李龍,李超男,毛新國(guó),王景一,景蕊蓮
作物根系表型鑒定評(píng)價(jià)方法的現(xiàn)狀與展望
李龍,李超男,毛新國(guó),王景一,景蕊蓮*
中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所/農(nóng)作物基因資源與基因改良國(guó)家重大科學(xué)工程,北京 100081
根系是作物固定植株并吸收土壤水分和養(yǎng)分的主要器官,其表型特征直接影響作物的生產(chǎn)力和適應(yīng)性。優(yōu)化根系表型被認(rèn)為是實(shí)現(xiàn)第二次“綠色革命”的重要途徑之一。然而,根系的隱匿性、復(fù)雜性和可塑性極大地制約著根系表型鑒定效率,導(dǎo)致根系優(yōu)化進(jìn)程遠(yuǎn)遠(yuǎn)滯后于地上部器官。隨著光譜成像、機(jī)器學(xué)習(xí)和三維重建等新技術(shù)的快速發(fā)展,根系表型鑒定方法逐漸由傳統(tǒng)取樣觀測(cè)向原位、無損、自動(dòng)化檢測(cè)轉(zhuǎn)變,評(píng)價(jià)依據(jù)由二維形態(tài)指標(biāo)向立體構(gòu)型參數(shù)拓展,促進(jìn)了根系表型鑒定效率大幅提升,根系表型數(shù)據(jù)快速增長(zhǎng)。與此同時(shí),海量數(shù)據(jù)也帶來了信息冗余及利用率低等問題,對(duì)根系表型研究提出了規(guī)范化和共享化的時(shí)代新要求。本文概述了現(xiàn)行主要根系表型鑒定方法的原理和技術(shù)要點(diǎn),從精準(zhǔn)度、通量和成本等方面對(duì)不同方法進(jìn)行系統(tǒng)比較,并從使用許可、運(yùn)行平臺(tái)和分析方式等方面對(duì)常用根系表型量化軟件進(jìn)行歸納總結(jié);進(jìn)一步提出今后重點(diǎn)研究方向,即開發(fā)高效的田間根系表型鑒定方法,建立根系可塑性鑒定評(píng)價(jià)技術(shù)體系,加強(qiáng)根系解剖結(jié)構(gòu)的鑒定和利用,強(qiáng)化分子檢測(cè)技術(shù)在根系表型鑒定中的應(yīng)用,推進(jìn)根系表型鑒定技術(shù)規(guī)范化和數(shù)據(jù)信息共享化,以期為合理選用和改進(jìn)作物根系表型鑒定評(píng)價(jià)方法提供參考,促進(jìn)作物根系改良。
作物;根系表型;室內(nèi)鑒定;田間鑒定;評(píng)價(jià)方法
根系是作物固定植株地上部并吸收土壤水分和養(yǎng)分的主要器官,也是多種激素和有機(jī)酸合成的重要場(chǎng)所,其表型特征與產(chǎn)量、品質(zhì)和適應(yīng)性均有密切的關(guān)系[1-2]。1978年,GreGORY等[3]發(fā)現(xiàn)小麥根系干物質(zhì)隨土層深度增加而遞減,呈現(xiàn)“錐體”分布,“錐體”衰減緩慢(深層根系比重大)有利于小麥抵御干旱脅迫。隨后,研究者針對(duì)不同作物根系表型與產(chǎn)量及耐逆性的關(guān)系開展了大量研究,相繼提出適宜于不同生態(tài)環(huán)境或生產(chǎn)管理?xiàng)l件的作物“理想根型”[4]。例如,以耕層數(shù)量多、分布廣為主要特征的耐低磷根型[5],以及抗旱耐低氮的“陡-廉-深”(steep-cheap-deep)根型[6]。依據(jù)“理想根型”定向改良作物根系有望進(jìn)一步提高作物生產(chǎn)力和適應(yīng)性,被認(rèn)為是實(shí)現(xiàn)第二次“綠色革命”的重要途徑[7]。然而,根系隱匿于土壤中,表型鑒定工作耗時(shí)耗力且準(zhǔn)確性較低,極大地制約著“理想根型”在育種實(shí)踐中的應(yīng)用,致使根型優(yōu)化進(jìn)程遠(yuǎn)遠(yuǎn)滯后于地上部株型[8]。因此,提高根系表型鑒定效率是加速品種改良的迫切需求。
近年來,得益于成像技術(shù)及數(shù)據(jù)分析平臺(tái)的快速發(fā)展,形式多樣的新型根系表型鑒定方法不斷涌現(xiàn)[9]。在鑒定技術(shù)上,從傳統(tǒng)取樣觀測(cè)模式逐步向自動(dòng)化圖像提取模式轉(zhuǎn)變[10];在數(shù)據(jù)分析深度上,從基本根系形態(tài)指標(biāo)逐步向三維根系構(gòu)型參數(shù)拓展[11]。然而,盡管近年來作物根系表型鑒定評(píng)價(jià)方法已經(jīng)取得了長(zhǎng)足的進(jìn)步,但是仍難以兼具經(jīng)濟(jì)、高效和精準(zhǔn)的特性[12]。因此,根據(jù)研究目標(biāo)、觀測(cè)對(duì)象及操作環(huán)境等因素合理選擇根系表型鑒定方法依然是現(xiàn)階段提高根系表型鑒定效率的主要方式[1]。本文系統(tǒng)評(píng)述了當(dāng)前作物根系表型的鑒定評(píng)價(jià)方法,并提出未來的重點(diǎn)研究方向,以期為合理選用和改進(jìn)作物根系表型鑒定方法提供參考。
