverse magnetic phenomena in molecular systems, understanding the underlying physics, and constructing new magnetic materials with potential applications[1-3]. The most extensively studied systems are the metal coordination compounds in which paramagnetic metal ions are linked by short bridging groups into finite-sized polynuclear clusters or “infinite” coordination polymers[4-8]. The variety of the structures relies on the presence of suitable metal-ligand interactions and supramolecular contacts, which is directly related to the coordination characteristics of the components, such as the charge and radius of metal ions, the amount of dentate and steric hindrance of the ligands, etc[9,10].

    In general, the magnetic CPs are synthesizedviaa bottom-up approach using paramagnetic metal ions and/or metal clusters as building blocks linked by suitable bridging ligands, which can efficiently transmit magnetic couplings between each metal ions[11,12]. The short bridging ligands,such as cyanide, carboxylate and azide, as efficient magnetic transmitting ligands, are dominant in the literature[13-18].Thus, enormous efforts on magnetic CPs have been focused on the design of suitable organic ligands and the coordination tendencies of metal centers for the building of diversified extended networks with interesting magnetic properties. The N-heterocyclic ligands, such as triazole and tetrazole, are also receiving considerable attention for the preparation of new magnetic CPs[19,20].

    Fluorene is a rigid planar structure composed of two directional benzene rings connected through a C–C single bond and a bridged methylene group[21]. The acceptance of methylene group makes the two benzene rings coplanar,which increases their orbital overlap, and also increases the degree of conjugation of the entire system[22,23]. Fluorene has active sites at 2, 4, 5, and 7 positions, which are prone to electrophilic substitution reactions, thus making it easy to obtain a variety of derivatives with a wide range of applications[24-26]. By introducing interactions between heteroatoms andπ-conjugated systems, the electronic structure of plutonium can be changed, and the modifiability of plutonium structure can be increased. However, CPs based on the fluorene derivative have been rarely reported up to now.

    Herein, we report two new HFDC-based coordination compounds [Co(FDC)2(H2O)2]n(1) and [Cu(FDC)2(2,2?-bpy)]·DMF·H2O (2) prepared by solution-diffusion synthesis method, featuring 1D chain and dinuclear structures, respectively. Their preparation, spectroscopic and structural characterization together with their variable-temperature magnetic study are the subject of the present work.

    2 EXPERIMENTAL

    2. 1 Materials and physical measurements

    All chemicals were of reagent grade, obtained from commercial sources and used without further purification.Elemental analyses for C, H and N were performed with a Perkin-Elmer 2400 LS II element analyzer. The FT-IR spectra were recorded in the range of 400~4000 cm-1on a Perkin-Elmer Spectrum Two FT-IR spectrometer by the dry KBr disks. PXRD data were collected using a D8 Advance A25 diffractometer with Cu-Kαradiation (λ= 1.54060 ?).Thermogravimetric (TG) behaviour was investigated with a Setsys 16 instrument at a heating rate of 10 °C?min-1in air.Fluorescent data were obtained from a Hitachi F-7000 instrument at room temperature. Magnetic measurement was carried out with a SQUID-VSM magnetometer in a field of 1000 Oe.

    2. 2 Syntheses of compounds 1 and 2

    [Co(FDC)2(H2O)2]n1. Organic ligand HFDC (22 mg, 0.1 mmol) was completely dissolved in N,N-dimethylformamide(DMF) (4 mL) and put on the bottom of a test tube. Then,ethanol solution (v/v = 1:1, 6 mL) was layered on the former.Finally, Co(NO3)2·6H2O (30 mg, 0.1 mmol) was dissolved in ethanol (4 mL), and carefully layered on the top. It was then allowed to stand at room temperature over three weeks. After being washed with distilled water at ambient temperature,orange crystals were obtained in a yield of 47.6% based on Co. Analysis calcd. (%) for C28H18CoO8(Mr= 541.35): C,62.07; H, 3.33. Found (%): C, 61.72; H, 3.17. IR (cm-1):3387 (br., m), 1704 (s), 1610 (s), 1589 (s), 1570 (s), 1468(m), 1455 (w), 1405 (s), 1307 (w), 1250 (w), 1126 (s), 959(m), 871 (w), 802 (w), 770 (w), 731 (s), 618 (m), 455(w).

