胡洲映 李雙蕾 陳遠(yuǎn)瑾 覃海戀 宋石開 胡飛
摘要 目的:運(yùn)用網(wǎng)絡(luò)藥理學(xué)及分子對(duì)接預(yù)測(cè)益氣養(yǎng)陰清熱方治療2型糖尿病的作用機(jī)制。方法:借助中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫與分析平臺(tái)(TCMSP)、BATMAN-TCM數(shù)據(jù)庫獲取益氣養(yǎng)陰清熱方6味中藥的化學(xué)成分和作用靶點(diǎn)。通過GeneCards數(shù)據(jù)庫獲取治療2型糖尿病相關(guān)靶點(diǎn);利用R軟件獲取有效成分與疾病相關(guān)靶點(diǎn)之交集;利用Cytoscape v3.8.0中CytoHubba插件篩選出核心靶點(diǎn),利用ClueGo插件對(duì)核心靶標(biāo)進(jìn)行基因本體(GO)富集分析和京都基因和基因組百科全書(KEGG)富集分析。借助AutoDockTool、Vina、Pymol軟件,將進(jìn)行預(yù)處理及分子對(duì)接。結(jié)果:本研究共獲取養(yǎng)陰清熱方相關(guān)有效成分70個(gè),活性成分所涉及的相關(guān)靶點(diǎn)222個(gè),有槲皮素、山柰酚、木犀草素、漢黃芩素、芒柄花黃素等;對(duì)13個(gè)核心靶點(diǎn)進(jìn)行GO生物過程、KEGG富集分析分別得到36條和47條結(jié)果,主要與對(duì)脂多糖的反應(yīng),對(duì)缺氧的反應(yīng),對(duì)氧化應(yīng)激的反應(yīng)相關(guān),涉及IL-17信號(hào)通路、糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路、Toll樣受體信號(hào)通路、腫瘤壞死因子信號(hào)通路等。分子對(duì)接結(jié)果顯示核心成分與核心靶點(diǎn)JUN、AKT1、MAPK1、TP53、IL6、MAPK14、ESR1、CXCL8對(duì)接良好。結(jié)論:益氣養(yǎng)陰清熱方可通過多途徑、多靶點(diǎn)、多通道影響調(diào)節(jié)糖脂代謝、改善胰島素抵抗、抑制肝糖異生、降低炎癥反應(yīng)、保護(hù)血管內(nèi)皮、改善胰島B細(xì)胞分泌功能、調(diào)節(jié)免疫反應(yīng)等途徑治療2型糖尿病。
關(guān)鍵詞 網(wǎng)絡(luò)藥理學(xué);分子對(duì)接;益氣養(yǎng)陰清熱方;2型糖尿病
Mechanism of Yiqi Yangyin Qingre Formula in Treatment of Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking
HU Zhouying1,LI Shuanglei2,CHEN Yuanjin1,QIN Hailian1,SONG Shikai1,HU Fei1
(1 Guangxi University of Chinese Medicine,Nanning 530001,China; 2 The First Affiliated Hospital of Guangxi University of Chinese Medicine,Nanning 530023,China)
Abstract Objective:To explore the mechanism of Yiqi Yangyin Qingre Formula(YQYYQR) on type 2 diabetes mellitus(T2DM) by network pharmacology and molecular docking.Methods:TCMSP and BATMAN-TCM were used to obtain the chemical constituents and action targets of six Chinese medicinal drugs in YQYYQR.The targets related to the treatment of T2DM were obtained from GeneCards.The common targets were obtained by the R programming language.The core targets were screened out by CytoHubba plug-in in Cytoscape v3.8.0.The core targets were analyzed for Go and KEGG enrichment analyses by the ClueGo plug-in.AutoDockTool,Vina,and Pymol were used for pretreatment and molecular docking.Results:Seventy active constituents of YQYYQR were obtained,and 222 targets were involved in the active constituents,such as quercetin,kaempferol,luteolin,wogonin,and miscanthin.As revealed by GO and KEGG enrichment analyses of 13 core targets,36 entries of biological processes,such as responses to lipopolysaccharide,hypoxia,and oxidative stress,and 47 entries of pathways,such as IL-17 signaling pathway,AGE-RAGE signaling pathway in diabetic complications,Toll-like receptor signaling pathway,and tumor necrosis factor signaling pathway,were obtained.The results of molecular docking showed that the core constituents showed good affinity with the core targets JUN,AKT1,MAPK1,TP53,IL6,MAPK14,ESR1,and CXCL8.Conclusion:YQYYQR can treat T2DM by regulating glucose and lipid metabolism,improving insulin resistance,inhibiting hepatic gluconeogenesis,reducing inflammatory reaction,protecting vascular endothelium,improving islet β-cell secretion,and mediating immune response through multiple channels,multiple targets,and multiple pathways.
