• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and DNA-Binding Property of a New Cu(II) Complex Based on 4-(Trifluoro-methyl)nicotinic Acid①

    2022-03-08 02:30:44SHANFengLinSONGHuanGAOXueZhiLIBingMAXiaoXia
    結(jié)構(gòu)化學(xué) 2022年1期

    SHAN Feng-Lin SONG Huan GAO Xue-Zhi LI Bing MA Xiao-Xia②

    a (State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China)

    b (Department of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China)

    ABSTRACT A new complex [Cu1.5(tfc)3(H2O)4]·3H2O (1, Htfc = 4-(trifluoro-methyl) nicotinic acid) has been synthesized and characterized by X-ray single-crystal diffraction, elemental analysis, IR spectra and thermogravimetric analysis. 1 belongs to orthorhombic system, space group Pccn with a = 44.507(2), b = 10.7710(6), c =11.7544(7) ?, V = 5634.9(6) ?3, Z = 1, Dc = 1.803 mg·cm-3, F(000) = 3068, μ = 1.266 mm-1, the final R = 0.0488 and wR = 0.1103 with I > 2σ(I). The Cu(II) ion is coordinated by two N and two O atoms from different Htfc as well as two O atoms from two coordinated water molecules, forming a 0D motif with distorted octahedral geometry.The adjacent 0D units are linked into 2D structures through bridge connection coordination mode. In addition, the binding properties of the complex with CT-DNA were investigated by fluorescence and ultraviolet spectra. UV spectra indicate classical intercalation between the complex and CT-DNA. Moreover, the interactions between the ligand and the complex with CT-DNA were studied by EtBr fluorescence probe, which proved that these compounds bind to CT-DNA through an intercalation mode. The binding constants were 0.76 and 1.15 for Htfc and complex 1, which means 1 has stronger interaction with CT-DNA than Htfc.

    Keywords: 4-(trifluoro-methyl) nicotinic acid, crystal structure, DNA;

    1 INTRODUCTION

    Compounds composed of central metal ions and various multi-functional organic ligands have received increasing attention owing to their unique structural features and potential application in promising bioactive agents[1-3].Complexes have been widely used in DNA structural probes[4,5],molecular optical opening of DNA[6], footprint reagents of DNA[7]and fracture reagents of DNA[8,9]. In addition, it has been widely accepted that DNA is the primary biological targets of many drugs in vivo[10]. Studies of the interaction between Cu(II) complexes and DNA have attracted great interest, because complexes with different crystal structures have different binding effects on DNA[11]. So far, a large number of Cu(II) compounds have been studied on their structures as well as physical and chemical properties[12,13].However, its relationships between structures and DNA interactions are still not particularly clear.

    As one of the heterocycles, pyridine derivatives exhibit significant pharmacological activities like anticancer[14]and antibacteria[15]which are good ligand candidates. What’s more, complexes constructed by fluorinated pyridine carboxylic acid ligands have already attracted much interest due to their extensive biological activity[16,17]. They show a number of different coordination modes due to dual functionality of donor N atom which is a stabilizer of transition metal ions at lower oxidation state and O atom that is a stabilizer for transition metal in their higher oxidation states[18]. The introduction of fluorine could significantly enhance the chemical stability and bioactivity of the compounds[19-21]. So, 4-(trifluoro-methyl) nicotinic acid (Htfc)was chosen by us as a ligand, which can be regarded as an excellent building block for the construction of new coordination compounds[22].

    In this work, a new complex [Cu1.5(tfc)3(H2O)4]·3H2O has been synthesized and characterized by X-ray single-crystal diffraction, elemental analysis and infrared spectra. The intercalation of the complex with CT-DNA was also studied by fluorescence and ultraviolet spectra methods which showed the reference value to the design of new drugs as well.

    2 EXPERIMENTAL

    2. 1 Materials and general methods

    All chemicals were commercially available and used as purchased. Calf Thymus DNA (CT-DNA) and ethidium bromide (EB) were purchased from Sigma-Aldrich Co.Tris-HCl buffer solution (C = 0.1 mol·L-1, pH = 7.4) was used for fluorescence spectrum. The concentration of CT-DNA was 200 g·mL-1and stored at 4 ℃. The interactions between compounds and CT-DNA are measured using literature method[23]. Elemental analyses (C, H and N) were performed on a Vario EL III analyzer. Infrared spectra were obtained from KBr pellets on a BEQ VZNDX 550 FTIR instrument within the 400~4000 cm-1region. Thermogravimetric analysis was carried out on a TA Instrument NETZSCH STA 449 C simultaneous TGA at a heating rate of 10 ℃·min-1under hydrostatic air. Fluorescent data were obtained from a Hitachi F-7000 instrument. UV-vis spectral measurements for the synthesized complexes were made using a TU-1800 beam recording spectrophotometer.