    [Cu(FDC)2(2,2?-bpy)]·DMF·H2O 2. Compound 2 was synthesized by a method similar to that of 1, except that bpy(16 mg, 0.1 mmol) was also added into DMF. It was then kept at room temperature over three weeks, and green crystals were obtained. Green crystals were obtained in a yield of 48.7% based on Cu after washing with distilled water at ambient temperature. Analysis calcd. (%) for C41H31CuN3O8(Mr= 757.26): C, 64.97; H, 4.09; N, 5.55.Found (%): C, 64.71; H, 3.83; N, 5.31. IR (cm-1): 3426 (br.,m), 1710 (s), 1665 (m), 1602 (m), 1445 (m), 1373 (w), 1352(w), 1303 (w), 1165 (w), 960 (w), 872 (w), 638 (w), 618 (w),488 (w), 482 (w), 474 (w).

    2. 3 X-ray crystal structure determination

    All data of 1 and 2 were collected at 293 K with a Rigaku R-AXIS RAPID IP diffractometer (MoKα,λ= 0.71073 ?).With the SHELXTL program[27], the structures of 1 and 2 were solved by direct methods and refined by full-matrix least-squares techniques[28]. All the non-hydrogen atoms were refined anisotropically. For 1, all the hydrogen atoms of FDC?and O(2W) were generated geometrically, while those of O(1W) were located from the difference Fourier maps. The hydrogen atoms of 2 were generated geometrically. The relevant crystallographic data of compounds 1 and 2 are listed in Table 1. Selected bond lengths and bond angles are given in Table 2.

    Table 1. Crystallographic Data for Compounds 1 and 2

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for Compounds 1 and 2

    3 RESULTS AND DISCUSSION

    3. 1 Structural description of compounds 1 and 2

    The single-crystal X-ray diffraction analyses reveal that 1 crystallizes in the triclinic system withP1 space group. The asymmetric unit consists of two Co2+ions (Co(1) and Co(2);occupancy ratio: 0.5 for each), two FDC?ligands and two coordinating water molecules. As shown in Fig. 1a, both Co(1) and Co(2) are located in a six-coordinated octahedral coordination environment. Co(1) is surrounded by four carboxylate O atoms from two FDC?ligands (O(4), O(4)#1,O(5), O(5)#1, symmetry code: #1: 1?x, 1?y, 1+z) and two water molecules (O(1W), O(1W)#1), while Co(2) is surrounded by two carboxylate O atoms (O(3), O(3)#1) and four water molecules (O(1W), O(1W)#2, O(2W), O(2W)#2,symmetry code: #2: ?x, 1?y, 1?z). The Co?O distances change from 1.908(9) to 2.392(1) ? falling in a normal range[29]. As shown in Fig. 1b, the adjacent Co2+ions are linked into an infinite 1D chain along theaaxis through two O atoms (O(4), O(3)) of one FDC?ligand and one coordinating water (O1W). A detailed structural analysis reveals the neighboring 1D chains are further connected into 2D supramolecular layers parallel to theacplane through O(2W)?H(1W)···O(1) hydrogen bonds (O(2W)···O(1)#3 =2.8260(9) ?, O(2W)–H(1W)···O(1)#3 = 166°, symmetry code: #3: ?x, 1?y, 2?z) andπ···πstacking interaction with the distance of 3.507 A (Fig. 1c, Tables 3 and 4). Finally, the adjacent layers are further connected to be a 3D supramolecular structure (Fig. 3)viaO(1W)–H(3W)···O(2) hydrogen bonds (O(1W)···O(2)#2 = 2.7426(7) ?, O(1W)–H(3W)···O(2)#2 = 178°, symmetry code: #4:x, 1+y,z)(Table 3). It is worth noting that there exist two kinds ofπ···πstacking interactions between intermolecular FDC?ligands with the distances of 3.405 and 3.492 A,respectively, which strengthen the 3D supramolecular structure of 1 (Table 4).

    Fig. 1. a) Coordination environment of the Co2+ in 1; b) 1D chain structure of 1; c) 2D layer of 1 formed via intermolecular O(2W)–H(1W)···O(1) hydrogen bonds and π···π interaction