Keywords Network pharmacology; Molecular docking; Yiqi Yangyin Qingre Formula; Type 2 diabetes mellitus
中圖分類號(hào):R285文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2022.02.002
隨著人口老齡化的上升及生活方式的轉(zhuǎn)變,糖尿病患病率呈迅猛增加的趨勢(shì),據(jù)統(tǒng)計(jì),2013年發(fā)達(dá)國家2型糖尿病(T2DM)的患病率為1.2%,而發(fā)展中國家的患病率被認(rèn)為已是其4倍以上[1-2]。T2DM是一組常見的以血糖增高為主要特征的糖、蛋白類、脂肪物質(zhì)代謝紊亂的各系統(tǒng)損害的一種內(nèi)分泌疾病,是由于人體內(nèi)胰島素分泌缺陷或胰島素抵抗而引發(fā)的[3]。糖尿病作為慢性代謝性疾病,已成為威脅老年人健康的重大公共衛(wèi)生問題,其致殘率和病死率高,對(duì)我國的醫(yī)療衛(wèi)生造成了極大的負(fù)擔(dān)。
中醫(yī)認(rèn)為,T2DM屬“消渴”“消癉”等中醫(yī)范疇,陰虛燥熱為其基本病機(jī)?!蹲C治要訣·三消》有云:“三消得之氣之實(shí),血之虛,久久不治,氣盡虛,則無能為力矣?!薄度彘T事親·三消之說當(dāng)從火斷》指出:“夫一身之心火,甚于上為膈膜之消;甚于中,則為腸胃之消;甚于下,為膏液之消;甚于外為肌肉之消?!币蚨疤摗薄盁帷闭撝卧诎l(fā)病過程當(dāng)中起著關(guān)鍵作用。李雙蕾等[4]認(rèn)為在消渴其發(fā)病機(jī)制中,當(dāng)屬氣陰虧虛,熱毒為患為要,并根據(jù)多年治療糖尿病的臨床經(jīng)驗(yàn),精選藥物組成益氣養(yǎng)陰清熱方,該方由生黃芪、黃連、知母、麥冬、連翹、淮山藥組成。方中重用黃芪為君,其性甘溫,入脾胃經(jīng),補(bǔ)中益氣。山藥補(bǔ)脾益陰,滋腎固精,黃連清熱解毒,燥濕堅(jiān)陰,二者為臣;知母苦寒質(zhì)潤,瀉三焦虛火,滋陰潤燥,麥冬助知母養(yǎng)陰清熱生津,二者相和,共為佐藥;連翹清熱解毒,散結(jié)消腫,一清熱毒,二防補(bǔ)益太過,聚而為毒,為佐使之用。全方共奏益氣養(yǎng)陰,清熱解毒之效。
在前期研究發(fā)現(xiàn),益氣養(yǎng)陰清熱方(YiQiYangYinQingReFang,YQYYQRF)能改善血糖、胰島素抵抗,降低炎癥介質(zhì)水平等途徑調(diào)控血糖[4-6]。結(jié)合前期研究,本研究運(yùn)用網(wǎng)絡(luò)藥理學(xué)方法,整合分析數(shù)據(jù)庫中藥有效成分與疾病的信息,對(duì)中藥復(fù)方潛在治療靶點(diǎn)進(jìn)行預(yù)測(cè),進(jìn)一步探究益氣養(yǎng)陰清熱方治療T2DM的作用機(jī)制。
1 資料與方法
1.1 篩選益氣養(yǎng)陰清熱方有效成分及靶點(diǎn)獲取?? 通過中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫與分析平臺(tái)(TCMSP)(http://tcmspw.com/tcmsp.php)獲取益氣養(yǎng)陰清熱方中生黃芪、黃連、知母、麥冬、連翹、淮山藥的有效成分,按照口服生物利用度(Oral Bioavailability,OB)≥30,類藥性(Drug Likeness,DL)≥0.18的條件對(duì)有效成分進(jìn)行篩選。在TCMSP中Related Targets標(biāo)簽獲取各有效成分的靶點(diǎn),并對(duì)所有中藥的有效成分、有效成分對(duì)應(yīng)的靶點(diǎn)、有效成分對(duì)應(yīng)的中藥名進(jìn)行整合。利用Cytoscape 3.8.0軟件構(gòu)建“中藥-活性成分-靶點(diǎn)”網(wǎng)絡(luò)圖。