    2. 2 X-ray crystallography

    Bruker Siemens Smart Apex II CCD diffractometer with graphite-monochromated MoKαradiation (λ= 0.71073 ?) at 293(2) K. Cell parameters were retrieved using SMART software and refined using SAINTPLUS for all observed reflections. Data reduction and correction forLpand decay were performed with the SAINTPLUS[24]software.Absorption corrections were applied using SADABS. All structures were solved by direct methods using SHELXS-97[25]and refined with full-matrix least-squares refinement based onF2using SHELXL-97[26]. For compound 1, a total of 6471 reflections were collected in the range of 2.90≤θ≤27.52°, of which 4570 were independent (Rint = 0.0669). The finalR=0.0488 andwR= 0.1103 withI> 2σ(I). The selected bond distances and bond angles are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Complex 1

    2. 3 Synthesis of [Cu1.5(tfc)3(H2O)4] 3H2O

    A water solution (5 mL) of Cu(NO3)2·2H2O (24.16 mg, 0.1 mmol) was added to a solution of Htfc (9.50 mg, 0.05 mmol)in CH3OH (10 mL) and water (5 mL). The pH of the mixture was adjusted to 9 by adding sodium hydroxide (0.5 mol·L-1)with stirring. Afterca. 30 min of vigorous mixing, the resulting solution was filtered and left to stand under ambient conditions. Upon slow evaporation of the solvents, blue transparent block crystals of complex were obtained afterca.8 days in a yield of 68% (based on Htfc). Anal. calcd. for C21H17Cu1.5F9N3O10: C, 19.22; H, 1.11; N, 2.94%. Found: C,19.20; H, 1.13; N, 2.96%. IR (KBr, cm-1): 3431(w), 1633(s),1375(s), 1281(m), 1193(w), 948(w), 848(w), 687(w), 470(w).

    3 RESULTS AND DISCUSSION

    3. 1 Structural description

    Single-crystal X-ray diffraction analysis reveals that complex [Cu1.5(tfc)3(H2O)4]·3H2O crystallizes in the orthrohombic system, space groupPccn. As shown in Fig. 1, Cu(II)ion is six-coordinated with two carboxylate oxygen atoms(O(1), O(3)) and two nitrogen atoms (N(1), N(2)) from the tfcligands as well as two oxygen atoms of coordination water molecules (O(7), O(8)), which resemble a slightly distorted octahedral geometry. Two carboxylate oxygen atoms and two oxygen atoms from the coordination water molecule are in the equatorial plane (O(1), O(3), O(7) and O(8)). N(1) and N(2)from pyridine ring occupy the axial positions. As shown in Table 1, the Cu?O bond lengths range from 2.001(11) to 2.430(11) ?, while the distance of Cu–N(1) is 2.002(3) ?,which all fall in normal ranges[27]. The O?Cu?O bond angles vary from 89.95(10)° to 180.00(14)° and the N(1)?Cu(1)?N(2)bond angle is 176.16(11)°.

    In this structure, the carboxylic groups and nitrogen atom in adjacent tfc-ligands are linked to the Cu(II) ion, forming a 1D zigzag chain. Then, such 1D chains are connected into a 2D plain from tfc-ligands with alternant 24-membered rings(Fig. 2).

    Fig. 1. Coordination environment of complex 1 (hydrogen atoms are omitted for clarity)

    Fig. 2. 2D structure diagram in complex 1

    3. 2 IR spectra

    IR measurement has been performed between 400~4000 cm–1. The IR spectrum of 1 shows a broad absorption band at 3431 cm–1, corresponding to the O–H stretching of coordinated water molecules in the complex[28]. The C–N absorption peaks of pyridine can be observed at 1320 cm–1.Thevasym(COO–) andνsym(COO–) absorption can be observed as strong bands at 1633 and 1375 cm-1, respectively. The Δ(vasym(COO–) –νsym(COO–)) for 1 is 258 cm-1, indicating that the coordination of carboxylate groups is closer to monodentate rather than to bidentate mode[29]. This result is in agreement with the crystal structure. These indicate that the carboxylic acid groups were converted into carboxylate anions due to the formation of the stable complex[30].