    Single-crystal X-ray diffraction analysis reveals that compound 2 crystallizes in the triclinic system withP1 space group. The asymmetric unit is composed of one Cu2+ion, two FDC?ligands and one bpy. As shown in Fig. 2a, a centrosymmetric dinuclear structure appears. The Cu(1)center adopts a distorted square pyramidal geometry configuration, completed by three oxygen atoms (O(4), O(6),O(4)#1 and O(6)#1 from two different FDC-ligands,symmetry code: #1, 1?x, 1?y, ?z) and two nitrogen atoms(N(2) and N(3) from a bpy ligand). The Cu–O bond lengths are observed in the range of 1.985(18)~2.420(19) ? within the normal range[30], and Cu(1)–N(2) is 2.009(2) ? and Cu(1)–N(3) is 2.019(2) ?. And Cu(1) and Cu(1)#1 are bridged by O(6) and O(6)#1 atoms from different ligands in the dinuclear structure unit. As shown in Fig. 2b, the adjacent dinuclear structure units are linked into a 1D chain along theaaxis through intermolecular hydrogen bonds(O(1W)···O(5) = 2.8700(9) ?, O(1W)?H(1W)···O(5) =174°, O(1W)···O(7) = 3.0072(7) A, O(1W)?H(1W)···O(7)#1 = 173°, #1: ?1+x,y,z). It is worthy of note that there existπ···πstacking interactions between intermolecular bpy with distance of 3.288 ?, which stabilizes the 1D chain. AndviaC(41)?H(41)···O(1W) and C(39W)?H(39)···O(2) (C(41)···O(1W)#2 = 3.5704(12) ?,C(41)?H(41)···O(1W)#2 = 162°, C(39)···O(2) = 3.3192(10)A, C(39)?H(39)···O(2) = 132°, #2: 2?x, 2?y, 1?z) hydrogen bonds, the neighboring 1D chains are connected into a 2D supramolecular layer.

    Fig. 2. a) Molecular structure of compound 2; b) 1D chain of compound 2 along the a axis formed via O(1W)?H(1Wb)···O(7) hydrogen bond;c) 2D supramolecular layer of compound 2 parallel to the ab plane formed via C(41)?H(41)···O(1W) and C(39)?H(39)···O(2) hydrogen bonds

    Fig. 3. 3D supramolecular structure of 2 formed via O(1W)?H(3W)···O(2) hydrogen bonds and π···π interactions

    Table 3. Hydrogen-bonded Parameters for Compounds 1 and 2

    Table 4. Selected π···π Interaction Arrangement for 1 (Plane-to-plane Distance (d), Dihedral Angles (α), Centroid Distance (c))

    Table 5. Selected π···π Interactions Arrangement for 2 (Plane-to-plane Distance (d), Dihedral Angles (α), Centroid Distance (c))

    4 CHARACTERIZATION

    4. 1 Infrared (IR) spectroscopy and powder X-ray diffraction (PXRD)

    As shown in Fig. 4, the shapes of the IR spectra of compounds 1 and 2 are roughly similar. The IR spectra of compound 1 and 2 showed strong peaks positioned at 1707 cm?1, which can be attributed to the stretching vibration peak ofv(CO) in the HFDC ligand, indicating that the carboxyl group of the HFDC ligand is coordinated with the metal ion.The peak of the compounds at about 3430 cm-1can be due to the loss of hydrogen ion of the -COOH group of the HFDC ligand, which leads to the weakening of the stretching vibration peak of the O?H bond. The infrared peaks around 1445 and 872 cm-1in compound 2 are attributed to the stretching vibration peak of the C=C double bond and the out-of-plane bending vibration peak of the C?H bond of 2,2?-bpy, indicating this 2,2?-bpy is coordinated with Cu2+ions.

    To confirm the phase purity of compounds 1 and 2, PXRD experiments have been carried out at room temperature. As shown in Fig. 5, the experimental PXRD pattern for each compound is in accord with the simulated one generated based on structural data, demonstrating the phase purity of 1 and 2.

    Fig. 4. IR spectra of compounds 1 and 2

    Fig. 5. Experimental (red) and simulated (blue) powder XRD patterns for compounds 1 and 2

    4. 2 Thermal stability analysis

    To estimate the thermostability of compounds 1 and 2,thermogravimetric (TG) analyses in purified air were performed and the TG curves are listed in Fig. 6.Compounds 1 and 2 both underwent two steps of weight loss.From the TG curve of compound 1, the first step of weight loss of 6.65% in the range of 30~266 °C is ascribed to the departure of two coordinated water molecules (calcd. 6.66%)per formula unit. The second loss above 266 °C is attributable to the collapse of the whole structure, and the remaining weight of 14.30% corresponds to the percentage (13.84%) of Co and O components, indicating that the final residue may be CoO. The TG curve of compound 2 shows weight loss of 11.49% (calcd. 12.01%) in the range of 30~185 °C due to the loss of one water molecule and one DMF molecule, and then no obvious weight loss is observed until the collapse of the framework at 531 °C, indicating its good thermal stability. The TG curves show that compounds 1 and 2 possess good thermal stability.