1.2 靶點(diǎn)基因注釋 將檢索獲取的中藥有效成分作用靶點(diǎn),通過UniProt數(shù)據(jù)庫(https://www.uniprot.org/)校進(jìn)行靶點(diǎn)基因注釋。
1.3 T2DM靶點(diǎn)的獲取 運(yùn)用GeneCards(https://www.genecards.org/)數(shù)據(jù)庫進(jìn)行T2DM疾病靶點(diǎn)的選取,輸入“Type 2 Diabetes Mellitus”進(jìn)行檢索,得到相關(guān)靶點(diǎn)。
1.4 獲取基因交集靶點(diǎn) 利用R軟件,對(duì)成分相關(guān)的靶點(diǎn)與疾病相關(guān)靶點(diǎn)取交集,并將篩選到的交集靶點(diǎn)上傳至在線韋恩圖網(wǎng)站(https://bioinfogp.cnb.csic.es/tools/venny/),得到活性化合物與疾病的交集基因。
1.5 構(gòu)建蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò) 將交集靶點(diǎn)導(dǎo)入到STRING數(shù)據(jù)庫(https://string-db.org/),選定“Homo Sapiens”物種,試驗(yàn)將置信度評(píng)分設(shè)置為>0.9(Highest Confidence),并選擇隱藏PPI網(wǎng)絡(luò)中斷開連接的節(jié)點(diǎn)(Hide Disconnected Nodes in The Network),其余參數(shù)默認(rèn),構(gòu)建交集靶點(diǎn)相互作用網(wǎng)絡(luò)拓?fù)?。利用Cytoscape 3.8.0軟件中CytoHubba插件計(jì)算網(wǎng)絡(luò)中每個(gè)節(jié)點(diǎn)的拓?fù)鋮?shù)(介數(shù)、自由度、接近中心性、平均最短路徑長度),并以所有節(jié)點(diǎn)這4個(gè)參數(shù)的中值作為篩選條件。當(dāng)4個(gè)參數(shù)均大于中值的節(jié)點(diǎn)時(shí)被認(rèn)為是PPI網(wǎng)絡(luò)中起核心作用的主要樞紐。
1.6 富集分析 利用Cytoscape 3.8.0軟件中GlueGO插件對(duì)核心靶點(diǎn)進(jìn)行基因本體(GO)富集分析和京都基因和基因組百科全書(KEGG) 富集分析。設(shè)定P<0.05,并采用Bonferroni法進(jìn)行校正,Kappa Score默認(rèn)為0.4。
1.7 分子對(duì)接 通過以上結(jié)果分析,篩選出調(diào)控核心成分及核心靶點(diǎn),用于分子對(duì)接的活性成分及靶點(diǎn),并從PubChem數(shù)據(jù)庫(https://pubchem.ncbi.nlm.nih.gov/)下載小分子化合物結(jié)構(gòu),RCSB PDB(http://www.rcsb.org/)數(shù)據(jù)庫下載相關(guān)靶點(diǎn)的蛋白結(jié)構(gòu),利用Auto Dock軟件去除水分子、氫等處理,運(yùn)用AutoDock MGL Tools 1.5.6、Pymol 2.6、AutoDock Vina 1.1.2進(jìn)行分子對(duì)接模擬獲取對(duì)接能量。