    Fig. 3. IR spectra of Htfc and complex 1

    3. 3 Thermogravimetric analysis

    Thermogravimetric experiments were conducted to study the thermal stability of 1, which is an important parameter for metal-organic framework materials. As shown in Fig. 4, the first weight loss of 7.6% in the range of 132.7~201.6 ℃corresponds to the complete loss of four coordinated water molecules and three unbound water (calcd.: 8.2%). The main framework remains intact until heated to 338.5 ℃, and then releases all the ligands completely from 338.5 to 501.7 ℃,giving CuO as the final decomposition product with the residue percent of 14.3% (calcd.: 14.5%). The residual sample was characterized by X-ray powder diffraction (XRPD) at room temperature. As shown in Fig. 5, all diffraction peaks are in good agreement with the standard diffraction data for CuO (JCPDS card file No. 45-0937).

    Fig. 4. TG curve of complex 1

    Fig. 5. XPRD patterns of the residual and CuO

    3. 4 UV spectra

    The UV-vis spectra are used to study the interactions of compounds with CT-DNA. As exhibited in Fig. 6, the absorption spectra were recorded at room temperature at 200~300 nm by keeping the concentration of complex (1 ×10-5) while varying the CT-DNA concentration from 0, 2, 4, 6,8 and 10 mol·L-1. The absorbance of the complexes decreases obviously at 225 nm due to theπ-π* transition of the pyridine ring[31]. With increasing the concentration of CT-DNA, a red-shift and hypochromic effect could be observed in the absorption of complexes, which may be attributed to accumulation ofπelectrons with the base pairs in the DNA structure, resulting in the subtractive effect and red shift of the absorption spectra[32]. Therefore, these changes indicate the classical intercalation mode between the complex and CT-DNA[33].

    Fig. 6. Complex 1 of CT-DNA under UV spectra at different concentrations(compounds = 1 × 10-5 mol·L-1; 10-5 CDNA/(mol·L-1) 1~6: 0, 2, 4, 6, 8, 10)

    3. 5 EB-DNA binding study by fluorescence spectrum

    Fluorescence spectroscopy has been used to investigate the interaction between the complex and DNA using ethidium bromide (EB) as a probe. EB is often used as a probe for spectroscopy studies of interactions between DNA and potentially embedded species[34]. Competitive binding of the complex to DNA and EB will result in the displacement of bound EB and a decrease in the fluorescence intensity. This property can be used to monitor the binding mode by the ability of a compound to prevent the intercalation of EB from DNA. For the fluorescence quenching experiments of the ligand and complex 1, the EB solution was added to the prepared buffer solution of CT-DNA for 1 h and then added to the solution of the ligand and complex 1 from 0 to 10.3 μ mol·L–1. An excitation wavelength of 520 nm was used and the emission spectra were recorded at 520~700 nm range. The peaks of ligand and complex were at 615 and 617 nm,respectively. Fig. 7 shows the effects of the ligand and complex 1 by steady state fluorescence emission experiments.The fluorescence intensity of EB-DNA system is weakening along with increasing the concentration of the ligand and complex 1. It suggests that the compounds displaced EB from the CT-DNA-EB systems, and inserted into CT-DNA. In addition, the red shift of EB-DNA fluorescence peak occurred.It is caused by EB from the hydrophobic environment into hydrophilic, which further indicates that the tested compounds have intercalation with DNA[35].