    Fig. 6. TGA curves of compounds 1 and 2

    4. 3 Magnetic properties of compounds 1 and 2

    The temperature-dependent magnetic susceptibility was investigated for the crystalline samples of compounds 1 and 2 in the range of 2~300 K with a 1000 Oe applied field. Fig. 7 shows the χMTvs.T and χM-1vs. T curves of compounds 1 and 2. For 1, the χMT value is 0.00316 cm3mol-1K at 300 K,which is smaller than the expected value for two uncoupled high-spin Co(II) ions. As the temperature decreases, the χMT value increases slightly until a maximum value of 0.00302 cm3·mol-1appears at 123.9 K, and then suddenly decreases to 0.00177 cm3·mol-1at 8 K (Fig. 7a). The χMT value decrease with a decreasing temperature indicates the presence of antiferromagnetic interaction between the Co2+ions in compound 1. As shown in Fig. 7b, the observed χMT value of compound 2 at room temperature is 1.0169 cm3·mol-1·K,which is smaller than the expected spin-only value of 1.88 cm3·mol-1·K. Upon cooling, the value of χMT decreases smoothly to a value of 0.8248 cm3·mol-1·K at 60 K. And with further cooling, the sample undergoes a rapid decrease in χMT, reaching 0.4464 cm3·mol-1·K at 2 K. This is a classical magnetic behavior with an antiferromagnetic order,which indicates the antiferromagnetic interactions between the Cu(II) ions. As shown in Fig. 7, The magnetic susceptibilities (χM-1) are well fitted by the Curie-Weiss law in the temperature range of 2~300 K for 1 and 2, thus giving a negative Weiss constantθ= ?14.6 K and C = 0.00335 emu·mol-1·K for 1 andθ= ?0.099 K and C = 0.101 emu·mol-1·K for 2, confirming the overall intracluster antiferromagnetic interactions again in compounds 1 and 2.

    Fig. 7. Temperature dependence of the χMT vs. T and χM-1 vs. T values of compounds 1 and 2 (The red solid lines are the Curie-Weiss law)

    5 CONCLUSION

    Two coordination compounds based on HFDC ligand with different structures have been synthesized and structurally characterized. Their structures, thermal stabilities and magnetism have been investigated. X-ray single-crystal diffraction analysis reveals that compound 1 features 1D chain structures which further extend into a 3D supramolecular network through hydrogen bonds andπ···πinteractions; compound 2 exhibits dinuclear structures which are connected into a 2D layerviahydrogen bonds andπ···πinteractions. The research on magnetic properties shows that there exist antiferromagnetic interactions between Co(II) and Cu(II) metal ions. Furthermore, the successful syntheses of these two new compounds may provide a useful method to the design and synthesis of novel low-dimensional magnetic CPs.