根據(jù)檢測(cè)對(duì)象的生長(zhǎng)環(huán)境,根系表型鑒定方法可分為室內(nèi)鑒定與田間鑒定兩大類[9]。室內(nèi)鑒定對(duì)象種植于人工設(shè)施內(nèi),研究者可以根據(jù)試驗(yàn)需求控制光照、溫度和濕度等生長(zhǎng)環(huán)境。
傳統(tǒng)室內(nèi)根系表型鑒定方法間的根本區(qū)別在于作物生長(zhǎng)介質(zhì)和容器的不同,因此,傳統(tǒng)室內(nèi)根系表型鑒定方法通常以作物生長(zhǎng)所采用的介質(zhì)或容器而命名。例如,萌發(fā)袋法、凝膠根室法、凈盆法、根管法等。萌發(fā)袋法以種子萌發(fā)袋作為生長(zhǎng)容器,萌發(fā)袋由袋子和紙芯2部分組成,將無菌水或營(yíng)養(yǎng)液加入袋子中潤(rùn)濕紙芯,種子放置于袋子頂部紙芯凹槽中即可吸收水分而萌發(fā),根系穿過紙芯頂部空隙向下方透明袋子中生長(zhǎng),透過袋子即可對(duì)根系進(jìn)行觀測(cè)或圖像采集[13]。然而,萌發(fā)袋紙芯頂部空隙往往限制種子根的自然開張,從而影響種子根的角度。凝膠根室法以瓊脂糖凝膠作為根系生長(zhǎng)介質(zhì),將瓊脂糖溶液倒入利用透明板材(玻璃或亞克力板)和塑料封條制作的凝膠槽,待其凝固后,在凝膠上方播放種子,然后用另一塊透明板蓋住凝膠槽,形成凝膠根室,將根室垂直放置,根系即可在凝膠根室中生長(zhǎng)(圖1),可用于觀測(cè)種子根的自然開張角度[14]。萌發(fā)袋法和凝膠根室法均采用無土栽培模式,具有廉價(jià)、快速及分辨率高等優(yōu)點(diǎn),但在播種及根系生長(zhǎng)過程中容易遭受細(xì)菌或真菌污染。為此,Richard等[15]研發(fā)出凈盆(clear-pot)法,凈盆為一種特制花盆(圖1),盆壁四周均勻分布空隙,將種子播于空隙中,種子根發(fā)生后沿盆壁生長(zhǎng),通過拍攝盆壁可獲取清晰的根系圖像,該方法不僅解決了微生物污染的問題,而且環(huán)形的播種設(shè)計(jì)也大大提高了空間利用率。上述方法所用的根系生長(zhǎng)容器體積較小,一般僅用于鑒定幼苗期初生根表型。初生根數(shù)量較少,例如,小麥初生根在第一片完全葉出現(xiàn)后便停止發(fā)生,而不定根、冠狀根或側(cè)根等次生根則是固定植株地上部并吸收土壤水分和養(yǎng)分的核心組織[16]。根管法是目前應(yīng)用較為廣泛的次生根表型鑒定方法,一般使用聚氯乙烯(polyvinyl chloride,PVC)硬管作為生長(zhǎng)容器,首先沿管口直徑將PVC硬管分為兩半,而后用合攏套固定,垂直放置,管內(nèi)裝入按試驗(yàn)要求所配制的土壤,取樣時(shí)將PVC硬管水平放置,去掉合攏套并打開PVC硬管,清洗土柱獲取完整根系[17]。近年來,該方法有了進(jìn)一步改進(jìn),即先將土壤裝入軟質(zhì)塑料管中,再將軟管置于提前掩埋好的PVC硬管中,測(cè)量時(shí)抽出軟管沖洗土柱即可,掩埋好的PVC硬管可以重復(fù)使用,也免去了PVC硬管的掩埋和挖取,以及合攏套安裝與拆解等復(fù)雜環(huán)節(jié)[8]。
傳統(tǒng)室內(nèi)鑒定方法所獲取的根系樣本及其圖像可用于提取根系平面幾何構(gòu)型,即長(zhǎng)度、數(shù)目和直徑等反映同一根系的不同單根在根軸二維平面上的分布特征,但是無法檢測(cè)根系在生長(zhǎng)介質(zhì)中的三維空間配置和布局,即根系是如何通過分支相互聯(lián)結(jié)的,其中涉及根系空間分布函數(shù)、各單根形態(tài)特征及拓?fù)浣Y(jié)構(gòu)等大量立體幾何構(gòu)型,這些構(gòu)型特征很大程度上決定了根系在生長(zhǎng)介質(zhì)中的空間占有率和對(duì)水肥資源的吸收效率[9]。
根系三維構(gòu)型的檢測(cè)需借助以原位成像、動(dòng)態(tài)擬合及三維建模等方法為核心的新一代室內(nèi)數(shù)字化成像技術(shù),主要包括X射線計(jì)算機(jī)斷層掃描(X-ray CT)、磁共振成像(magnetic resonance imaging,MRI)、正電子發(fā)射斷層顯像(positron emission tomography,PET)和電阻抗斷層成像(electrical impedance tomography,EIT)等技術(shù)[9, 18-20]。其中,X-ray CT是通過檢測(cè)穿過物體的X射線衰減差異來反映物體內(nèi)部不同位置的物質(zhì)組成及其密度,該技術(shù)早在20世紀(jì)就應(yīng)用于醫(yī)學(xué)領(lǐng)域,而后逐漸拓展至植物三維根系構(gòu)型研究[21],例如,水稻根系表型可塑性研究以及擬南芥、玉米和水稻側(cè)根生長(zhǎng)模式研究等[21-22]。