• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    副凋亡在腫瘤中的研究進(jìn)展*

    2022-03-04 09:17:28焦肖寧方肇勤盧濤
    中國(guó)病理生理雜志 2022年2期
    關(guān)鍵詞:細(xì)胞質(zhì)空泡內(nèi)質(zhì)網(wǎng)

    焦肖寧, 方肇勤, 盧濤

    副凋亡在腫瘤中的研究進(jìn)展*

    焦肖寧, 方肇勤, 盧濤△

    (上海中醫(yī)藥大學(xué),上海 201203)

    細(xì)胞程序性死亡;副凋亡;內(nèi)質(zhì)網(wǎng)應(yīng)激;細(xì)胞質(zhì)空泡化

    腫瘤是嚴(yán)重危害人類(lèi)健康的疾病之一,流行病學(xué)數(shù)據(jù)顯示,2018年全球約有1 810萬(wàn)腫瘤新發(fā)病例以及960萬(wàn)腫瘤死亡病例;腫瘤的發(fā)病率和死亡率在全球范圍內(nèi)迅速增長(zhǎng),其難治性及危害性使得腫瘤成為全球最重要的生命科學(xué)領(lǐng)域之一[1]。細(xì)胞死亡方式的研究對(duì)于腫瘤有重要意義,如細(xì)胞凋亡的發(fā)現(xiàn)對(duì)腫瘤細(xì)胞的清除及腫瘤治療學(xué)產(chǎn)生了巨大影響,但單一方式的治療常常伴隨耐藥性的產(chǎn)生[2-4];與此同時(shí),誘導(dǎo)腫瘤細(xì)胞其它死亡形式在臨床抗腫瘤治療中也發(fā)揮重要的作用[5]。

    副凋亡(paraptosis)描述了一種細(xì)胞死亡形式,因其受基因表達(dá)調(diào)控故認(rèn)為是一種細(xì)胞程序性死亡。當(dāng)細(xì)胞發(fā)生副凋亡時(shí),可在形態(tài)學(xué)上觀察到細(xì)胞質(zhì)空泡化(內(nèi)質(zhì)網(wǎng)和/或線粒體擴(kuò)張),且形態(tài)學(xué)的差異表明副凋亡不同于細(xì)胞壞死、凋亡和自噬,其發(fā)生機(jī)制至今仍未被完全揭示。本文對(duì)副凋亡的特征及其調(diào)控機(jī)制進(jìn)行綜述,以期為臨床抗腫瘤藥物的研發(fā)和應(yīng)用提供參考資料。

    1 副凋亡發(fā)生時(shí)的特征性改變

    x

    1.1細(xì)胞質(zhì)空泡化是副凋亡的典型形態(tài)學(xué)特征 Sperandio等[6-7]于2000年對(duì)副凋亡進(jìn)行了特征性描述:在細(xì)胞發(fā)生副凋亡過(guò)程中,細(xì)胞質(zhì)出現(xiàn)空泡化和細(xì)胞死亡,但卻不伴隨細(xì)胞凋亡(核碎裂、凋亡小體形成和染色質(zhì)濃縮)、自噬(自噬體)和壞死的形態(tài)學(xué)改變,且不受凋亡抑制劑調(diào)控。早在1973年就已有學(xué)者在研究中觀察到類(lèi)似的細(xì)胞形態(tài)學(xué)變化[8]。1995年,Samaha等[9]首次使用para-apoptosis一詞描述核固縮、核碎裂、細(xì)胞密度增加和細(xì)胞質(zhì)空泡化的細(xì)胞死亡形式的發(fā)生,其中的形態(tài)學(xué)改變和生化特征可能包含細(xì)胞凋亡和副凋亡。細(xì)胞副凋亡時(shí)的形態(tài)變化見(jiàn)圖1。

    Figure 1.Cell morphological changes during paraptosis.

    1.2膜定位是副凋亡的重要特征Sperandio等[6]首先發(fā)現(xiàn)膜定位在誘導(dǎo)細(xì)胞副凋亡過(guò)程中發(fā)揮了重要的作用,他們將人胰島素樣生長(zhǎng)因子1受體(insulin-like growth factor 1 receptor,IGF1R)序列和用于膜定位的十四烷基化信號(hào)序列插入質(zhì)粒載體中,獲得野生型IGF1R構(gòu)建體,并誘導(dǎo)獲得突變構(gòu)建體IGF1R胞內(nèi)結(jié)構(gòu)域(IGF1R intracellular domain,IGF1R-IC),用于防止配體結(jié)合誘導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo);十四烷基化的IGF1R/IGF1R-IC構(gòu)建體誘導(dǎo)了副凋亡的形態(tài)學(xué)改變和細(xì)胞死亡,同時(shí)非十四烷基化IGF1R/IGF1R-IC構(gòu)建體不誘導(dǎo)細(xì)胞副凋亡,表明膜定位在副凋亡發(fā)生的過(guò)程中是必要的。Ye等[10]發(fā)現(xiàn),誘導(dǎo)腫瘤細(xì)胞副凋亡的靶向組蛋白脫乙酰酶磷光錸(I)復(fù)合物[histone deacetylase-targeted phosphorescent rhenium(I) complex]定位于細(xì)胞線粒體中。

    1.3副凋亡與其他細(xì)胞程序性死亡的差異與其他細(xì)胞程序性死亡相比,細(xì)胞發(fā)生副凋亡時(shí),在形態(tài)、關(guān)鍵生化分子及關(guān)鍵環(huán)節(jié)上均有差異,見(jiàn)表1。