    Fig. 7. Effects of Htfc and 1 on the fluorescence spectra of EB-DNA system(EB = 2 × 10-6 mol·L-1; 10-5CDNA = 1.33 × 10-5 mol·L-1; 10-6CHtfc/(mol·L-1) 1~6: 0, 1.0, 2.7, 5.0, 7.0, 10.3)

    The classicalStern-Volmerequation is used to quantitatively determine the magnitude of the binding strength of the complex with CT-DNA[36]:

    I0/I=1 +Ksq R

    WhereKsqis a linear Stern-Volmer quenching constant andris the concentration ratio of the quencher to CT-DNA , andI0andIrepresent the fluorescence intensities in the absence and presence of the quencher, respectively. The binding constants (Ksq) reveal the strength of the interaction between CT-DNA and the compounds. In the quenching plots ofI0/Iversusr, theKsqvalues were given by slopes. Usually, a bigger binding constant means a greater binding affinity to the CT?DNA. Thus, theKsqvalue of complex 1 was 1.15, which is much higher than the ligand (0.76). The results show that the interactions of complex 1 with CT-DNA are stronger than the ligand probably due to the structure rigidity and metal-ligand synergism effect of 1[37]. In addition, the introduction of trifluoromethyl group enhances the water solubility and lipophilicity of complex 1, thereby heightening its biological activity[38].

    4 CONCLUSION

    In conclusion, a new complex [Cu1.5(tfc)3(H2O)4]·3H2O has been successfully synthesized from a novel picolinic acid ligand of Htfc = (4-(trifluoromethyl) nicotinic acid). The structure was characterized by X-ray single-crystal diffraction,elemental analysis, IR spectra and thermogravimetric analysis.The neighboring 1D chains are connected into a 2D structure through bridge connection from the tfc-ligands. In addition,the interactions of the ligand and 1 with CT-DNA have been investigated through fluorescence and ultraviolet spectra,which declared the intercalation mode of CT-DNA by the ligand and 1. The results were expected to give some significant insight into the interactions of transition metal complexes and CT-DNA, which show great reference value for a model of application for drug design.