不過,X-ray CT對(duì)根系的識(shí)別能力受土壤中非根物質(zhì)影響較大,適用于檢測(cè)生長(zhǎng)在質(zhì)地均勻且無黏土礦物和鐵磁顆粒的非膨脹土中的根系[21]。MRI法是通過射頻波和強(qiáng)磁場(chǎng)激勵(lì)(stimulate)原子生成三維根系空間分布圖(圖1)。適度的磁共振激勵(lì)能夠強(qiáng)制原子核磁矩偏移到與作用磁場(chǎng)垂直的平面,停止激勵(lì)后,原子核磁矩將恢復(fù)到靜態(tài)磁場(chǎng)狀態(tài),原子核在重新排列的過程中釋放能量并發(fā)出共振頻率的射頻信號(hào),MRI對(duì)該信號(hào)進(jìn)行檢測(cè)并形成三維根系圖像[20]。該方法對(duì)根系生長(zhǎng)介質(zhì)要求較高,適宜的介質(zhì)有助于提取更精準(zhǔn)的根系圖像。Pflugfelder等[23]從8種介質(zhì)中優(yōu)選出5種適宜于MRI成像系統(tǒng)的生長(zhǎng)介質(zhì),其中2種介質(zhì)為人工配制的。Metzner等[24]對(duì)X-ray CT和MRI的成像能力進(jìn)行評(píng)比,發(fā)現(xiàn)當(dāng)根系生長(zhǎng)容器體積較小時(shí),X-ray CT對(duì)根系結(jié)構(gòu)的辨析能力更強(qiáng),而當(dāng)容器體積較大時(shí),MRI能夠檢測(cè)出側(cè)根分布等更多的根系細(xì)節(jié);此外,土壤濕度對(duì)兩者的成像能力均有影響,而對(duì)X-ray CT的影響更大。因此,2種方法相結(jié)合能夠獲取不同環(huán)境下更加精確的三維根系圖像[24]。PET法是通過可視化短半衰期放射性示蹤元素(例如碳同位素)在根系中的分布來呈現(xiàn)三維根系圖像,盡管該方法檢測(cè)放射性示蹤元素的靈敏度很高,但是分辨率較低(1.4 mm左右),通常與X-ray CT、MRI技術(shù)配合使用[25]。以上3種根系表型原位探測(cè)方法共有的局限性在于系統(tǒng)功能復(fù)雜且成本高,投入使用后需要配備高度專業(yè)化的操作人員。與之相比,EIT法成本低廉、檢測(cè)速度快。EIT法是對(duì)土壤表面施加微弱電流,根據(jù)電壓與電流之間的關(guān)系重構(gòu)出土壤中電導(dǎo)率變化的分布情況,進(jìn)而以電導(dǎo)率的分布變化間接反映根系布局。因此,該方法獲取的根系圖像僅屬于功能圖像,分辨率極低,無法用以觀測(cè)具體的根系構(gòu)型[18]。
圖中凈盆和磁共振成像圖分別引自Richard等[15]和van Dusschoten等[20]
室內(nèi)根系表型鑒定具有占地面積小,環(huán)境可控及重復(fù)性好等優(yōu)點(diǎn),但是人工環(huán)境下發(fā)育的根系始終無法準(zhǔn)確表征田間生產(chǎn)環(huán)境下的根系構(gòu)型[16]。因此,高通量田間根系表型鑒定是室內(nèi)根系表型鑒定的必要補(bǔ)充,也是將根系表型研究應(yīng)用于生產(chǎn)實(shí)踐的迫切需求。田間根系表型鑒定方法可根據(jù)根系樣本(圖像)采集是否為原位采集分為破壞性鑒定法和原位鑒定法。
破壞性鑒定法主要包括挖掘法、土芯法、小籃子法、網(wǎng)袋法及剖面法等(圖1),其中,前3種方法應(yīng)用較為廣泛。挖掘法是利用鐵鍬等工具將根系從土壤中挖出,清洗后進(jìn)行觀測(cè),操作簡(jiǎn)單、易行且直觀性強(qiáng),但是對(duì)根系的損傷程度較大[26]。近年來,研究者針對(duì)不同作物制定挖掘技術(shù)規(guī)范,革新操作工具,使得該方法所獲取的根系樣本完整度不斷提高。例如,Zheng等[27]針對(duì)玉米和高粱制定了“CREAMD”挖掘流程,利用高壓氣洗取代傳統(tǒng)水洗方式,快速清除根系表面土壤,獲取了30 cm土層以上較為完整的根系樣本。然而,隨著土層深度增加,根系挖掘難度及易損性增加,挖掘法的鑒定效率和準(zhǔn)確性降低。因此,挖掘法一般用于受耕作、施肥及灌溉等因素影響最大的耕層(0—30 cm)根系的表型鑒定。深層根系表型可采用土芯法進(jìn)行鑒定,其核心工具是土鉆,用于鉆取植株下方小于根生長(zhǎng)體積的土芯。土芯處理方式主要有2種:(1)水平放置后等距截?cái)啵{(diào)查不同深度橫截面上顯現(xiàn)的根數(shù);(2)沖洗土芯后回收根系樣本。進(jìn)而通過橫截面根數(shù)及樣本分析結(jié)果鑒定根深、根生物量及根長(zhǎng)密度等指標(biāo)[28]。然而,土芯法只能獲取局部區(qū)域的根系樣品,通過局部觀測(cè)推斷整體。