    表1 副凋亡與其他細(xì)胞程序性死亡之間的差異

    TNFR1: tumor necrosis factor receptor 1; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand; mTORC1: mammalian target of rapamycin complex 1; ATG: autophagy-related gene; LC3: microtubule-associated protein 1 light chain 3; CYPD: cyclophilin D; RIPK: receptor-interacting protein kinase; MLKL: mixed lineage kinase domain-like protein; CHIP: carboxyl terminus of heat shock protein 70 (HSP70)-interacting protein; NF-κB: nuclear factor-κB; AIP-1/Alix: apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1/apoptosis-linked gene-2 (ALG-2)-interacting protein X; MAPK: mitogen-activated protein kinase; TAJ/TROY: an orphan tumor necrosis factor receptor family member; BAP31: B-cell receptor-associated protein 31.

    2 副凋亡的檢測(cè)方法

    目前針對(duì)副凋亡的研究多聚焦在副凋亡發(fā)生時(shí)細(xì)胞形態(tài)學(xué)上的改變,使用顯微鏡和電鏡可以從形態(tài)學(xué)上觀察到細(xì)胞質(zhì)空泡化、線粒體和(或)內(nèi)質(zhì)網(wǎng)腫脹,這與細(xì)胞凋亡時(shí)所發(fā)生的核固縮有所區(qū)別。在哺乳動(dòng)物細(xì)胞中,特定蛋白質(zhì)和復(fù)合物的轉(zhuǎn)運(yùn)通過(guò)介導(dǎo)細(xì)胞器中的信號(hào)肽實(shí)現(xiàn),因而使用可以與多個(gè)細(xì)胞器信號(hào)肽偶聯(lián)而成的融合蛋白,如增強(qiáng)型黃色熒光蛋白(enhanced yellow fluorescent protein,EYFP),分別標(biāo)記線粒體和內(nèi)質(zhì)網(wǎng),在熒光顯微鏡下,可觀察細(xì)胞質(zhì)空泡化的產(chǎn)生是否來(lái)源于線粒體和內(nèi)質(zhì)網(wǎng)的改變[11]。同時(shí)副凋亡發(fā)生時(shí)其標(biāo)志性蛋白AIP-1/Alix[apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1/apoptosis-linked gene-2 (ALG-2)-interacting protein X]表達(dá)顯著下調(diào)[7]。

    副凋亡的檢測(cè)通常與凋亡、自噬等檢測(cè)相鑒別。在細(xì)胞發(fā)生副凋亡時(shí),凋亡相關(guān)蛋白胱天蛋白酶3(caspase-3)、多腺苷二磷酸核糖聚合酶[poly(ADP-ribose) polymerase,PARP]、Bcl家族等,自噬相關(guān)蛋白微管相關(guān)蛋白1輕鏈3 (microtubule-associated protein 1 light chain 3,LC3)等均無(wú)明顯變化或僅有輕微的變化;使用DNA原位末端標(biāo)記法(end-labeling,ISEL)和末端脫氧核苷酸轉(zhuǎn)移酶介導(dǎo)的dUTP缺口末端標(biāo)記法(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling,TUNEL)等并未觀察到細(xì)胞有明顯變化;使用瓊脂糖凝膠電泳并未觀察到階梯狀DNA,即染色質(zhì)DNA未被核糖體內(nèi)切酶降解;而使用caspase蛋白酶抑制劑、Bcl家族、自噬抑制劑等都不能抑制副凋亡細(xì)胞死亡,這進(jìn)一步佐證了細(xì)胞副凋亡的發(fā)生。

    3 調(diào)控副凋亡發(fā)生的相關(guān)機(jī)制

    細(xì)胞副凋亡的發(fā)生是一個(gè)復(fù)雜、動(dòng)態(tài)持續(xù)的過(guò)程。副凋亡的誘導(dǎo)依賴關(guān)鍵蛋白質(zhì)的合成、內(nèi)質(zhì)網(wǎng)應(yīng)激、錯(cuò)誤折疊蛋白積累、蛋白酶體受損、內(nèi)質(zhì)網(wǎng)Ca2+釋放與線粒體Ca2+超載、活性氧(reactive oxygen species,ROS)的產(chǎn)生等。在多種化合物(表2)、蛋白如TAJ/TROY (an orphan TNF receptor family member)或質(zhì)粒構(gòu)建體如IGF1R等誘導(dǎo)細(xì)胞副凋亡的研究中顯示,副凋亡發(fā)生時(shí),其信號(hào)轉(zhuǎn)導(dǎo)與絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、Wnt/β-catenin等通路密切相關(guān),信號(hào)轉(zhuǎn)導(dǎo)的改變影響關(guān)鍵蛋白分子如AIP-1/Alix、親環(huán)蛋白(cyclophilin)、C/EBP同源蛋白(C/EBP homologous protein,CHOP)、葡萄糖調(diào)節(jié)蛋白78(glucose-regulated protein 78,GRP78)、基質(zhì)金屬蛋白酶7(matrix metalloproteinase 7,MMP7)、cyclin D1、c-Jun、熱休克蛋白70(heat shock protein 70,HSP70)、B細(xì)胞受體相關(guān)蛋白31(B-cell receptor-associated protein 31,BAP31)等,詳見(jiàn)圖2。具體闡述如下。

    表2 天然產(chǎn)物誘導(dǎo)副凋亡的相關(guān)研究

    AIP-1/Alix: apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1/apoptosis-linked gene-2 (ALG-2)-interacting protein X; ERK2: extracellular signal-regulated kinases 2; JNK: c-Jun N-terminal kinase; ERS: endoplasmic reticulum stress; CHOP: C/EBP homologous protein; MAPK: mitogen-activated protein kinase; LC3: microtubule-associated protein 1 light chain 3; MEK: MAPK kinase; NF-κB: nuclear factor-κB; MMP7: matrix metalloproteinase 7; SAPK1: stress-activated protein kinase 1,also called JNK; XBP-1: X-box binding protein 1; BAP31: B-cell receptor-associated protein 31; TRAM: translocating chain-associated membrane protein; CFTR: cystic fibrosis transmembrane conductance regulator.