2 結(jié)果
2.1 潛在活性成分的篩選和作用靶點(diǎn)預(yù)測(cè) 益氣養(yǎng)陰清熱方有效成分70個(gè),其中黃芪16個(gè),黃連10個(gè),知母11個(gè),連翹19個(gè),山藥12個(gè),麥冬1個(gè)。有效成分所對(duì)應(yīng)的靶點(diǎn)258個(gè)?!爸兴?活性成分-靶點(diǎn)”網(wǎng)絡(luò)中對(duì)應(yīng)靶點(diǎn)最多的有效成分有槲皮素、山柰酚、木犀草素、漢黃芩素、芒柄花黃素,分別為對(duì)77個(gè)、33個(gè)、29個(gè)、22個(gè)、16個(gè)。見圖1。
2.2 疾病靶點(diǎn)篩選與共同靶點(diǎn)PPI構(gòu)建 通過GeneCard以“Type 2 Diabetes Mellitus”作為關(guān)鍵詞搜索T2DM相關(guān)靶點(diǎn)1 786個(gè)(已去掉重合基因)。將1 786個(gè)疾病靶點(diǎn)與222個(gè)益氣養(yǎng)陰清熱方有效成分作用靶點(diǎn)交集靶點(diǎn)119個(gè)。見圖2。將靶點(diǎn)導(dǎo)入STRING建立PPI網(wǎng)絡(luò)。見圖3。利用Cytoscape 3.8.0軟件中CytoHubba插件計(jì)算出核心靶點(diǎn)共13個(gè)。見表1。
2.3 富集結(jié)果分析 13個(gè)交集靶點(diǎn)GO生物過程(Biological Process,BP)得到36條通路。見圖4。生物過程富集結(jié)果主要包括RNA聚合酶Ⅱ?qū)ri-miRNA轉(zhuǎn)錄的調(diào)控、白細(xì)胞趨化調(diào)節(jié)、RNA聚合酶Ⅱ?qū)ri-miRNA轉(zhuǎn)錄的正調(diào)控作用、細(xì)胞對(duì)鎘離子的反應(yīng)、內(nèi)質(zhì)網(wǎng)核信號(hào)通路等。KEGG富集分析結(jié)果共47條通路。調(diào)高P值至P≤0.01,Pathway Selection為6%,得到16條通路,主要涉及IL-17信號(hào)通路、糖尿病并發(fā)癥中的AGE-RAGE信號(hào)通路、Toll樣受體信號(hào)通路、腫瘤壞死因子信號(hào)通路等。見圖5。
2.4 益氣養(yǎng)陰清熱方核心靶點(diǎn)通路網(wǎng)絡(luò)構(gòu)建 利用Cytoscape 3.8.0軟件,構(gòu)建益氣養(yǎng)陰清熱方核心靶點(diǎn)—通路網(wǎng)絡(luò)。見圖6。圖6可見益氣養(yǎng)陰清熱方可通過多靶點(diǎn)作用于JUN、AKT1、MAPK1、TP53、IL6、MAPK14等多個(gè)靶點(diǎn)并干預(yù)AGE/RAGE信號(hào)通路、IL-17信號(hào)通路、TNF信號(hào)通路等。
2.5 益氣養(yǎng)陰清熱方主要成分與AKT1、STAT3、JUN的分子對(duì)接認(rèn)證 選取“中藥-有效成分-靶標(biāo)-通路”網(wǎng)絡(luò)圖中度值高于平均值的4個(gè)化合物(槲皮素、山柰酚、木犀草素、漢黃芩素、芒柄花黃素)與核心靶點(diǎn)(JUN、AKT1、MAPK1、TP53、IL6、MAPK14)進(jìn)行分子對(duì)接模擬,一般認(rèn)為其絕對(duì)值大于5的時(shí)候,小分子和蛋白二者結(jié)合的可能性較大[7]。見表2,圖7。結(jié)果提示益氣養(yǎng)陰清熱湯的核心成分均與JUN、AKT1、MAPK1、TP53、IL6、MAPK14等關(guān)鍵靶點(diǎn)有較好的親和力。