因此,選用土芯法鑒定根系表型需配以合理的試驗(yàn)設(shè)計(jì)。例如,Wasson等[28]采用高密度點(diǎn)播法(hill plot)增加取樣點(diǎn)根系密度,同時(shí)根據(jù)研究對(duì)象的生長(zhǎng)特性來確定取樣頻率,增加樣品重復(fù)數(shù),從而提高了局部樣本的代表性以及不同供試材料之間的對(duì)比度。小籃子法是近年來用于鑒定水稻、小麥和大麥等須根系作物根系延伸方向的重要方法[29-30]。該方法首先根據(jù)作物根系直徑選取孔徑適宜的小籃子(網(wǎng)格容器),將其埋入土壤中,在籃子中心位置播種,根系從籃子孔隙穿出,通過挖掘小籃子并調(diào)查不同位置孔隙的根數(shù)量可以判斷根系的延伸方向,從而計(jì)算根系在不同土層的分布比例[31]。目前,基于該方法所獲取的根系表型信息,已挖掘到水稻根深相關(guān)重要基因和。高表達(dá)可以促使根系向下生長(zhǎng),因而吸收更多的深層土壤水分增強(qiáng)水稻抗旱性;而高表達(dá)能夠促使水稻根系在表土層中伸展,從而減輕鹽漬土壤缺氧而導(dǎo)致的減產(chǎn)[29, 32]。
破壞性鑒定法技術(shù)難度低、易操作且直觀性強(qiáng),但是取樣觀測(cè)耗時(shí)耗力,比較粗放。隨著現(xiàn)代高新技術(shù)的不斷進(jìn)步,人們已經(jīng)探索出更加智能、高效的田間根系表型原位鑒定方法,主要包括微根管法、探地雷達(dá)法及電容法等,可以對(duì)根系進(jìn)行實(shí)時(shí)監(jiān)測(cè)。微根管法最早由Bates于1937年提出[33],在作物播種前將透明管束埋入植株下方的土壤中,待根系長(zhǎng)出后,將柱形掃描探頭插入微根管掃描管壁上的根系圖像,通過解析圖像提取根深、根長(zhǎng)密度、根表面積及根數(shù)目等指標(biāo)(圖1)[8]。由于掃描探頭只能獲取靠近管壁上的根系信息,因此,該方法屬于局部觀測(cè)法,播種時(shí)應(yīng)注重等距密植,以增加根系附著在微根管上的幾率,并減少人為誤差。微根管表面的根長(zhǎng)受微根管影響,根沿管壁的生長(zhǎng)速度與自然生長(zhǎng)速度不同,而根數(shù)目受管壁影響較小,是該方法的重點(diǎn)指標(biāo)[34]。傳統(tǒng)的微根管系統(tǒng)中掃描探頭長(zhǎng)度一般為20 cm,需要分段掃描才能獲取完整的根系圖像,掃描圖像中的根系也需通過肉眼識(shí)別、手工繪制,操作過程十分耗時(shí)[34]。針對(duì)這一問題,Svane等[35]研制出自動(dòng)化微根管監(jiān)測(cè)平臺(tái),利用Videometer MR多光譜成像系統(tǒng)獲取光譜圖像,經(jīng)過Videometer軟件提取根系圖像,大大提高了微根管法的檢測(cè)效率。此外,傳統(tǒng)的微根管系統(tǒng)所采用的RGB可見光成像技術(shù)是根據(jù)顏色差異識(shí)別根系,當(dāng)根系和土壤之間色差較小時(shí),容易發(fā)生誤判。Videometer MR多光譜成像系統(tǒng)則基于光譜特征識(shí)別根系,準(zhǔn)確性高。不僅如此,Wang等[36]基于機(jī)器學(xué)習(xí)算法開發(fā)了SegRoot軟件,初步實(shí)現(xiàn)了微根管掃描圖像中根系與土壤背景的自動(dòng)化分離。這些技術(shù)革新推動(dòng)著微根管檢測(cè)系統(tǒng)的不斷完善,有望使其成為田間根系表型高通量原位檢測(cè)的優(yōu)選方法。探地雷達(dá)法和電容法是2種低分辨率的地球物理學(xué)方法,基于土壤物理學(xué)參數(shù)間接評(píng)價(jià)根系發(fā)育狀況。探地雷達(dá)法是利用一個(gè)天線發(fā)射高頻寬帶(1MHz-1GHz)電磁波,利用另一個(gè)天線接收來自地下介質(zhì)界面的反射波,進(jìn)而探測(cè)地下介質(zhì)結(jié)構(gòu)的一種電磁法,其測(cè)定速度快,但是對(duì)土質(zhì)要求高,目前僅適用于沙質(zhì)土壤,另外,該方法難以分辨細(xì)根(直徑小于5 mm),適宜于檢測(cè)較為粗壯的根系[37]。電容法是依據(jù)根系質(zhì)量與根際電容值之間的線性關(guān)系而提出的,最初應(yīng)用于林木根系表型研究,近年來逐漸應(yīng)用于玉米、小麥及大麥等作物根系生物量的檢測(cè)[38]。電容值的讀取受根系所在土層、根系類型及發(fā)育時(shí)期影響較大,目前,對(duì)于這些因素的影響機(jī)制仍知之甚少。除探地雷達(dá)法和電容法之外,根系表型間接評(píng)價(jià)方法還包括替代性狀法。替代性狀是指與根系性狀顯著相關(guān)且便于檢測(cè)的性狀,通過檢測(cè)此類性狀能夠間接評(píng)價(jià)根系表型[39]。