    Figure 2.The signal transduction pathway of paraptosis in tumor. IGF1R: insulin-like growth factor 1 receptor; TAJ/TROY: an orphan tumor necrosis factor receptor family member; MAPK: mitogen-activated protein kinase; JNK: c-Jun N-terminal kinase; ERK: extracellular signal-regulated kinases; CHOP: C/EBP homologous protein; GRP78: glucose-regulated protein 78; BAP31: B-cell receptor-associated protein 31; MMP7: matrix metalloproteinase 7; AIP-1/Alix: apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1/apoptosis-linked gene-2 (ALG-2)-interacting protein X.

    3.1 MAPK通路參與副凋亡的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程 MAPK是一個(gè)絲氨酸/蘇氨酸蛋白激酶家族,參與細(xì)胞增殖、分化、凋亡等過(guò)程,還與細(xì)胞運(yùn)動(dòng)性和應(yīng)激反應(yīng)有關(guān),也參與副凋亡的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程。典型MAPK包括細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(extracellular signal-regulated kinases 1/2,ERK1/2;即p44/42)、c-Jun氨基末端激酶1-3(c-Jun N-terminal kinases 1-3,JNK1-3/JNKs)/應(yīng)激活化蛋白激酶(stress-activated protein kinase,SAPK)1A/1B/1C、p38異構(gòu)體(p38α、β、γ和δ)及ERK5。非典型MAPK[如Nemo樣激酶(Nemo-like kinase,NLK)、ERK3/4和ERK7/8]的研究較少。

    3.1.1 ERK2和JNKs在副凋亡發(fā)生時(shí)激活 Sperandio等[6-7]的研究顯示,MAPK家族中ERK1/2和JNKs通路在所有能夠誘導(dǎo)細(xì)胞副凋亡的IGF1R-IC的構(gòu)建體中都參與了表達(dá),而在缺乏細(xì)胞死亡活性的構(gòu)建體中卻不參與。使用MAPK激酶(MAPK kinase,MEK)-1/2活性抑制劑U0126則可以抑制細(xì)胞副凋亡,但類(lèi)似的抑制劑PD98059(對(duì)MEK-1的選擇性遠(yuǎn)強(qiáng)于MEK-2)則幾乎完全無(wú)效,表明IGF1R-IC通過(guò)MEK-2介導(dǎo)副凋亡。

    電力系統(tǒng)主要可以分為發(fā)電、輸電、變電、配電、用電幾個(gè)環(huán)節(jié)。配電網(wǎng)是電網(wǎng)的末端,直接與用戶相連,也是輻射面積最廣的網(wǎng)絡(luò)。配電線路是電網(wǎng)向用戶提供電能的最終路徑,其運(yùn)行關(guān)系到配電網(wǎng)的可靠性、電能質(zhì)量、輸送效率等多方面。因此,配電線路設(shè)計(jì)顯得十分重要。

    姜黃素(curcumin)和雷公藤紅素(celastrol)可顯著激活ERK2和JNKs信號(hào)通路,誘導(dǎo)細(xì)胞發(fā)生副凋亡[11-14]。MEK-1/2活性抑制劑U0126則可以抑制雷公藤紅素和人參皂苷Rh2誘導(dǎo)的細(xì)胞質(zhì)空泡的形成,ERK1/2抑制劑PD98057完全阻斷了1-硝基芘誘導(dǎo)的細(xì)胞質(zhì)空泡化[13-16]。ERK2和JNKs并沒(méi)有表現(xiàn)出絕對(duì)一致的變化趨勢(shì):當(dāng)蝦夷扇貝毒素誘導(dǎo)細(xì)胞副凋亡時(shí),可觀察到JNKs激活;當(dāng)使用苯磷硫胺誘導(dǎo)副凋亡時(shí),則可以觀察到ERK1/2活性降低,但JNK1/2卻呈現(xiàn)激活狀態(tài)[17-18]。

    3.1.2 p38在副凋亡發(fā)生時(shí)激活 雷公藤紅素誘導(dǎo)細(xì)胞副凋亡的發(fā)生伴隨有p38信號(hào)通路的激活,而當(dāng)使用p38抑制劑SB203580則可以阻滯副凋亡誘導(dǎo)的細(xì)胞質(zhì)空泡形成,同時(shí)抑制副凋亡的發(fā)生[13-14]。

    細(xì)胞副凋亡發(fā)生與ERK1/2、JNKs和(或)p38的激活相關(guān),抑制ERK1/2或其上游的MEK-2均可以抑制細(xì)胞副凋亡;下調(diào)JNK1或p38也在一定程度上抑制細(xì)胞副凋亡。MAPK的另外一條ERK5通路目前沒(méi)有被報(bào)道,其與副凋亡是否具有一定的關(guān)聯(lián)性有待進(jìn)一步研究。