    亚洲色图av天堂| 国产免费男女视频| 国产淫片久久久久久久久 | 日韩欧美免费精品| 免费高清视频大片| 免费看美女性在线毛片视频| 毛片女人毛片| 如何舔出高潮| 内地一区二区视频在线| 精品久久久久久成人av| 精品久久久久久久末码| 色尼玛亚洲综合影院| 亚洲精品影视一区二区三区av| 91麻豆精品激情在线观看国产| 精品国内亚洲2022精品成人| 天天躁日日操中文字幕| 国产真实伦视频高清在线观看 | 亚洲成人久久性| 精品国产亚洲在线| 自拍偷自拍亚洲精品老妇| 91狼人影院| 国产熟女xx| 成年版毛片免费区| 精品人妻偷拍中文字幕| 久久婷婷人人爽人人干人人爱| 午夜a级毛片| 精品午夜福利在线看| 九九热线精品视视频播放| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 一级作爱视频免费观看| 狂野欧美白嫩少妇大欣赏| av女优亚洲男人天堂| 69人妻影院| 亚洲欧美日韩无卡精品| 又紧又爽又黄一区二区| 日韩欧美国产在线观看| 99久久无色码亚洲精品果冻| 欧美又色又爽又黄视频| 国产极品精品免费视频能看的| 久久精品国产亚洲av涩爱 | 夜夜躁狠狠躁天天躁| 精品99又大又爽又粗少妇毛片 | АⅤ资源中文在线天堂| 精品久久久久久久末码| 国产精品亚洲av一区麻豆| 成人亚洲精品av一区二区| 国产综合懂色| 欧美高清成人免费视频www| 又紧又爽又黄一区二区| 日本与韩国留学比较| 3wmmmm亚洲av在线观看| 丰满乱子伦码专区| 97超级碰碰碰精品色视频在线观看| 蜜桃久久精品国产亚洲av| 淫妇啪啪啪对白视频| 国产伦在线观看视频一区| 国产乱人伦免费视频| 午夜两性在线视频| 国产真实伦视频高清在线观看 | 亚洲国产日韩欧美精品在线观看| 免费av不卡在线播放| 老熟妇仑乱视频hdxx| 一a级毛片在线观看| 国产一区二区在线av高清观看| 一个人免费在线观看电影| 国产亚洲精品久久久com| 男插女下体视频免费在线播放| 国产日本99.免费观看| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人看人人澡| 国产探花极品一区二区| 日韩中文字幕欧美一区二区| 久久精品人妻少妇| 日本精品一区二区三区蜜桃| 中亚洲国语对白在线视频| 国产成人av教育| 亚洲人成网站在线播| 九色国产91popny在线| 欧美高清成人免费视频www| 日本成人三级电影网站| 亚洲国产精品999在线| 在线免费观看的www视频| 十八禁网站免费在线| 我要看日韩黄色一级片| 日韩欧美精品免费久久 | 韩国av一区二区三区四区| 亚洲一区二区三区不卡视频| 不卡一级毛片| 国产蜜桃级精品一区二区三区| 90打野战视频偷拍视频| 嫩草影院入口| 两人在一起打扑克的视频| 国产精品久久电影中文字幕| 99国产精品一区二区三区| 国产毛片a区久久久久| 大型黄色视频在线免费观看| 国产三级在线视频| 一二三四社区在线视频社区8| 超碰av人人做人人爽久久| 在线观看午夜福利视频| 国产成人欧美在线观看| 99久久精品一区二区三区| 黄色日韩在线| 成年版毛片免费区| 亚洲欧美日韩高清在线视频| av黄色大香蕉| 国产单亲对白刺激| 国产成人av教育| 少妇裸体淫交视频免费看高清| 午夜福利免费观看在线| 丰满乱子伦码专区| 国产一区二区在线av高清观看| 色哟哟·www| 久久精品综合一区二区三区| 俺也久久电影网| 亚洲人成网站高清观看| av天堂在线播放| 国产精品精品国产色婷婷| 国产视频内射| 黄色配什么色好看| 丰满人妻一区二区三区视频av| 欧美乱妇无乱码| 99热这里只有是精品50| 91午夜精品亚洲一区二区三区 | 国产一区二区三区视频了| 精品人妻视频免费看| 国产国拍精品亚洲av在线观看| 国产精品久久久久久人妻精品电影| 欧美xxxx性猛交bbbb| 久久国产精品人妻蜜桃| 国产精品电影一区二区三区| 女同久久另类99精品国产91| 黄色女人牲交| 毛片一级片免费看久久久久 | 久久亚洲真实| 91麻豆av在线| 丰满人妻熟妇乱又伦精品不卡| 国产伦精品一区二区三区四那| 一个人看的www免费观看视频| 欧美又色又爽又黄视频| 噜噜噜噜噜久久久久久91| 久久久色成人| 天堂影院成人在线观看| 婷婷亚洲欧美| 五月伊人婷婷丁香| 色播亚洲综合网| 99久久精品国产亚洲精品| 人妻丰满熟妇av一区二区三区| 国产在线男女| 亚洲精品亚洲一区二区| 国产91精品成人一区二区三区| 久久久久久久精品吃奶| 亚洲精品乱码久久久v下载方式| 少妇的逼水好多| 亚洲一区二区三区色噜噜| 精品国产三级普通话版| 