例如,多項(xiàng)研究表明冠層溫度與根系深度顯著負(fù)相關(guān),與淺根材料相比,深根材料能夠從含水量豐富的深層土壤中汲取更多水分,通過蒸騰作用散發(fā)熱量,使植物體維持較低的代謝溫度。因此,冠層溫度可作為替代性狀用于根系深度的判定[8, 40]。但值得注意的是,冠層溫度易受光照、溫度、風(fēng)速及大氣濕度等農(nóng)田小氣候影響。因此,應(yīng)選擇晴朗、無風(fēng)且氣溫穩(wěn)定的時(shí)間段測(cè)量,并盡量縮短測(cè)量時(shí)間,保證測(cè)量不同供試材料時(shí)的外界環(huán)境基本一致。近年來,無人機(jī)觀測(cè)技術(shù)的應(yīng)用大大提高了冠層溫度的測(cè)定速度和精度,為田間檢測(cè)作物根系深度提供了間接、高通量的技術(shù)支撐[41]。然而,目前已發(fā)現(xiàn)的根系表型可替代性狀還十分有限,冠層溫度與根系性狀的相關(guān)系數(shù)偏低。因此,現(xiàn)階段的替代性狀法僅適用于對(duì)根系表型進(jìn)行輔助判斷,也就是大概率判斷,而非絕對(duì)判斷[28, 40]。
綜上所述,田間根系表型鑒定方法種類繁多,不同方法各有優(yōu)點(diǎn),但也有其自身的局限性(表1)。根系表型鑒定方法的選擇決定試驗(yàn)效果,選擇時(shí)應(yīng)考慮以下6個(gè)方面:(1)“精確度”,對(duì)目標(biāo)性狀鑒定結(jié)果的精細(xì)程度和準(zhǔn)確性;(2)“工作量”,操作過程所投入的勞動(dòng)力;(3)“鑒定范疇”,所獲取的表型參數(shù)多樣性;(4)“動(dòng)態(tài)性”,能否對(duì)根系進(jìn)行實(shí)時(shí)監(jiān)測(cè)或反復(fù)測(cè)定;(5)“成本”,儀器設(shè)備投資總量;(6)“通量”,單位時(shí)間內(nèi)檢測(cè)的最大樣本量,用以評(píng)價(jià)實(shí)際操作的便捷性。一般來講,研究對(duì)象較少時(shí),應(yīng)重點(diǎn)考慮精確度、鑒定范疇及動(dòng)態(tài)變化,盡可能地獲取全面信息,開展深入分析;研究對(duì)象較多時(shí),應(yīng)著重考慮工作量、成本及高通量,盡量縮短檢測(cè)時(shí)間,從而減少因環(huán)境變化而產(chǎn)生的表型誤差。另外,不同鑒定方法的原理差別較大,對(duì)于不同類型根系的檢測(cè)能力和效果不同。例如,探地雷達(dá)法在檢測(cè)不同直徑的根系時(shí)表現(xiàn)出不同的辨識(shí)能力[37]。因此,在選擇田間根系表型鑒定方法時(shí)除了考慮其特點(diǎn)外,還要注意被檢測(cè)植物的根系特點(diǎn)。
表1 田間根系表型鑒定方法評(píng)價(jià)
+++:極高;---:極低;?:精確度與待測(cè)植物根直徑有關(guān)
+++: very high; ---: very low; ?: The accuracy depends on the root diameter of the plant to be measured
隨著根系表型鑒定技術(shù)推陳出新,根系樣本的采集形式也逐漸由實(shí)體向圖像轉(zhuǎn)變,同時(shí)推動(dòng)著根系表型參數(shù)提取方法由“一把尺子一桿秤”的肉眼觀測(cè)轉(zhuǎn)變?yōu)橹悄芑浖馕鯷9]。通過肉眼觀測(cè)根系組織所獲取的表型量化指標(biāo)十分有限,主要包括重量、數(shù)量和長(zhǎng)度等二維形態(tài)指標(biāo),且觀測(cè)對(duì)象主要針對(duì)種子根、冠狀根及節(jié)根等宏觀組織,而無法考察各級(jí)側(cè)根、根毛及根尖等細(xì)微組織。根系表型分析軟件能夠?qū)⒘Ⅲw和細(xì)微結(jié)構(gòu)特征均納入考察范圍,極大地豐富了根系樣本的量化參數(shù)。因此,開發(fā)和利用根系圖像分析軟件對(duì)于提高根系表型量化水平至關(guān)重要。目前已報(bào)道的根系圖像分析軟件多達(dá)近百種,研究者可根據(jù)軟件使用許可、運(yùn)行平臺(tái)、分析模式、批量處理能力及三維成像能力等多個(gè)方面進(jìn)行選擇(表2)。