    3.2 GRP78和CHOP在副凋亡發(fā)生時(shí)上調(diào) 在細(xì)胞副凋亡過(guò)程中,??捎^察到內(nèi)質(zhì)網(wǎng)應(yīng)激,通常表現(xiàn)為內(nèi)質(zhì)網(wǎng)應(yīng)激標(biāo)記蛋白GRP78和CHOP的上調(diào),siRNA抑制CHOP后顯著減弱二甲氧基姜黃素誘導(dǎo)的細(xì)胞質(zhì)空泡化[11-12],但siRNA抑制CHOP后并未改變衣霉素誘導(dǎo)的細(xì)胞空泡化[19]。這也說(shuō)明CHOP在細(xì)胞副凋亡發(fā)生時(shí)的作用仍未明確。

    3.3 AIP-1/Alix抑制副凋亡的發(fā)生 AIP-1/Alix是一種副凋亡的抑制劑[7]。姜黃素、醉茄素A、環(huán)孢菌素A、皮質(zhì)類(lèi)固醇等誘導(dǎo)副凋亡的過(guò)程中,AIP-1/Alix表達(dá)逐漸下調(diào);AIP-1/Alix過(guò)表達(dá)減弱了姜黃素和皮質(zhì)類(lèi)固醇誘導(dǎo)的細(xì)胞質(zhì)空泡化和細(xì)胞死亡[11,20-22]。

    3.4 Wnt/β-catenin通路在副凋亡發(fā)生時(shí)下調(diào) Wnt/β-catenin信號(hào)通路包括經(jīng)典Wnt通路(調(diào)節(jié)基因轉(zhuǎn)錄)、非經(jīng)典的Wnt平面細(xì)胞極性通路(調(diào)節(jié)細(xì)胞形狀和細(xì)胞骨架)和非經(jīng)典的Wnt鈣通路(調(diào)節(jié)細(xì)胞內(nèi)的鈣離子)[23-24]。γ-生育三烯酚誘導(dǎo)副凋亡時(shí),下調(diào)了Wnt和β-catenin蛋白表達(dá),并下調(diào)了其下游靶蛋白cyclin D1和c-Jun的表達(dá);β-catenin、cyclin D1和c-Jun的mRNA水平下調(diào)而Wnt的mRNA未變化[25]。δ-生育三烯酚誘導(dǎo)副凋亡時(shí),抑制了β-catenin、Wnt-1、cyclin D1、c-Jun和MMP7的表達(dá)[26]。Wnt/β-Catenin信號(hào)通路在副凋亡被誘導(dǎo)時(shí)發(fā)揮的作用仍有待深入研究,其蛋白變化可能與蛋白泛素化有關(guān)。

    3.5 p53信號(hào)通路在副凋亡發(fā)生時(shí)被激活 用人參皂苷Rh2處理后,細(xì)胞出現(xiàn)副凋亡和凋亡;同時(shí)發(fā)現(xiàn)細(xì)胞p53途徑激活;促凋亡調(diào)節(jié)劑Bax的水平顯著增加及抗凋亡調(diào)節(jié)劑Bcl-2的水平降低。抑制p53后顯著阻斷Rh2誘導(dǎo)的細(xì)胞質(zhì)空泡化及細(xì)胞死亡,表明由人參皂苷Rh2誘導(dǎo)的凋亡和副凋亡是由p53介導(dǎo)的[15]。既往研究表明,p53蛋白是一種轉(zhuǎn)錄因子,發(fā)揮抑制腫瘤的作用,在細(xì)胞處于應(yīng)激狀態(tài)時(shí)可被誘導(dǎo)表達(dá),從而促進(jìn)細(xì)胞進(jìn)入細(xì)胞周期的停滯階段,繼而誘導(dǎo)凋亡或衰老[27]。

    3.7 TAJ/TROY表達(dá)可誘導(dǎo)副凋亡 腫瘤壞死因子受體超家族成員TAJ/TROY的過(guò)表達(dá)誘導(dǎo)細(xì)胞副凋亡;由TAJ/TROY觸發(fā)的細(xì)胞死亡伴隨著磷脂酰絲氨酸外翻,線粒體跨膜電位的缺失并且不依賴于caspase活化。PDCD5(programmed cell death protein 5;一種促凋亡蛋白)的過(guò)度表達(dá)增強(qiáng)了TAJ/TROY誘導(dǎo)的細(xì)胞副凋亡;此外,響應(yīng)于TAJ/TROY過(guò)表達(dá),細(xì)胞內(nèi)源性PDCD5蛋白顯著上調(diào)[32]。