免费人成视频x8x8入口观看| 在现免费观看毛片| 99热这里只有是精品50| 悠悠久久av| 久久婷婷人人爽人人干人人爱| 两个人视频免费观看高清| 午夜久久久久精精品| 91在线观看av| 3wmmmm亚洲av在线观看| 一本精品99久久精品77| av专区在线播放| 好看av亚洲va欧美ⅴa在| 日韩有码中文字幕| 国产亚洲av嫩草精品影院| www.www免费av| 成年女人看的毛片在线观看| 国产真实乱freesex| 岛国在线免费视频观看| 色综合站精品国产| 少妇的逼好多水| 亚洲真实伦在线观看| 午夜影院日韩av| 无遮挡黄片免费观看| 人人妻,人人澡人人爽秒播| 午夜福利在线在线| 久久精品国产自在天天线| 精品乱码久久久久久99久播| 琪琪午夜伦伦电影理论片6080| 欧美一区二区亚洲| 天天躁日日操中文字幕| 男人和女人高潮做爰伦理| 狂野欧美白嫩少妇大欣赏| 老司机午夜福利在线观看视频| 又爽又黄a免费视频| 窝窝影院91人妻| 国产日本99.免费观看| 性色avwww在线观看| 99国产综合亚洲精品| av视频在线观看入口| 久久久成人免费电影| 国产精品乱码一区二三区的特点| 亚洲欧美日韩东京热| 免费看光身美女| 精品久久久久久久人妻蜜臀av| 精品久久久久久久人妻蜜臀av| 久久久久久久久久成人| 国产黄片美女视频| 久久国产乱子伦精品免费另类| or卡值多少钱| 久久久久久久久久黄片| 日本 欧美在线| 中文字幕av在线有码专区| 久久精品国产自在天天线| 99在线视频只有这里精品首页| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 又爽又黄无遮挡网站| 身体一侧抽搐| 亚洲精华国产精华精| 日韩欧美在线乱码| 亚洲 国产 在线| 超碰av人人做人人爽久久| 亚洲欧美日韩高清专用| 国产精品三级大全| 午夜精品在线福利| 麻豆av噜噜一区二区三区| 亚洲人成网站高清观看| 在线观看av片永久免费下载| 亚洲国产欧美人成| 国产成人av教育| 脱女人内裤的视频| 中文字幕久久专区| 久久精品人妻少妇| 国产精品女同一区二区软件 | 国产高清视频在线观看网站| 性插视频无遮挡在线免费观看| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 午夜福利18| 欧美性猛交黑人性爽| 能在线免费观看的黄片| 精品国内亚洲2022精品成人| 在线天堂最新版资源| 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频| 日韩欧美国产在线观看| 日韩精品青青久久久久久| 亚洲精品久久国产高清桃花| 国产精品乱码一区二三区的特点| 色哟哟·www| 亚洲第一电影网av| 在线观看一区二区三区| 99热这里只有是精品在线观看 | 欧美色欧美亚洲另类二区| 动漫黄色视频在线观看| 欧美黑人巨大hd| 亚洲午夜理论影院| 国产av不卡久久| 直男gayav资源| 午夜福利18| a在线观看视频网站| 免费av观看视频| 亚洲精品成人久久久久久| 日韩亚洲欧美综合| 亚洲 欧美 日韩 在线 免费| 午夜亚洲福利在线播放| 精品国内亚洲2022精品成人| 国产91精品成人一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久久久毛片| 51午夜福利影视在线观看| 欧美潮喷喷水| 长腿黑丝高跟| 99久久成人亚洲精品观看| 美女大奶头视频| 99在线视频只有这里精品首页| 波野结衣二区三区在线| 天美传媒精品一区二区| 国产午夜精品论理片| 免费观看人在逋| 免费人成在线观看视频色| 一进一出好大好爽视频| 别揉我奶头 嗯啊视频| 最好的美女福利视频网| a在线观看视频网站| 国产精品国产高清国产av| 亚洲性夜色夜夜综合| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| 真人一进一出gif抽搐免费| 日韩欧美在线乱码| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久免费视频| 亚洲综合色惰| 天堂影院成人在线观看| 久久精品久久久久久噜噜老黄 | 亚洲一区二区三区不卡视频| 乱人视频在线观看| 亚洲中文日韩欧美视频| 亚洲av成人av| 久久国产精品人妻蜜桃| 国产主播在线观看一区二区| 精品日产1卡2卡| 欧美一区二区精品小视频在线| 精品久久久久久久末码| 久久久久久久久中文| 哪里可以看免费的av片| 午夜精品一区二区三区免费看| 草草在线视频免费看| xxxwww97欧美| 日本五十路高清| 亚洲国产色片| 