WinRHIZO是應(yīng)用較早的一套根系圖像分析軟件,通常與不同型號(hào)的EPSON根系掃描儀匹配使用。該軟件依據(jù)根系圖像的像素及投影面積獲取根長(zhǎng)、根直徑及根體積等基本形態(tài)指標(biāo),根據(jù)顏色分級(jí)確定根系存活以及生長(zhǎng)狀況,根據(jù)分支角度、交叉點(diǎn)和連通性等特征確定各級(jí)根的數(shù)量及拓?fù)浣Y(jié)構(gòu)。目前已廣泛應(yīng)用于作物根系構(gòu)型的鑒定評(píng)價(jià)、時(shí)空演變及遺傳解析等眾多研究中[59-61]。該軟件采用自動(dòng)化分析模式,即自動(dòng)識(shí)別圖片背景中的根系樣本并提取表型數(shù)據(jù),但在分析前需手動(dòng)載入每張照片并指定分析區(qū)域,不能對(duì)圖像進(jìn)行批量處理;此外,閉源收費(fèi)的管理模式也限制了該軟件的進(jìn)一步改造和普及。RootNav是一款應(yīng)用較為廣泛的免費(fèi)開源根系圖像分析軟件,該軟件采用半自動(dòng)化分析模式,即在軟件識(shí)別根系的基礎(chǔ)上,用戶還可通過手動(dòng)輔助識(shí)別。例如,用戶可以指定圖像中根基和根尖的位置,RootNav將根據(jù)此信息和圖像中的像素強(qiáng)度生成主根和側(cè)根模型,通過進(jìn)一步的人工校對(duì),可準(zhǔn)確顯示各級(jí)根系網(wǎng)絡(luò);另外,用戶還可以改變圖像中不同區(qū)域的閾值參數(shù),以提取不同亮度背景下的根系表型,從而減少因圖像亮度不均而產(chǎn)生的表型誤差[52]。不僅如此,開源模式推動(dòng)RootNav不斷升級(jí),已發(fā)布的RootNav 2.0版本將機(jī)器學(xué)習(xí)技術(shù)納入到根系識(shí)別中,大大強(qiáng)化了RootNav自動(dòng)識(shí)別根系構(gòu)型的能力[62]。隨著計(jì)算機(jī)語言和網(wǎng)絡(luò)技術(shù)的普及,開源已成為軟件發(fā)展的必然趨勢(shì),一些根系圖像分析軟件甚至被用作已有圖像分析軟件的插件。例如,基于Image J圖像分析軟件的根系分析插件SmartRoot、GT-RootS及Root Hair Sizer,對(duì)于熟悉Image J軟件的用戶來講,安裝過程和操作界面十分友好。其中,SmartRoot采用半自動(dòng)分析模式,需要手動(dòng)描出每條根,雖然分析效率較低,但可對(duì)每一條根單獨(dú)命名,從而獲取更為精細(xì)的根系構(gòu)型信息;此外,該軟件對(duì)圖片分辨率要求較低,支持多種圖像格式,具有強(qiáng)大的硬件兼容性[57]。GT-RootS采用自動(dòng)化分析模式,通過指定圖像存放路徑和輸出路徑,可實(shí)現(xiàn)批量處理(圖2),并將量化分析結(jié)果自動(dòng)保存在同一個(gè)文檔中,極大地提高了根系圖像的量化效率[48]。Root Hair Sizer則是一款專門用于檢測(cè)根毛表型的軟件,基于西格摩德(Sigmoidal)模型,可提取根毛長(zhǎng)度,根分化區(qū)位置及根毛生長(zhǎng)速率等參數(shù)[63]。
表2 常用根系表型分析軟件
上述軟件主要用于二維根系平面構(gòu)型分析,而目前針對(duì)三維根系構(gòu)型定量分析軟件的研發(fā)相對(duì)薄弱。其主要原因在于提取三維根系構(gòu)型參數(shù)不僅需要解讀圖像像素多少、顏色等級(jí)和尺寸大小,還需要構(gòu)建空間分布函數(shù),大大增加了軟件設(shè)計(jì)難度;另外,用于分析三維根系構(gòu)型的原始圖像大多是由多視角相機(jī)系統(tǒng)、X射線計(jì)算機(jī)斷層掃描儀及磁共振成像儀等昂貴硬件設(shè)備生成,軟件用戶群體較小[64]。RootReader3D、RooTrak及NMRooting是目前比較常用的三維根系表型分析軟件。其中,Clark等[55]開發(fā)的RootReader3D軟件可以利用多視角相機(jī)系統(tǒng)采集的根系圖像創(chuàng)建三維根系模型,提取根角度、根表面積和根體積等27個(gè)量化參數(shù)。該軟件僅適宜于分析背景單一的根系圖像,不能消除圖像中非根物質(zhì)的影響,例如,生長(zhǎng)于透明培養(yǎng)液中的水稻幼苗根系圖像[65]。RooTrak是早期由Mairhofer等[53]開發(fā)的一款用于復(fù)雜介質(zhì)背景下根系表型可視化的軟件,主要用于分析X-ray CT法生成的圖像,即將圖像視為沿Z軸方向的一系列X-Y平面堆積圖,通過構(gòu)建多個(gè)局部模型并跟蹤特定區(qū)段來完善根系網(wǎng)絡(luò)結(jié)構(gòu),利用視覺跟蹤框架的模型引導(dǎo)功能辨識(shí)由X射線衰減產(chǎn)生的模糊根系,從而呈現(xiàn)較為完整的三維根系構(gòu)型圖。然而,該軟件分析用時(shí)較長(zhǎng)且無法提取量化參數(shù)。Teramoto等[19]進(jìn)一步針對(duì)X-ray CT開發(fā)了RSAvis3D根系圖像量化技術(shù),通過在X-ray CT掃描中使用較高的電壓和電流來增加土壤背景和根系的對(duì)比度,并利用三維中值濾波和邊緣檢測(cè)算法提高對(duì)根系的辨識(shí)能力。