    3.8細(xì)胞發(fā)生副凋亡伴隨LC3-I向LC3-II轉(zhuǎn)換雷公藤紅素誘導(dǎo)HeLa細(xì)胞發(fā)生副凋亡時(shí),伴有自噬標(biāo)志物L(fēng)C3由LC3-I向LC3-II轉(zhuǎn)換,并觀察到LC3點(diǎn)狀物形成;有趣的是,自噬抑制劑巴佛洛霉素A1(bafilomycin A1)和3-甲基腺嘌呤(3-methyladenine,3-MA)可阻斷LC3轉(zhuǎn)化,卻不能減弱反而增強(qiáng)了細(xì)胞質(zhì)空泡化的誘導(dǎo)[13]。xanthohumol (XN)誘導(dǎo)細(xì)胞質(zhì)空泡化時(shí),LC3-II和p62的表達(dá)水平增加但beclin-1未增加,其可能通過(guò)阻斷自噬體成熟而導(dǎo)致LC3-II積累,bafilomycin A1和3-MA未影響XN誘導(dǎo)的細(xì)胞死亡情況和細(xì)胞質(zhì)空泡化情況[33]。苯并[a]喹啉并吡啶衍生物22b誘導(dǎo)細(xì)胞空泡化時(shí),LC3和p62上調(diào),并觀察到LC3B-I向LC3B-II轉(zhuǎn)化;處理過(guò)程中LC3B-II和p62水平隨時(shí)間沒(méi)有降低,表明自噬體可能不能與溶酶體有效融合;3-MA和E-64d(一種溶酶體酶抑制劑)不能改善細(xì)胞質(zhì)空泡化情況卻稍緩解由苯并[a]喹啉并吡啶衍生物22b造成的細(xì)胞死亡;敲減幾乎完全消除了苯并[a]喹啉并吡啶衍生物22b誘導(dǎo)的細(xì)胞空泡化。LC3-II和p62的持續(xù)上調(diào)以及3-MA和E-64d保護(hù)作用的缺乏表明苯并[a]喹啉并吡啶衍生物22b誘導(dǎo)的空泡化不依賴于典型的自噬和溶酶體降解,但LC3對(duì)于細(xì)胞空泡形成非常重要[34]。上述研究提示副凋亡不同于自噬,但二者存在相互影響,其具體機(jī)制仍有待進(jìn)一步研究。

    3.9BAP31(p20)的異位表達(dá)啟動(dòng)副凋亡BAP31是一個(gè)定位于內(nèi)質(zhì)網(wǎng)的跨膜蛋白,是一個(gè)在內(nèi)質(zhì)網(wǎng)內(nèi)對(duì)新合成的膜蛋白進(jìn)行分選時(shí)的陪伴因子,在內(nèi)質(zhì)網(wǎng)相關(guān)降解、內(nèi)質(zhì)網(wǎng)蛋白運(yùn)輸?shù)榷鄠€(gè)過(guò)程中發(fā)揮作用[35]。在凋亡信號(hào)傳導(dǎo)過(guò)程中,BAP31受到caspase-8的早期切割,得到的p20BAP31片段,表現(xiàn)出啟動(dòng)內(nèi)質(zhì)網(wǎng)-線粒體-Ca2+轉(zhuǎn)運(yùn)體,并對(duì)內(nèi)質(zhì)網(wǎng)蛋白運(yùn)輸發(fā)揮顯性負(fù)性(dominant negative,DN)作用。在E1A/DNp53轉(zhuǎn)化的小鼠腎上皮細(xì)胞中p20的異位表達(dá)啟動(dòng)了副凋亡,并發(fā)現(xiàn)早期內(nèi)質(zhì)網(wǎng)Ca2+儲(chǔ)存上升。敲除對(duì)細(xì)胞空泡化沒(méi)有影響,并延緩但不阻止細(xì)胞死亡,提示副凋亡誘導(dǎo)的死亡不依賴凋亡途徑。在敲除的情況下,再敲減-則延遲了細(xì)胞質(zhì)空泡化,同時(shí)延緩了細(xì)胞死亡。Bcl-2的這種促存活作用不依賴其對(duì)Bax的抑制,且與其降低內(nèi)質(zhì)網(wǎng)Ca2+儲(chǔ)存的能力相關(guān)[36]。

    3.10 HSP70在副凋亡發(fā)生時(shí)上調(diào) 將轉(zhuǎn)染膜型巨噬細(xì)胞集落刺激因子的膠質(zhì)瘤T9-C2和U251MG細(xì)胞在小鼠皮下接種后,會(huì)出現(xiàn)類(lèi)似副凋亡樣改變,同時(shí)觀察到HSP70的上調(diào);在未分化甲狀腺癌ATC細(xì)胞中,HSP70抑制劑VER155008增加細(xì)胞死亡和空泡化細(xì)胞的百分率,即誘導(dǎo)了副凋亡[37-39]。

    4 小結(jié)與展望

    腫瘤細(xì)胞似乎更容易發(fā)生副凋亡,這可能是因?yàn)榭焖俣鵁o(wú)限的增殖是腫瘤細(xì)胞的典型特征之一,由于腫瘤細(xì)胞高代謝需求和有限的蛋白質(zhì)折疊能力之間的不平衡,腫瘤細(xì)胞的內(nèi)質(zhì)網(wǎng)往往會(huì)因未折疊和錯(cuò)誤折疊的蛋白質(zhì)而過(guò)載。因此,腫瘤細(xì)胞常常遭受比正常細(xì)胞更高的內(nèi)質(zhì)網(wǎng)應(yīng)激。腫瘤細(xì)胞中表達(dá)的許多突變蛋白可能存在折疊挑戰(zhàn)并且需要高水平的降解,這一假說(shuō)有待進(jìn)一步的驗(yàn)證[40]。