3 討論
目前針對(duì)T2DM的研究主要圍繞肥胖相關(guān)的胰島素抵抗和胰島素分泌缺陷以及通過B細(xì)胞凋亡導(dǎo)致的B細(xì)胞質(zhì)量下降等幾個(gè)方面的病理改變展開,并與炎癥改變、免疫基因缺陷和線粒體功能受損等具有密切聯(lián)系[8-9]。以此將對(duì)網(wǎng)絡(luò)藥理學(xué)分析結(jié)果即益氣養(yǎng)陰清熱方治療T2DM的潛在機(jī)制結(jié)果及潛在藥效物質(zhì)和關(guān)鍵靶點(diǎn)分子對(duì)接結(jié)果進(jìn)行討論。
3.1 活性成分及靶標(biāo) 本研究利用網(wǎng)絡(luò)藥理學(xué)從多基因、多通絡(luò)、多靶點(diǎn)進(jìn)行整體分析,得出益氣養(yǎng)陰清熱方治療T2DM的有效成分70個(gè),核心主要有:槲皮素、山柰酚、木犀草素、漢黃芩素、芒柄花黃素。槲皮素是多種中草藥中黃酮類化合物,益氣養(yǎng)陰清熱方中,連翹、黃芪、黃連中均含有槲皮素,其具有良好的生物學(xué)價(jià)值,具有抗氧化、抗炎、抗癌等作用,有研究表明,槲皮素可較好地改善糖脂代謝紊亂及保護(hù)胰島功能,其機(jī)制可能與干預(yù)AKT信號(hào)通路及上調(diào)SIRT1的活性和蛋白水平有關(guān)[10]。槲皮素亦能通過抑制炎癥途徑,特別是核因子κB信號(hào)轉(zhuǎn)導(dǎo),具有預(yù)防糖尿病血管并發(fā)癥的潛在作用[11]。研究發(fā)現(xiàn),山柰酚抑制肝糖異生,其機(jī)制可能與干預(yù)肝臟AKT信號(hào)相關(guān)[12]。木犀草素可降低PKB/AKT、PRAS40-、p70S6K-和S6的磷酸化,從而降低肝葡萄糖生成)和減少肝臟脂肪變性[13]。漢黃芩素對(duì)T2DM小鼠視網(wǎng)膜病變有一定改善作用,并能阻斷高血糖誘導(dǎo)的血管炎癥的發(fā)生,其機(jī)制可能與抗氧化、增加核因子κB的活化、CAMs的表達(dá)、保護(hù)內(nèi)皮屏障功能的破壞等相關(guān)[14-15]。研究表明芒柄花青素能顯著提高胰島素敏感性指數(shù),降低HOMA-IR,改善胰島素抵抗,其機(jī)制可能與增加SIRT1的表達(dá)有關(guān)[16]。
3.2 PPI網(wǎng)絡(luò)拓?fù)浞治?/p>
CytoHubba分析結(jié)果看出,核心靶點(diǎn)有JUN、AKT1、MAPK1、TP53、IL6、MAPK14等。c-Jun N-Terminal Kinases(JUKS)是絲裂原活化蛋白激酶(MAPK)超家族的成員,肥胖引起的慢性炎癥激活JNK及其相關(guān)通路,導(dǎo)致糖、脂代謝受損,阻斷胰島素信號(hào)轉(zhuǎn)導(dǎo),降低胰島素靶細(xì)胞的胰島素敏感性[17-18]。AKT是一種絲氨酸/蘇氨酸蛋白激酶,是PI3K-AKT信號(hào)通路中的關(guān)鍵蛋白。其磷酸化與糖、脂代謝密切相關(guān)[19]。研究發(fā)現(xiàn),MiR-423-5p通過抑制肝臟中FAM3A-ATP-AKT通路,促進(jìn)肝臟糖異生和脂質(zhì)沉積,并誘導(dǎo)葡萄糖不耐受、胰島素抵抗和高血糖。功能失調(diào)的AKT會(huì)導(dǎo)致糖脂代謝紊亂[20]。