    国产精品,欧美在线| 夜夜夜夜夜久久久久| 亚洲全国av大片| 国语自产精品视频在线第100页| 国产aⅴ精品一区二区三区波| a在线观看视频网站| 亚洲激情在线av| 日韩精品青青久久久久久| 国产伦在线观看视频一区| 国产高清videossex| 香蕉国产在线看| 国产精品九九99| 国产又爽黄色视频| 久久精品91蜜桃| 午夜日韩欧美国产| 亚洲第一欧美日韩一区二区三区| 夜夜爽天天搞| 日本a在线网址| 精品国产一区二区三区四区第35| 精品高清国产在线一区| 女人被狂操c到高潮| av福利片在线| 国产亚洲av嫩草精品影院| 国产精品 国内视频| 国产黄色小视频在线观看| av有码第一页| 亚洲熟妇熟女久久| 国产免费av片在线观看野外av| 亚洲中文字幕一区二区三区有码在线看 | 国产真实乱freesex| 满18在线观看网站| 在线观看一区二区三区| 亚洲真实伦在线观看| 亚洲熟女毛片儿| 好看av亚洲va欧美ⅴa在| 国产精品 欧美亚洲| 欧美乱妇无乱码| 久久精品国产亚洲av高清一级| 香蕉av资源在线| 伊人久久大香线蕉亚洲五| 亚洲av五月六月丁香网| 观看免费一级毛片| 热99re8久久精品国产| 亚洲欧美一区二区三区黑人| 日本精品一区二区三区蜜桃| 亚洲自拍偷在线| 亚洲一区二区三区色噜噜| 一本大道久久a久久精品| 精品久久久久久久久久免费视频| 亚洲男人的天堂狠狠| 精品久久蜜臀av无| 国产成人欧美在线观看| av超薄肉色丝袜交足视频| 淫秽高清视频在线观看| 国产精品久久久久久精品电影 | 天天添夜夜摸| 香蕉av资源在线| 91成人精品电影| 久久久久亚洲av毛片大全| 亚洲欧美精品综合一区二区三区| 老司机深夜福利视频在线观看| 怎么达到女性高潮| 真人做人爱边吃奶动态| 日本一本二区三区精品| 九色国产91popny在线| 美女扒开内裤让男人捅视频| 久久精品国产99精品国产亚洲性色| 国产麻豆成人av免费视频| 亚洲五月婷婷丁香| 69av精品久久久久久| 国产精品自产拍在线观看55亚洲| 亚洲无线在线观看| 亚洲中文av在线| 欧美日韩中文字幕国产精品一区二区三区| 久久香蕉国产精品| 亚洲久久久国产精品| 免费电影在线观看免费观看| 亚洲精品一区av在线观看| 嫩草影视91久久| 午夜视频精品福利| 在线观看免费视频日本深夜| 国产伦一二天堂av在线观看| 国产精品电影一区二区三区| 精品久久久久久久人妻蜜臀av| 国产精品 欧美亚洲| 一卡2卡三卡四卡精品乱码亚洲| 男女那种视频在线观看| 级片在线观看| 高清在线国产一区| 国内精品久久久久精免费| 精品第一国产精品| 丰满人妻熟妇乱又伦精品不卡| 久久这里只有精品19| 禁无遮挡网站| 欧美在线一区亚洲| 51午夜福利影视在线观看| 女生性感内裤真人,穿戴方法视频| 免费电影在线观看免费观看| 国产私拍福利视频在线观看| 中文字幕人成人乱码亚洲影| 天天躁狠狠躁夜夜躁狠狠躁| 日韩免费av在线播放| 97碰自拍视频| 欧美又色又爽又黄视频| 97碰自拍视频| 91成人精品电影| 一进一出好大好爽视频| 免费av毛片视频| 99热只有精品国产| 老熟妇仑乱视频hdxx| 免费在线观看视频国产中文字幕亚洲| 亚洲中文日韩欧美视频| 中文字幕av电影在线播放| 一本精品99久久精品77| 午夜久久久在线观看| 欧美一级毛片孕妇| 色综合欧美亚洲国产小说| 免费在线观看成人毛片| 麻豆国产av国片精品| 国产精品久久久久久人妻精品电影| or卡值多少钱| 国产av不卡久久| 哪里可以看免费的av片| 亚洲,欧美精品.| 国产蜜桃级精品一区二区三区| 午夜福利18| 女人高潮潮喷娇喘18禁视频| 成人av一区二区三区在线看| 成人特级黄色片久久久久久久| 成人国产综合亚洲| 韩国av一区二区三区四区| 精品高清国产在线一区| 一级毛片高清免费大全| 午夜免费鲁丝| 国产精品一区二区免费欧美| 久久午夜综合久久蜜桃| 久久午夜综合久久蜜桃| www.