    副凋亡的發(fā)生和發(fā)展是由多個(gè)通路和蛋白交互作用的結(jié)果,這提示副凋亡發(fā)生的多靶點(diǎn)性。研究表明多種天然化合物通過(guò)增強(qiáng)內(nèi)質(zhì)網(wǎng)應(yīng)激和氧化應(yīng)激則可以誘導(dǎo)細(xì)胞副凋亡,而副凋亡的發(fā)生更容易在腫瘤細(xì)胞中實(shí)現(xiàn),對(duì)正常細(xì)胞的則沒(méi)有顯著的影響[12]。天然化合物誘導(dǎo)的細(xì)胞副凋亡不僅僅呈現(xiàn)出濃度依賴性,同時(shí)還具有時(shí)間依賴性,可降低腫瘤細(xì)胞增殖性。如何更好的闡明副凋亡發(fā)生的相關(guān)機(jī)制;如何更好的將已發(fā)現(xiàn)的化合物使用合理的濃度和合理的治療時(shí)間應(yīng)用于臨床;如何更快地發(fā)掘和研發(fā)更多具有誘導(dǎo)副凋亡、抗腫瘤作用的天然化合物和傳統(tǒng)中藥;如何將發(fā)掘的藥物與臨床一線用藥結(jié)合,用于抗腫瘤、抗耐藥、減輕一線臨床藥物的毒副作用,均是亟待解決的重要問(wèn)題。

    [1] Bray F,F(xiàn)erlay J,Soerjomataram I,et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2018,68(6):394-424.

    [2] J??ttel? M. Escaping cell death: survival proteins in cancer[J]. Exp Cell Res,1999,248(1):30-43.

    [3] Carneiro BA,El-Deiry WS. Targeting apoptosis in cancer therapy[J]. Nat Rev Clin Oncol,2020,17(7):395-417.

    [4] Jiang L,Wang YJ,Zhao J,et al. Direct tumor killing and immunotherapy through anti-SerpinB9 therapy[J]. Cell,2020,183(5):1219-1233.

    [5] Tait SW,Ichim G,Green DR. Die another way: non-apoptotic mechanisms of cell death[J]. J Cell Sci,2014,127(Pt 10):2135-2144.

    [6] Sperandio S,De Belle I,Bredesen DE. An alternative,nonapoptotic form of programmed cell death[J]. Proc Natl Acad Sci U S A,2000,97(26):14376-14381.

    [7] Sperandio S,Poksay K,de Belle I,et al. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix[J]. Cell Death Differ,2004,11(10):1066-1075.

    [8] Schweichel JU,Merker HJ. The morphology of various types of cell death in prenatal tissues[J]. Teratology,1973,7(3):253-266.

    [9] Samaha HS,Asher E,Payne CM,et al. Evaluation of cell death in EBV-transformed lymphocytes using agarose gel electrophoresis,light microscopy and electron microscopy. I. Induction of classic apoptosis by the bile salt,sodium deoxycholate[J]. Leuk Lymphoma,1995,19(1/2):95-105.

    [10] Ye RR,Tan CP,Lin YN,et al. A phosphorescent rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction[J]. Chem Commun (Camb),2015,51(39):8353-8356.

    [11] Yoon MJ,Kim EH,Lim JH,et al. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells[J]. Free Radic Biol Med,2010,48(5):713-726.

    [12] Yoon MJ,Kang YJ,Lee JA,et al. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin[J]. Cell Death Dis,2014,5:e1112.

    [13] Wang WB,F(xiàn)eng LX,Yue QX,et al. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol,a natural compound with influence on proteasome,ER stress and Hsp90[J]. J Cell Physiol,2012,227(5):2196-2206.

    [14] Yoon MJ,Lee AR,Jeong SA,et al. Release of Ca2+from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells[J]. Oncotarget,2014,5(16):6816-6831.

    [15] Li B,Zhao J,Wang CZ,et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53[J]. Cancer Lett,2011,301(2):185-192.

    [16] Asare N,Landvik NE,Lagadic-Gossmann D,et al. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells[J]. Toxicol Appl Pharmacol,2008,230(2):175-186.

    [17] Korsnes MS,Espenes A,Hetland DL,et al. Paraptosis-like cell death induced by yessotoxin[J]. Toxicol In Vitro,2011,25(8):1764-1770.

    [18] Sugimori N,Espinoza JL,Trung LQ,et al. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells[J]. PLoS One,2015,10(4):e0120709.

    [19] Kim SH,Shin HY,Kim YS,et al. Tunicamycin induces paraptosis potentiated by inhibition of BRAFV600E in FRO anaplastic thyroid carcinoma cells[J]. Anticancer Res,2014,34(9):4857-4868.

    [20] Ghosh K,De S,Das S,et al. Withaferin ainduces ROS-mediated paraptosis in human breast cancer cell-lines MCF-7 and MDA-MB-231[J]. PLoS One,2016,11(12):e0168488.

    [21] Ram BM,Ramakrishna G. Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition[J]. Biochim Biophys Acta,2014,1843(11):2497-2512.

    [22] Valamanesh F,Torriglia A,Savoldelli M,et al. Glucocorticoids induce retinal toxicity through mechanisms mainly associated with paraptosis[J]. Mol Vis,2007,13:1746-1757.

    [23] Nusse R,Varmus HE. Wnt genes[J]. Cell,1992,69(7):1073-1087.

    [24] Zhang H,Zhang H,Zhang Y,et al. Dishevelled-DEP domain interacting protein (DDIP) inhibits Wnt signaling by promoting TCF4 degradation and disrupting the TCF4/β-catenin complex[J]. Cell Signal,2010,22(11):1753-1760.

    [25] Zhang JS,Li DM,Ma Y,et al. γ-Tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells[J]. PLoS One,2013,8(2):e57779.

    [26] Zhang JS,Li DM,He N,et al. A paraptosis-like cell death induced by δ-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway[J]. Toxicology,2011,285(1/2):8-17.

    [27] Levine AJ,Oren M. The first 30 years of p53: growing ever more complex[J]. Nat Rev Cancer,2009,9(10):749-758.