MAP激酶又稱細(xì)胞外信號(hào)調(diào)節(jié)激酶(Extracellular Signal Regulated Kinases,Erks)是多種生化信號(hào)的整合點(diǎn),參與細(xì)胞增殖、分化、轉(zhuǎn)錄調(diào)控和發(fā)育等多種過程[21]。過量攝入熱量可導(dǎo)致T2DM樣疾病小鼠脂肪組織中氧化應(yīng)激的積累,并促進(jìn)衰老樣改變,從而導(dǎo)致TP53表達(dá)增加和炎癥介質(zhì)生成增加[22]。研究表明IL-6與胰島素抵抗和胰島素分泌障礙有密切相關(guān)[23]。
3.3 富集結(jié)果分析 KEGG通路富集結(jié)果中,較為關(guān)鍵的是IL-17信號(hào)通路、AGE/RAGE信號(hào)通路、Toll樣受體信號(hào)通路、腫瘤壞死因子信號(hào)通路等。研究表明,T2DM可能是一種由細(xì)胞因子介導(dǎo)的先天免疫性疾病和炎癥反應(yīng),炎癥介質(zhì)的釋放是誘導(dǎo)發(fā)生胰島素抵抗以及影響胰島素分泌的重要因素[24]。白細(xì)胞介素-17(IL-17)家族是由IL-17A-F組成的細(xì)胞因子亞群,在急性和慢性炎癥反應(yīng)中起著至關(guān)重要的作用[25]。肥胖相關(guān)2型糖尿病患者的T細(xì)胞炎癥的特征是循環(huán)Th17細(xì)胞數(shù)量增加,Th17衍生細(xì)胞因子產(chǎn)生增加,Th17標(biāo)志基因激活,此外,T2DM患者血漿DPP4活性的增加與循環(huán)Th17細(xì)胞DPP4的分泌增強(qiáng)有關(guān),因而IL-17信號(hào)通路在糖尿病炎癥反應(yīng)中起著重要作用[26-27]。AGEs/RAGE信號(hào)通路是導(dǎo)致糖尿病多種組織細(xì)胞損傷的重要機(jī)制,其可誘導(dǎo)下游不同的信號(hào)通路,如JAK/STAT、PKC/PI3K/AKT、MAPK/Erk和Src/RhoA/Cdc42等,它們可激活各種轉(zhuǎn)錄因子,參與炎癥的基因轉(zhuǎn)錄,與糖尿病微血管和大血管并發(fā)癥發(fā)病密切相關(guān)[28]。
綜上所述,我們推測(cè)益氣養(yǎng)陰清熱湯可能通過作用于IL-17信號(hào)通路、AGE/RAGE信號(hào)通路、Toll樣受體信號(hào)通路、腫瘤壞死因子信號(hào)通路在T2DM的治療中發(fā)揮調(diào)控血糖,改善胰島素抵抗,調(diào)節(jié)免疫,抑制炎癥反應(yīng)等作用。因而選擇通路中的關(guān)鍵靶點(diǎn)與益氣養(yǎng)陰清熱湯關(guān)鍵有效成分進(jìn)行分子對(duì)接以分析它們之間的親和力進(jìn)一步論證。
3.4 分子對(duì)接預(yù)測(cè)結(jié)果 分子對(duì)接是計(jì)算蛋白質(zhì)-配體相互作用最廣泛的方法,本研究結(jié)果提示,益氣養(yǎng)陰清熱湯的核心成分均與JUN、AKT1、MAPK1、TP53、IL6、MAPK14等關(guān)鍵靶點(diǎn)有較好的親和力,佐證其有可能通過作用于以上幾種關(guān)鍵靶點(diǎn)而治療T2DM。