亚洲精品在线美女| 男人的好看免费观看在线视频| 成人国产综合亚洲| av视频在线观看入口| 成人永久免费在线观看视频| 最近视频中文字幕2019在线8| 窝窝影院91人妻| 男女床上黄色一级片免费看| 九色国产91popny在线| 久久99热这里只有精品18| 亚洲精品456在线播放app | 中文字幕熟女人妻在线| 亚洲中文日韩欧美视频| 中文字幕熟女人妻在线| 91九色精品人成在线观看| 丰满乱子伦码专区| 人人妻人人看人人澡| 有码 亚洲区| 国产精品一区二区免费欧美| 美女黄网站色视频| 亚洲av成人精品一区久久| 九九久久精品国产亚洲av麻豆| 性欧美人与动物交配| 日韩精品青青久久久久久| 欧美日韩福利视频一区二区| 91字幕亚洲| 毛片女人毛片| av在线蜜桃| 一本一本综合久久| 身体一侧抽搐| 国产欧美日韩一区二区精品| ponron亚洲| 日本一二三区视频观看| 日本黄色视频三级网站网址| 男插女下体视频免费在线播放| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| h日本视频在线播放| 免费大片18禁| 天天一区二区日本电影三级| 国产精品爽爽va在线观看网站| 欧美潮喷喷水| 国产一区二区亚洲精品在线观看| 真人做人爱边吃奶动态| 欧美日韩中文字幕国产精品一区二区三区| a级一级毛片免费在线观看| 婷婷六月久久综合丁香| 国产精品美女特级片免费视频播放器| 嫩草影院入口| 特大巨黑吊av在线直播| 国产乱人伦免费视频| 成年女人永久免费观看视频| 久久草成人影院| 国产白丝娇喘喷水9色精品| 国产精品日韩av在线免费观看| 午夜精品一区二区三区免费看| 亚洲av免费在线观看| 黄色丝袜av网址大全| 精品国产三级普通话版| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 嫩草影院精品99| 波多野结衣巨乳人妻| 色综合站精品国产| 久久久久免费精品人妻一区二区| 免费看美女性在线毛片视频| 亚洲国产精品合色在线| 午夜福利在线观看吧| 日韩欧美在线乱码| 97超视频在线观看视频| 国产一区二区激情短视频| 久久精品国产清高在天天线| 18禁黄网站禁片午夜丰满| 成人高潮视频无遮挡免费网站| 国产欧美日韩一区二区三| 亚洲国产精品久久男人天堂| 丰满人妻一区二区三区视频av| 久久人妻av系列| 国产91精品成人一区二区三区| 别揉我奶头 嗯啊视频| 久久99热这里只有精品18| 尤物成人国产欧美一区二区三区| 久久久久久久久大av| 久久国产精品人妻蜜桃| 精品久久久久久久久av| 欧美日本视频| 最近中文字幕高清免费大全6 | netflix在线观看网站| 99国产综合亚洲精品| 欧美激情国产日韩精品一区| av视频在线观看入口| 亚洲av五月六月丁香网| 嫁个100分男人电影在线观看| 国产午夜福利久久久久久| 给我免费播放毛片高清在线观看| 在线观看av片永久免费下载| 国产69精品久久久久777片| 午夜福利18| 人妻久久中文字幕网| 少妇丰满av| 欧美高清性xxxxhd video| 国产高清激情床上av| 色尼玛亚洲综合影院| 精品乱码久久久久久99久播| 怎么达到女性高潮| 舔av片在线| 亚洲一区二区三区不卡视频| 夜夜爽天天搞| 亚洲经典国产精华液单 | 嫩草影视91久久| 老司机午夜十八禁免费视频| 久久国产乱子免费精品| 久久久久精品国产欧美久久久| 亚州av有码| 亚洲三级黄色毛片| 久久婷婷人人爽人人干人人爱| 久久国产精品人妻蜜桃| 琪琪午夜伦伦电影理论片6080| 久久久久久久久中文| 嫩草影院精品99| 国产精品乱码一区二三区的特点| 亚洲五月天丁香| 成年版毛片免费区| 欧美成狂野欧美在线观看| 国内少妇人妻偷人精品xxx网站| 免费在线观看成人毛片| 精品人妻1区二区| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看| 成人永久免费在线观看视频| 精品乱码久久久久久99久播| 日本黄色片子视频| 三级国产精品欧美在线观看| 久久亚洲真实| 91在线观看av| 亚洲熟妇熟女久久| 天堂影院成人在线观看| 97超视频在线观看视频| 午夜免费男女啪啪视频观看 | 久久99热这里只有精品18| 国产精品一区二区免费欧美| a级毛片a级免费在线| 天天一区二区日本电影三级| 俺也久久电影网| 国产爱豆传媒在线观看| 免费看日本二区| 国产精品一区二区性色av| 一进一出抽搐动态| 亚洲成人精品中文字幕电影| 人妻久久中文字幕网| 免费电影在线观看免费观看| 国产精品野战在线观看| 一个人免费在线观看电影| 波野结衣二区三区在线| 