精华液| 精品欧美一区二区三区在线| 亚洲成a人片在线一区二区| 黄色片一级片一级黄色片| 国产极品粉嫩免费观看在线| 制服诱惑二区| 99热6这里只有精品| 欧美丝袜亚洲另类 | 天堂√8在线中文| 亚洲精品色激情综合| 亚洲片人在线观看| 日本 av在线| 中文字幕人成人乱码亚洲影| 国产高清激情床上av| 搡老岳熟女国产| 日韩成人在线观看一区二区三区| 亚洲自拍偷在线| 村上凉子中文字幕在线| av天堂在线播放| 国产成人系列免费观看| 村上凉子中文字幕在线| 亚洲自拍偷在线| 波多野结衣av一区二区av| 久久久久亚洲av毛片大全| 18禁观看日本| 此物有八面人人有两片| 午夜视频精品福利| 老汉色∧v一级毛片| 国产午夜福利久久久久久| 午夜两性在线视频| 一二三四在线观看免费中文在| 精品高清国产在线一区| www国产在线视频色| 国产精品久久久久久人妻精品电影| 黄色视频不卡| 亚洲久久久国产精品| 国产欧美日韩精品亚洲av| 国产成年人精品一区二区| 国产精品免费一区二区三区在线| 一区二区日韩欧美中文字幕| 国产精品久久久久久精品电影 | 亚洲天堂国产精品一区在线| 一级毛片女人18水好多| 国产激情偷乱视频一区二区| 成人精品一区二区免费| 亚洲va日本ⅴa欧美va伊人久久| 国语自产精品视频在线第100页| 不卡一级毛片| 国产野战对白在线观看| 国产真人三级小视频在线观看| 国产高清激情床上av| 美女高潮喷水抽搐中文字幕| 天堂√8在线中文| av在线天堂中文字幕| 99国产精品一区二区蜜桃av| 俺也久久电影网| 无人区码免费观看不卡| 欧美中文日本在线观看视频| 怎么达到女性高潮| 国产精品一区二区精品视频观看| 亚洲精品中文字幕在线视频| 91成人精品电影| 91麻豆精品激情在线观看国产| 免费在线观看完整版高清| 欧美日韩亚洲综合一区二区三区_| cao死你这个sao货| 日韩高清综合在线| 成年人黄色毛片网站| 在线观看66精品国产| 一级a爱片免费观看的视频| av在线天堂中文字幕| 国产成人欧美在线观看| 欧美日韩瑟瑟在线播放| 无遮挡黄片免费观看| 长腿黑丝高跟| 免费高清在线观看日韩| 欧美成人一区二区免费高清观看 | 久热爱精品视频在线9| 欧美+亚洲+日韩+国产| 日本 av在线| 美女高潮到喷水免费观看| 亚洲国产欧美一区二区综合| 亚洲成人久久爱视频| 欧洲精品卡2卡3卡4卡5卡区| 人人澡人人妻人| 又黄又爽又免费观看的视频| 亚洲精品中文字幕在线视频| 婷婷六月久久综合丁香| 亚洲成av片中文字幕在线观看| 国内毛片毛片毛片毛片毛片| 国产熟女午夜一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产1区2区3区精品| 又黄又爽又免费观看的视频| 99久久久亚洲精品蜜臀av| 美女午夜性视频免费| 国产精品一区二区三区四区久久 | 久久精品91无色码中文字幕| 1024手机看黄色片| 欧美丝袜亚洲另类 | 中文字幕久久专区| 国产亚洲精品一区二区www| 亚洲精品在线美女| av天堂在线播放| 他把我摸到了高潮在线观看| 久久人妻福利社区极品人妻图片| 久9热在线精品视频| e午夜精品久久久久久久| 国产精品 欧美亚洲| 91九色精品人成在线观看| 黑人巨大精品欧美一区二区mp4| 成人国产一区最新在线观看| 在线永久观看黄色视频| 视频区欧美日本亚洲| www.www免费av| 欧美一级毛片孕妇| 成人一区二区视频在线观看| 欧美不卡视频在线免费观看 | 不卡av一区二区三区| 丝袜在线中文字幕| 99re在线观看精品视频| 90打野战视频偷拍视频| 亚洲成av人片免费观看| 亚洲欧美精品综合久久99| 麻豆一二三区av精品| 精品电影一区二区在线| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 精品午夜福利视频在线观看一区| 窝窝影院91人妻| 99久久久亚洲精品蜜臀av| 长腿黑丝高跟| 高清毛片免费观看视频网站| 成人国语在线视频| 中文字幕高清在线视频| 国产熟女xx| 亚洲精品国产区一区二| 亚洲成人精品中文字幕电影| 天堂√8在线中文| 欧美在线一区亚洲| 日韩有码中文字幕| 精品久久久久久成人av| 脱女人内裤的视频| 亚洲国产精品合色在线| 18禁观看日本| 国产av一区二区精品久久| 变态另类丝袜制服| 最近最新免费中文字幕在线| 欧美色欧美亚洲另类二区| 国产久久久一区二区三区| 麻豆一二三区av精品| 一边摸一边做爽爽视频免费| 色综合亚洲欧美另类图片| av有码第一页| 一本一本综合久久| 两人在一起打扑克的视频| 国产激情欧美一区二区| 国产视频一区二区在线看| 一级a爱片免费观看的视频| videosex国产| 亚洲精品久久国产高清桃花| 欧美日韩亚洲国产一区二区在线观看| 国产精品乱码一区二三区的特点| 久久久久久人人人人人| 欧美午夜高清在线| 视频在线观看一区二区三区| 国产高清videossex| 午夜福利高清视频| 午夜福利免费观看在线| 国产成人欧美在线观看| 天天一区二区日本电影三级| 此物有八面人人有两片| 日日干狠狠操夜夜爽| 成人亚洲精品av一区二区| 一级毛片女人18水好多| 精品一区二区三区视频在线观看免费| 欧美激情 高清一区二区三区| 制服诱惑二区| 我的亚洲天堂| 