前期研究和臨床觀察已證實(shí)益氣養(yǎng)陰清熱方在治療T2DM中具有可觀的臨床療效。本研究運(yùn)用網(wǎng)絡(luò)藥理學(xué)與分子對(duì)接技術(shù),預(yù)測(cè)益氣養(yǎng)陰清熱方治療T2DM的起效機(jī)制,挖掘其潛在作用機(jī)制,研究結(jié)果得出益氣養(yǎng)陰清熱方通過多成分,多靶點(diǎn),多通路調(diào)節(jié)糖脂代謝、改善胰島素抵抗、抑制肝糖異生、降低炎癥反應(yīng)、保護(hù)血管內(nèi)皮、改善胰島B細(xì)胞分泌功能、調(diào)節(jié)免疫反應(yīng)等途徑治療T2DM,并為后續(xù)的益氣養(yǎng)陰清熱方藥理機(jī)制提供了生物學(xué)研究的依據(jù)。本研究以數(shù)據(jù)挖掘和數(shù)據(jù)分析為基礎(chǔ)的預(yù)測(cè)性研究,具有一定的局限性,因而亟須通過進(jìn)一步基礎(chǔ)研究進(jìn)行驗(yàn)證,并積極回歸臨床,更好地發(fā)揮中醫(yī)藥的優(yōu)勢(shì)。
參考文獻(xiàn)
[1]Garber AJ,Handelsman Y,Einhorn D,et al.Diagnosis and management of prediabetes in the continuum of hyperglycemia:when do the risks of diabetes begin? A consensus statement from the American College of Endocrinology and the American Association of Clinical Endocrinologists[J].Endocr Pract,2008,14(7):933-946.
[2]Guariguata L,Whiting DR,Hambleton I,et al.Global estimates of diabetes prevalence for 2013 and projections for 2035[J].Diabetes Res Clin Pract,2014,103(2):137-149.
[3]Kharroubi AT,Darwish HM.Diabetes mellitus:The epidemic of the century[J].World J Diabetes,2015,6(6):850-867.
[4]李雙蕾,陳莉娜,趙偉,等.益氣養(yǎng)陰清熱方對(duì)2型糖尿病患者炎癥因子的影響[J].中華中醫(yī)藥雜志,2013,28(3):746-748.
[5]李雙蕾,陳文輝,陳莉娜,等.益氣養(yǎng)陰清熱方對(duì)初發(fā)2型糖尿病患者胰島素抵抗的影響[J].廣西中醫(yī)藥,2012,35(4):9-12.
[6]蔣云霞,陳文輝,李雙蕾,等.益氣養(yǎng)陰清熱方對(duì)KKAy小鼠GLP-2、IFN-γ、NF-κB的影響[J].湖南中醫(yī)藥大學(xué)學(xué)報(bào),2019,39(6):704-707.
[7]Morris GM,Huey R,Lindstrom W,et al.AutoDock4 and AutoDockTools4:Automated docking with selective receptor flexibility[J].J Comput Chem,2009,30(16):2785-2791.
[8]Surapon Tangvarasittichai.Oxidative stress,insulin resistance,dyslipidemia and type 2 diabetes mellitus[J].World J Diabetes,2015,6(3):456-480.
[9]Tomita T.Apoptosis in pancreatic beta-islet cells in Type 2 diabetes[J].Bosn J Basic Med Sci,2016,16(3):162-179.