    [28] Stamnes MA,Rutherford SL,Zuker CS. Cyclophilins: a new family of proteins involved in intracellular folding[J]. Trends Cell Biol,1992,2(9):272-276.

    [29] Trandinh CC,Pao GM,Saier MH Jr. Structural and evolutionary relationships among the immunophilins: two ubiquitous families of peptidyl-prolyl-isomerases[J]. FASEB J,1992,6(15):3410-3420.

    [30] Hacker J,F(xiàn)ischer G. Immunophilins: structure-function relationship and possible role in microbial pathogenicity[J]. Mol Microbiol,1993,10(3):445-456.

    [31] Wang L,Gundelach JH,Bram RJ. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme[J]. Cell Death Dis,2017,8(5):e2807.

    [32] Wang Y,Li X,Wang L,et al. An alternative form of paraptosis-like cell death,triggered by TAJ/TROY and enhanced by PDCD5 overexpression[J]. J Cell Sci,2004,117(Pt 8):1525-1532.

    [33] Mi X,Wang C,Sun C,et al. Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway[J]. Oncotarget,2017,8(19):31297-31304.

    [34] Zheng H,Dong Y,Li L,et al. Novel benzo[a]quinolizidine analogs induce cancer cell death through paraptosis and apoptosis[J]. J Med Chem,2016,59(10):5063-5076.

    [35] Wang B,Heath-Engel H,Zhang D,et al. BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRΔF508 via the Derlin-1 complex[J]. Cell,2008,133(6):1080-1092.

    [36] Heath-engel HM,Wang B,Shore GC. Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31[J]. Biochim Biophys Acta,2012,1823(2):335-347.

    [37] Chen Y,Douglass T,Jeffes EW,et al. Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a "paraptosis"-induced pathway that promotes systemic immunity against intracranial T9 gliomas[J]. Blood,2002,100(4):1373-1380.

    [38] Kim SH,Kang JG,Kim CS,et al. The hsp70 inhibitor VER155008 induces paraptosis requiringprotein synthesis in anaplastic thyroid carcinoma cells[J]. Biochem Biophys Res Commun,2014,454(1):36-41.

    [39] JadusMR,Chen Y,Boldaji MT,et al. Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytesand are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins[J]. Cancer Gene Ther,2003,10(5):411-420.

    [40] Suh DH,Kim MK,Kim HS,et al. Unfolded protein response to autophagy as a promising druggable target for anticancer therapy[J]. Ann N Y Acad Sci,2012,1271:20-32.

    [41] 徐靜,徐秋林,郭曉華. 長(zhǎng)鏈非編碼RNA調(diào)控細(xì)胞凋亡及自噬的研究進(jìn)展[J]. 中國(guó)病理生理雜志,2015,31(8):1525-1530.

    Xu J,Xu QL,Guo XH. Research progress of long non-coding RNA in regulating cell apoptosis and autophagy[J]. Chin J Pathophysiol,2015,31(8):1525-1530.

    [42] Luna-Vargas M,Chipuk JE. Physiological and pharmacological control of BAK,BAX,and beyond[J]. Trends Cell Biol,2016,26(12):906-917.

    [43] Xu X,Lai Y,Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials[J]. Biosci Rep,2019,39(1):BSR20180992.

    [44] D'arcy MS. Cell death: a review of the major forms of apoptosis,necrosis and autophagy[J]. Cell Biol Int,2019,43(6):582-592.

    [45] 任安立,李靖凱,周冬冬. 程序化細(xì)胞死亡因子5對(duì)缺氧/復(fù)氧誘導(dǎo)的心肌細(xì)胞凋亡和自噬的影響及機(jī)制[J]. 中國(guó)病理生理雜志,2017,33(2):251-256.

    Ren AL,Li JK,Zhou DD. Effects of PDCD5 on hypoxia/reoxygenation-induced autophagy and apoptosis of cardiomyocytes[J]. Chin J Pathophysiol,2017,33(2):251-256.

    [46] Galluzzi L,Green DR. Autophagy-independent functions of the autophagy machinery[J]. Cell,2019,177(7):1682-1699.

    [47] Bortot B,Apollonio M,Baj G,et al. Advanced photodynamic therapy with an engineered M13 phage targeting EGFR: mitochondrial localization and autophagy induction in ovarian cancer cell lines[J]. Free Radic Biol Med,2021,179:242-251.

    [48] Qiao Y,Choi JE,Tien JC,et al. Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer[J]. Nat Cancer,2021,2:978-993.

    [49] Saleem S. Apoptosis,autophagy,necrosis and their multi galore crosstalk in neurodegeneration[J]. Neuroscience,2021,469:162-174.

    [50] Nikoletopoulou V,Markaki M,Palikaras K,et al. Crosstalk between apoptosis,necrosis and autophagy[J]. Biochim Biophys Acta,2013,1833(12):3448-3459.

    [51] Pijnenburg L,F(xiàn)elten R,Javier RM. A review of avascular necrosis,of the hip and beyond][J]. Rev Med Interne,2020,41(1):27-36.

    [52] Gi?ycka A,Chorostowska-Wynimko J. Programmed necrosis and necroptosis-molecular mechanisms[J]. Postepy Hig Med Dosw,2015,69:1353-1363.

    [53] 柯波,萬(wàn)才水,李安娜,等. 雷公藤紅素誘導(dǎo)多發(fā)性骨髓瘤H929細(xì)胞凋亡[J]. 中國(guó)病理生理雜志,2020,36(3):487-494.