在高性能計(jì)算機(jī)支持下,RSAvis3D用時(shí)10 min即可對(duì)單個(gè)樣品完成高質(zhì)量根系圖像掃描和重建(33 s即可獲取粗略根系圖像),僅需2 min便可完成根系圖像的量化分析。該技術(shù)初步實(shí)現(xiàn)了土壤背景下根系表型參數(shù)的高通量提取。此外,van Dusschoten等[20]基于Python語言開發(fā)的NMRooting軟件能夠借助功能強(qiáng)大的Mayavi可視化庫及Igraph工具包對(duì)MRI技術(shù)所獲取的根系圖像進(jìn)行量化分析。即便如此,現(xiàn)有的三維根系表型分析軟件仍無法完全排除根系自身重疊性以及土壤中非根物質(zhì)的影響,難以根據(jù)原始圖像提取完整根系表型參數(shù)。為此,研究者開發(fā)了三維根系重建技術(shù),即結(jié)合計(jì)算機(jī)模擬算法,推演與實(shí)際根系形態(tài)相似的根系三維幾何模型。例如,POSTMA等[66]開發(fā)的OPENSIMROOT軟件能夠?qū)-ray CT和MRI技術(shù)所獲取的根系圖像建立模型,根據(jù)根系生長(zhǎng)軌跡模擬出未顯示的部分根系,從而提高三維根系構(gòu)型的完整度。三維重建技術(shù)是根系表型鑒定的一個(gè)擴(kuò)展領(lǐng)域,目前仍處于探索階段,隨著參數(shù)提取算法和數(shù)據(jù)融合方法的逐漸成熟,該技術(shù)必將助力實(shí)現(xiàn)立體根系構(gòu)型的精準(zhǔn)鑒定[11]。
圖2 常用根系表型分析軟件用戶界面
利用多樣化的根系分析軟件,研究者們已獲取海量根系圖像及表型數(shù)據(jù),其中不乏重復(fù)性的冗余信息,造成資源浪費(fèi);同時(shí)也隱藏著極具研究?jī)r(jià)值的信息,例如,不同生態(tài)環(huán)境下相同種質(zhì)的根系表型數(shù)據(jù)可用于研究根系表型可塑性,進(jìn)而分析作物對(duì)環(huán)境變化的響應(yīng)。因此,亟需建立數(shù)據(jù)共享平臺(tái)提高根系表型信息利用率。標(biāo)準(zhǔn)化數(shù)據(jù)存儲(chǔ)格式是構(gòu)建根系表型數(shù)據(jù)共享平臺(tái)的基本前提。為此,Lobet等[67]設(shè)計(jì)開發(fā)了RSML(root system markup language)標(biāo)準(zhǔn)化根系表型數(shù)據(jù)格式,該格式基于XML(extentsible markup language)標(biāo)準(zhǔn),可存儲(chǔ)二維和三維根系表型的元數(shù)據(jù)、幾何尺寸以及根系生長(zhǎng)路徑函數(shù)等內(nèi)容,目前已成功應(yīng)用于7個(gè)根系表型分析軟件(EZ-Rhizo、GLO- RIA、RootNav、RhizoScan、Root System Analyser、RooTrak、SmartRoot),同時(shí)還分別針對(duì)Excel、R、Python、Image J和ArchiDART開發(fā)了軟件擴(kuò)展包用于數(shù)據(jù)解析,使其能夠適應(yīng)不同計(jì)算機(jī)系統(tǒng)或軟件環(huán)境,實(shí)現(xiàn)了研究人員或機(jī)構(gòu)之間的無縫協(xié)作。此外,Das等[44]在高性能計(jì)算集群的支持下開發(fā)了DIRT根系表型分析與共享平臺(tái)(http://dirt. iplantcollaborative.org/),用戶可將根系圖像批量上傳至該平臺(tái),快速獲取多達(dá)70多種根系表型量化參數(shù),同時(shí)該平臺(tái)還允許數(shù)據(jù)的所有者共享、編輯、下載和刪除已上傳的根系圖像或元數(shù)據(jù)。Lobet等[68]建立了Quantitative Plant植物表型量化平臺(tái)(https://www. quantitative-plant.org/),該平臺(tái)目前已匯集多達(dá)179種植物表型(包括根系及地上部表型)分析軟件、31個(gè)表型數(shù)據(jù)庫以及98種植物數(shù)字化模型,平臺(tái)提供軟件下載鏈接、用戶反饋、數(shù)據(jù)共享及新軟件發(fā)布等服務(wù),幫助研究者們快速鎖定最佳研究工具及方案,并及時(shí)分享研究心得。由此可見,根系表型數(shù)據(jù)共享平臺(tái)建設(shè)已取得諸多進(jìn)展,但在軟件兼容性和數(shù)據(jù)積累方面仍有很大提升空間,今后應(yīng)繼續(xù)加快推進(jìn)根系表型數(shù)據(jù)資源規(guī)范存儲(chǔ)、共享開放和開發(fā)應(yīng)用。