一区二区三区激情视频| 久久久久久人人人人人| 国产一卡二卡三卡精品| 制服丝袜大香蕉在线| 两人在一起打扑克的视频| 日韩大尺度精品在线看网址| 变态另类成人亚洲欧美熟女| 在线永久观看黄色视频| 日韩av在线大香蕉| 免费在线观看成人毛片| 91在线观看av| 亚洲真实伦在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩福利视频一区二区| 中文字幕av电影在线播放| 国产高清视频在线播放一区| 亚洲精品粉嫩美女一区| aaaaa片日本免费| 老熟妇乱子伦视频在线观看| 亚洲第一av免费看| 成人亚洲精品一区在线观看| 国产欧美日韩一区二区精品| 观看免费一级毛片| 熟女电影av网| 国产一卡二卡三卡精品| 18禁裸乳无遮挡免费网站照片 | 黄色丝袜av网址大全| 美女国产高潮福利片在线看| 久久国产乱子伦精品免费另类| 国产午夜精品久久久久久| 日韩高清综合在线| 久久久久精品国产欧美久久久| www日本在线高清视频| 男女午夜视频在线观看| 欧美性猛交黑人性爽| 别揉我奶头~嗯~啊~动态视频| 男女那种视频在线观看| 精品不卡国产一区二区三区| 国产主播在线观看一区二区| 亚洲av第一区精品v没综合| 精品无人区乱码1区二区| 看片在线看免费视频| 久久婷婷成人综合色麻豆| 亚洲av美国av| 大香蕉久久成人网| 国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| av在线播放免费不卡| 一区二区三区精品91| 人人妻人人看人人澡| 中文字幕人成人乱码亚洲影| 天天添夜夜摸| 免费在线观看亚洲国产| 男男h啪啪无遮挡| 伊人久久大香线蕉亚洲五| 亚洲中文av在线| 一进一出抽搐动态| 麻豆一二三区av精品| 一进一出抽搐gif免费好疼| 亚洲国产欧洲综合997久久, | 国产成人精品久久二区二区免费| 国产精品综合久久久久久久免费| 欧美黄色片欧美黄色片| 给我免费播放毛片高清在线观看| 黑人欧美特级aaaaaa片| 亚洲精品在线美女| 亚洲熟妇中文字幕五十中出| 在线观看免费日韩欧美大片| xxx96com| 国内少妇人妻偷人精品xxx网站 | 久久国产精品人妻蜜桃| 不卡一级毛片| 国产精品日韩av在线免费观看| 午夜激情福利司机影院| 两性午夜刺激爽爽歪歪视频在线观看 | 法律面前人人平等表现在哪些方面| 欧美日韩精品网址| 欧美黑人精品巨大| 久久性视频一级片| 波多野结衣巨乳人妻| 午夜免费成人在线视频| 亚洲精品中文字幕一二三四区| 成人三级做爰电影| 国产亚洲av高清不卡| 天堂动漫精品| 18禁黄网站禁片午夜丰满| 精品卡一卡二卡四卡免费| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看| 欧美一区二区精品小视频在线| 视频区欧美日本亚洲| 欧美中文日本在线观看视频| 亚洲色图av天堂| 欧美黑人欧美精品刺激| 亚洲成人久久爱视频| 欧美日韩瑟瑟在线播放| 欧美激情 高清一区二区三区| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区精品视频观看| 亚洲男人天堂网一区| 午夜老司机福利片| 婷婷亚洲欧美| 国产精品一区二区三区四区久久 | xxx96com| 男人舔奶头视频| 日本 欧美在线| 九色国产91popny在线| 亚洲全国av大片| 亚洲七黄色美女视频| 日本在线视频免费播放| 悠悠久久av| а√天堂www在线а√下载| 天堂影院成人在线观看| 国产男靠女视频免费网站| 男女视频在线观看网站免费 | 亚洲精品av麻豆狂野| 99国产极品粉嫩在线观看| 夜夜爽天天搞| 色综合婷婷激情| av欧美777| 亚洲成人久久爱视频| 成人国产综合亚洲| 国产精品一区二区三区四区久久 | 国产亚洲精品av在线| 丰满的人妻完整版| 精品熟女少妇八av免费久了| www日本在线高清视频| 国产精品,欧美在线| 国产精品影院久久| 91av网站免费观看| 久久伊人香网站| 97碰自拍视频| 久久天躁狠狠躁夜夜2o2o| 欧美乱码精品一区二区三区| 老鸭窝网址在线观看| 一本久久中文字幕| 热re99久久国产66热| 午夜福利一区二区在线看| 精品熟女少妇八av免费久了| 岛国在线观看网站| 女生性感内裤真人,穿戴方法视频| 成熟少妇高潮喷水视频| 少妇粗大呻吟视频| 夜夜爽天天搞| 天天一区二区日本电影三级| 淫秽高清视频在线观看| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 九色国产91popny在线| 香蕉av资源在线| 