[10]Peng J,Li Q,Li K,et al.Quercetin Improves Glucose and Lipid Metabolism of Diabetic Rats:Involvement of Akt Signaling and SIRT1[J].J Diabetes Res,2017,2017:3417306.
[11]Mahmoud MF,Hassan NA,El BH,et al.Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats:effect on low grade inflammation[J].PLoS One,2013,8(5):e63784.
[12]Alkhalidy H,Moore W,Wang A,et al.Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice[J].J Nutr Biochem,2018,58:90-101.
[13]Bumke-Vogt C,Osterhoff MA,Borchert A,et al.The flavones apigenin and luteolin induce FOXO1 translocation but inhibit gluconeogenic and lipogenic gene expression in human cells[J].PLoS One,2014,9(8):e104321.
[14]Ku SK,Bae JS.Baicalin,baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo[J].BMB Rep,2015,48(9):519-524.
[15]侯亞莉,林梅,梅穩(wěn),等.漢黃芩素對(duì)2型糖尿病小鼠糖尿病視網(wǎng)膜病變改善作用[J].中華中醫(yī)藥學(xué)刊,2019,37(10):2398-2400.
[16]Oza MJ,Kulkarni YA.Formononetin Treatment in Type 2 Diabetic Rats Reduces Insulin Resistance and Hyperglycemia[J].Front Pharmacol,2018,9:739.
[17]Vogt PK.Fortuitous convergences:the beginnings of JUN[J].Nat Rev Cancer,2002,2(6):465-469.
[18]Feng J,Lu S,Ou B,et al.The Role of JNk Signaling Pathway in Obesity-Driven Insulin Resistance[J].Diabetes Metab Syndr Obes,2020,13:1399-1406.
[19]Wang Y,Dang N,Sun P,et al.The effects of metformin on fibroblast growth factor 19,21 and fibroblast growth factor receptor 1 in high-fat diet and streptozotocin induced diabetic rats[J].Endocr J,2017,64(5):543-552.
[20]Yang W,Wang J,Chen Z,et al.NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway[J].Diabetes,2017,66(7):1819-1832.
[21]Cao S,Han X,Ding C,et al.Molecular cloning of the duck mitogen-activated protein kinase 1(MAPK1) gene and the development of a quantitative real-time PCR assay to detect its expression[J].Poult Sci,2014,93(9):2158-2167.
[22]Minamino T,Orimo M,Shimizu I,et al.A crucial role for adipose tissue p53 in the regulation of insulin resistance[J].Nat Med,2009,15(9):1082-1087.
[23]Bertoni AG,Burke GL,Owusu JA,et al.Inflammation and the incidence of type 2 diabetes:the Multi-Ethnic Study of Atherosclerosis(MESA)[J].Diabetes Care,2010,33(4):804-810.
[24]Oguntibeju OO.Type 2 diabetes mellitus,oxidative stress and inflammation:examining the links[J].Int J Physiol Pathophysiol Pharmacol,2019,11(3):45.
[25]Hymowitz SG,F(xiàn)ilvaroff EH,Yin JP,et al.IL-17s adopt a cystine knot fold:structure and activity of a novel cytokine,IL-17F,and implications for receptor binding[J].EMBO J,2001,20(19):5332-5341.
[26]Zapata-Gonzalez F,Auguet T,Aragones G,et al.Interleukin-17A Gene Expression in Morbidly Obese Women[J].Int J Mol Sci,2015,16(8):17469-17481.
[27]Nargis T,Kumar K,Ghosh AR,et al.KLK5 induces shedding of DPP4 from circulatory Th17 cells in type 2 diabetes[J].Mol Metab,2017,6(11):1529-1539.
[28]Litwinoff E,Hurtado DPC,Ramasamy R,et al.Emerging Targets for Therapeutic Development in Diabetes and Its Complications:The RAGE Signaling Pathway[J].Clin Pharmacol Ther,2015,98(2):135-144.
(2020-12-24收稿 本文編輯:魏慶雙)