精品熟女少妇八av免费久了| av天堂在线播放| 中文字幕免费在线视频6| 在线免费观看的www视频| 国产伦精品一区二区三区四那| 亚洲av一区综合| 白带黄色成豆腐渣| a在线观看视频网站| 久久热精品热| 成人亚洲精品av一区二区| 国产欧美日韩一区二区三| 可以在线观看毛片的网站| av在线天堂中文字幕| 国产精品98久久久久久宅男小说| 成人av在线播放网站| 日韩成人在线观看一区二区三区| 国产大屁股一区二区在线视频| 琪琪午夜伦伦电影理论片6080| 亚洲va日本ⅴa欧美va伊人久久| 97热精品久久久久久| 1000部很黄的大片| 国产69精品久久久久777片| 精品一区二区免费观看| 国产在线男女| 毛片一级片免费看久久久久 | 国产真实伦视频高清在线观看 | 亚洲精品在线美女| 桃色一区二区三区在线观看| 一进一出好大好爽视频| 色综合婷婷激情| 丝袜美腿在线中文| 成人av一区二区三区在线看| 久久久国产成人精品二区| 男女做爰动态图高潮gif福利片| 看免费av毛片| 日日干狠狠操夜夜爽| 永久网站在线| 国产精品伦人一区二区| 丰满人妻一区二区三区视频av| 欧美高清成人免费视频www| 毛片一级片免费看久久久久 | 欧美在线黄色| 久久久久久久亚洲中文字幕 | 日本成人三级电影网站| 在线免费观看不下载黄p国产 | 一区二区三区免费毛片| 97碰自拍视频| 如何舔出高潮| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| 日本与韩国留学比较| 色哟哟·www| 97热精品久久久久久| 日本黄大片高清| 18禁黄网站禁片午夜丰满| 日韩欧美国产一区二区入口| 国产亚洲欧美98| 成人国产一区最新在线观看| 在线看三级毛片| 日本与韩国留学比较| 老司机福利观看| 亚洲激情在线av| 啦啦啦观看免费观看视频高清| 亚洲av成人av| 脱女人内裤的视频| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 国产精品,欧美在线| 观看免费一级毛片| 我的女老师完整版在线观看| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 黄色女人牲交| 中文在线观看免费www的网站| 久久久久久久久大av| 国产aⅴ精品一区二区三区波| 宅男免费午夜| 免费观看精品视频网站| 亚洲av日韩精品久久久久久密| 亚洲成av人片在线播放无| 深爱激情五月婷婷| 欧美乱色亚洲激情| 99国产精品一区二区蜜桃av| 看十八女毛片水多多多| 在线观看午夜福利视频| 动漫黄色视频在线观看| 国产淫片久久久久久久久 | 日韩欧美国产一区二区入口| 女人被狂操c到高潮| 久久婷婷人人爽人人干人人爱| 色综合婷婷激情| 性色avwww在线观看| 老熟妇仑乱视频hdxx| 亚洲av电影不卡..在线观看| 色综合站精品国产| 在线观看免费视频日本深夜| 国产成人aa在线观看| 村上凉子中文字幕在线| 国产精品久久久久久久久免 | 久久久久久久午夜电影| 久久午夜福利片| 婷婷亚洲欧美| 男插女下体视频免费在线播放| 亚洲成人久久性| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲一级av第二区| 免费搜索国产男女视频| 国产白丝娇喘喷水9色精品| 日韩高清综合在线| 精品一区二区三区人妻视频| 热99re8久久精品国产| 国产av在哪里看| 成人亚洲精品av一区二区| 久久久久久久久大av| 中文字幕久久专区| 亚洲狠狠婷婷综合久久图片| 久久久久久久久久成人| 51午夜福利影视在线观看| av福利片在线观看| 久9热在线精品视频| 国产精品久久久久久亚洲av鲁大| 女人被狂操c到高潮| 久久99热这里只有精品18| 国内精品久久久久精免费| 国产一区二区三区在线臀色熟女| 757午夜福利合集在线观看| 日韩高清综合在线| 悠悠久久av| 别揉我奶头 嗯啊视频| 国产精品女同一区二区软件 | 色在线成人网| 日日夜夜操网爽| 一边摸一边抽搐一进一小说| 少妇人妻一区二区三区视频| 日日摸夜夜添夜夜添小说| 欧美成人a在线观看| 久久人人精品亚洲av| 日本一本二区三区精品| 日韩av在线大香蕉| 波多野结衣高清无吗| 又爽又黄a免费视频| 嫩草影院新地址| 男人舔奶头视频| 级片在线观看| 国产黄色小视频在线观看| 国产免费一级a男人的天堂| 蜜桃久久精品国产亚洲av| 深爱激情五月婷婷| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美98| 天堂√8在线中文| 精品不卡国产一区二区三区|