黄色丝袜av网址大全| 亚洲激情在线av| 制服人妻中文乱码| 精品乱码久久久久久99久播| 国产精品永久免费网站| 免费av毛片视频| 国产人伦9x9x在线观看| 国产av一区二区精品久久| 成年免费大片在线观看| 日本免费一区二区三区高清不卡| 一边摸一边抽搐一进一小说| 99国产精品一区二区三区| 美女高潮到喷水免费观看| 制服人妻中文乱码| 免费在线观看完整版高清| 精品久久久久久久久久免费视频| 欧美黑人精品巨大| 精品熟女少妇八av免费久了| 久久国产精品影院| 欧美激情高清一区二区三区| 可以在线观看毛片的网站| 黄色女人牲交| 欧美日韩一级在线毛片| 国产99白浆流出| 中国美女看黄片| 欧美激情久久久久久爽电影| 性色av乱码一区二区三区2| 女人爽到高潮嗷嗷叫在线视频| 听说在线观看完整版免费高清| 黄色毛片三级朝国网站| 国产成年人精品一区二区| 黄色丝袜av网址大全| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 美女大奶头视频| 亚洲成国产人片在线观看| 丁香欧美五月| 成人国语在线视频| 国产成人系列免费观看| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av在线| 99久久国产精品久久久| 人人妻,人人澡人人爽秒播| 成年免费大片在线观看| 国产男靠女视频免费网站| e午夜精品久久久久久久| 999久久久国产精品视频| 国产真实乱freesex| 999精品在线视频| 在线观看日韩欧美| 国产亚洲av高清不卡| 99国产精品一区二区蜜桃av| 一级毛片高清免费大全| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 他把我摸到了高潮在线观看| 国产精品永久免费网站| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 国产又色又爽无遮挡免费看| 成熟少妇高潮喷水视频| 日韩成人在线观看一区二区三区| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 啪啪无遮挡十八禁网站| 不卡av一区二区三区| 性色av乱码一区二区三区2| 国产亚洲精品一区二区www| 国产高清有码在线观看视频 | 69av精品久久久久久| 国产伦一二天堂av在线观看| 久久人妻福利社区极品人妻图片| 国产伦一二天堂av在线观看| 国产黄a三级三级三级人| 正在播放国产对白刺激| 久热这里只有精品99| 午夜成年电影在线免费观看| 国产三级在线视频| 免费在线观看黄色视频的| 午夜视频精品福利| 99在线视频只有这里精品首页| 午夜视频精品福利| tocl精华| 亚洲精品在线美女| 午夜免费激情av| 一级黄色大片毛片| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 精品久久久久久久末码| 曰老女人黄片| 精品免费久久久久久久清纯| 一本综合久久免费| 午夜福利免费观看在线| 国产精品野战在线观看| 亚洲熟妇中文字幕五十中出| 制服人妻中文乱码| 国产av一区二区精品久久| 久久久久国产一级毛片高清牌| 亚洲真实伦在线观看| 国产麻豆成人av免费视频| 午夜视频精品福利| 国产色视频综合| 一边摸一边做爽爽视频免费| 母亲3免费完整高清在线观看| 国产免费男女视频| 叶爱在线成人免费视频播放| 热re99久久国产66热| 久久香蕉国产精品| 人妻丰满熟妇av一区二区三区| 国产精品,欧美在线| 欧美国产日韩亚洲一区| 欧美黑人精品巨大| 亚洲男人的天堂狠狠| 久久狼人影院| 精品日产1卡2卡| 久久国产精品男人的天堂亚洲| 国产亚洲欧美98| 国产三级在线视频| 桃色一区二区三区在线观看| 神马国产精品三级电影在线观看 | 日日干狠狠操夜夜爽| 在线十欧美十亚洲十日本专区| 欧美在线一区亚洲| 亚洲人成网站在线播放欧美日韩| 香蕉国产在线看| 日本免费一区二区三区高清不卡| 中文字幕人妻熟女乱码| 999久久久国产精品视频| 欧美色欧美亚洲另类二区| 亚洲欧美日韩无卡精品| 最新在线观看一区二区三区| 国产三级在线视频| 在线av久久热| 午夜福利18| 久久草成人影院| 99re在线观看精品视频| 成熟少妇高潮喷水视频| 两个人免费观看高清视频| 日本在线视频免费播放| 在线永久观看黄色视频| 高清在线国产一区| 国产一卡二卡三卡精品| 亚洲欧美日韩高清在线视频| 国产av不卡久久| 精品久久久久久久人妻蜜臀av| 99国产综合亚洲精品| 国产精品国产高清国产av| 满18在线观看网站|