    Ke B,Wan CS,Li AN,et al. Celastrol induces apoptosis of multiple myeloma H929 cells[J]. Chin J Pathophysiol,2020,36(3):487-494.

    [54] Singha PK,Pandeswara S,Venkatachalam MA,et al. Manumycin a inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death[J]. Cell Death Dis,2013,4:e457.

    [55] Wallenberg M,Misra S,Wasik AM,et al. Selenium induces a multi-targeted cell death process in addition to ROS formation[J]. J Cell Mol Med,2014,18(4):671-684.

    [56] Bury M,Girault A,Mégalizzi V,et al. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity[J]. Cell Death Dis,2013,4:e561.

    [57] Wang CZ,Li B,Wen XD,et al. Paraptosis and NF-κB activation are associated with protopanaxadiol-induced cancer chemoprevention[J]. BMC Complement Altern Med,2013,13:2.

    [58] Chen TS,Wang XP,Sun L,et al. Fluorescence analysis of taxol-induced paraptosis-like independent of caspase-3 activation[J]. Guang Pu Xue Yu Guang Pu Fen Xi,2008,28(11):2623-2627.

    [59] Chen TS,Wang XP,Sun L,et al. Taxol induces caspase-independent cytoplasmic vacuolization and cell death through endoplasmic reticulum (ER) swelling in ASTC-a-1 cells[J]. Cancer Lett,2008,270(1):164-172.

    [60] Yumnam S,Park HS,Kim MK,et al. Hesperidin induces paraptosis like cell death in hepatoblastoma,HepG2 cells: involvement of ERK1/2 MAPK[J]. PLoS One,2014,9(6):e101321.

    [61] Wang Y,Yang Z,Zhao X. Honokiol induces paraptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells[J]. Toxicol Mech Methods,2010,20(5):234-241.

    [62] Shiau JY,Nakagawa-Goto K,Lee KH,et al. Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death[J]. Oncotarget,2017,8(34):56942-56958.

    Research progress of paraptosis in tumor

    JIAO Xiao-ning,F(xiàn)ANG Zhao-qin,LU Tao△

    (,201203,)

    Paraptosis is a one of programmed cell death. Its typical morphological feature is vacuolization of the cytoplasm. Membrane localization is very important in the process of paraptosis. Morphological characteristics of paraptosis are mainly observed by microscopy or electron microscopy. Membrane localization is detected by fluorescent protein-labeled mitochondria or endoplasmic reticulum. The paraptosis marker is AIP-1/Alix. MAPK and Wnt/β-catenin play important roles in paraptosis. Key protein molecules,such as AIP-1/Alix,cyclophilin,CHOP,GRP78,MMP7,cyclin D1,c-Jun,HSP70,BAP31 and so on,are also involved in paraptosis. A comprehensive and systematic clarification of the research progress of paraptosis provides a new perspective on the development of anti-tumor drugs.

    Programmed cell death; Paraptosis; Endoplasmic reticulum stress; Cytoplasmic vacuolization

    R730.23; R363

    A

    10.3969/j.issn.1000-4718.2022.02.019

    1000-4718(2022)02-0342-08

    2021-07-12

    2022-01-21

    [基金項(xiàng)目]上海中醫(yī)藥大學(xué)預(yù)算內(nèi)科研項(xiàng)目(No. 2020LK031);上海市2020年度“科技創(chuàng)新行動(dòng)計(jì)劃”揚(yáng)帆計(jì)劃項(xiàng)目(No. 20YF1449600);上海中醫(yī)藥大學(xué)杏林百人(No. 20QN022)

    Tel: 021-51322611; E-mail: lutaodennis@163.com

    (責(zé)任編輯:林白霜,羅森)

    猜你喜歡
    細(xì)胞質(zhì)空泡內(nèi)質(zhì)網(wǎng)
    作物細(xì)胞質(zhì)雄性不育系實(shí)現(xiàn)快速創(chuàng)制
    內(nèi)質(zhì)網(wǎng)自噬及其與疾病的關(guān)系研究進(jìn)展
    水下航行體雙空泡相互作用數(shù)值模擬研究
    憤怒誘導(dǎo)大鼠肝損傷中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達(dá)
    LPS誘導(dǎo)大鼠肺泡上皮細(xì)胞RLE-6 TN內(nèi)質(zhì)網(wǎng)應(yīng)激及凋亡研究
    基于LPV的超空泡航行體H∞抗飽和控制
    節(jié)水抗旱細(xì)胞質(zhì)雄性不育系滬旱7A 的選育與利用
    基于CFD的對(duì)轉(zhuǎn)槳無(wú)空泡噪聲的仿真預(yù)報(bào)
    船海工程(2015年4期)2016-01-05 15:53:28
    洋蔥細(xì)胞質(zhì)雄性不育基因分子標(biāo)記研究進(jìn)展
    壇紫菜細(xì)胞質(zhì)型果糖1,6-二磷酸酶基因的克隆及表達(dá)分析
    苏州市| 丰顺县| 靖州| 兴业县| 北海市| 滦平县| 晋城| 延庆县| 和平县| 深州市| SHOW| 资源县| 阿荣旗| 宝坻区| 商南县| 大冶市| 墨玉县| 开阳县| 桂阳县| 喀喇沁旗| 宜兰县| 临湘市| 宁河县| 镇平县| 三台县| 桐柏县| 九台市| 星座| 黎城县| 佛山市| 镇平县| 乌兰县| 德清县| 恩平市| 介休市| 昌邑市| 色达县| 河间市| 双柏县| 策勒县| 习水县|