作物表型鑒定是認(rèn)識(shí)作物和培育新品種的基礎(chǔ)。過去幾十年,中國(guó)種質(zhì)資源工作者已對(duì)大量作物種質(zhì)進(jìn)行了表型精準(zhǔn)鑒定[69]。這些工作主要針對(duì)地上部性狀,極少涉及根系,根系表型成為作物種質(zhì)信息庫中的重要缺口。根系表型鑒定的難點(diǎn)在于根系的隱匿性(生長(zhǎng)介質(zhì)阻礙直接觀測(cè))、復(fù)雜性(組織結(jié)構(gòu)錯(cuò)綜復(fù)雜)及可塑性(易受環(huán)境影響)[70]。因此,未來作物根系表型鑒定方法的創(chuàng)新仍將圍繞這三個(gè)問題,重點(diǎn)開展以下工作:
目前,通過結(jié)合人工介質(zhì)培養(yǎng)、光譜成像及自動(dòng)化根系表型量化技術(shù),已基本實(shí)現(xiàn)室內(nèi)二維根系表型高通量精準(zhǔn)鑒定[9]。以X-ray CT、MRI為代表的室內(nèi)三維根系表型檢測(cè)技術(shù)也取得了突破性進(jìn)展,該技術(shù)今后所面臨的挑戰(zhàn)是實(shí)現(xiàn)自動(dòng)化檢測(cè),使其通量媲美二維根系表型鑒定平臺(tái),以便進(jìn)行大規(guī)模的作物根系表型研究[71]。相比而言,土壤的粘結(jié)性極大地影響著田間根系表型鑒定,利用自動(dòng)化微根管監(jiān)測(cè)平臺(tái)和機(jī)器識(shí)別技術(shù)也僅能獲取部分(附著管壁的)根系表型信息,尚未有田間環(huán)境下的高通量三維根系形態(tài)檢測(cè)方案。因此,今后需加強(qiáng)根系原位探測(cè)技術(shù)和遙感觀測(cè)技術(shù)研發(fā),提高田間根系表型鑒定效率和動(dòng)態(tài)觀測(cè)能力,同時(shí)結(jié)合三維重建技術(shù)突破局部觀測(cè)的限制,提取根系全局三維信息,實(shí)現(xiàn)田間根系表型的高效精準(zhǔn)鑒定。
作物在遭受生物和非生物脅迫后,其根系表現(xiàn)出生理、發(fā)育及形態(tài)變化,統(tǒng)稱為根系可塑性[72]。例如,在低磷條件下,玉米冠狀根數(shù)量、分布范圍及側(cè)根密度均顯著增加(大),而在低氮條件下則顯著減少(小)[72-73]。根系可塑性是作物對(duì)環(huán)境變化的最直接響應(yīng),如何提高根系應(yīng)對(duì)環(huán)境變化的可塑性潛力已成為作物增產(chǎn)增效研究的熱點(diǎn)問題[74]。目前,根系表型鑒定方法主要用以表征單一環(huán)境下的根系形態(tài),缺乏根系可塑性的評(píng)價(jià)方法及判定依據(jù)。因此,今后應(yīng)充分結(jié)合遺傳和環(huán)境因素,建立根系可塑性鑒定評(píng)價(jià)技術(shù)體系。
根系解剖結(jié)構(gòu)是根系發(fā)育狀況的直接體現(xiàn),如木質(zhì)化程度、導(dǎo)管數(shù)量及表皮附屬結(jié)構(gòu)特征等均會(huì)影響根系的功能,進(jìn)而影響作物生產(chǎn)力及適應(yīng)環(huán)境變化的能力[75]。然而,由于根系解剖結(jié)構(gòu)的觀測(cè)需要借助專門儀器設(shè)備,技術(shù)門檻高且樣品制備過程繁瑣,現(xiàn)有觀測(cè)技術(shù)難以快速提取根系解剖結(jié)構(gòu)信息。因此,應(yīng)探討根系解剖結(jié)構(gòu)高效鑒定策略,包括高通量的根系切片設(shè)備、自動(dòng)化顯微成像平臺(tái)及根橫截面的量化方法等[76],加強(qiáng)作物根系解剖結(jié)構(gòu)的鑒定和利用。
等位基因(位于同源染色體的相同位置上具有不同DNA序列形式的基因)序列差異是決定作物品種表型多樣性的本底差異[77]。近年來,隨著測(cè)序技術(shù)和生物信息學(xué)的快速發(fā)展,等位基因發(fā)掘效率不斷提升。目前在玉米、水稻和小麥等作物中已經(jīng)相繼分離鑒定到大量根系性狀相關(guān)等位基因[78]。在此基礎(chǔ)上,應(yīng)開發(fā)實(shí)用性分子標(biāo)記或育種芯片,為根系表型建立“分子指紋”,應(yīng)用分子標(biāo)記或全基因組選擇輔助鑒定根系表型。
規(guī)范化和共享化是作物種質(zhì)資源研究的發(fā)展趨勢(shì),也是開展規(guī)?;魑锓N質(zhì)資源精準(zhǔn)鑒定的重要前提[69]。目前,中國(guó)已針對(duì)不同作物制定了一系列的表型鑒定規(guī)范及評(píng)價(jià)標(biāo)準(zhǔn),涉及農(nóng)藝性狀、生物脅迫抗性性狀、非生物脅迫抗性性狀及土壤養(yǎng)分利用性狀等,但其中均缺乏根系表型相關(guān)內(nèi)容[79]。因此,應(yīng)統(tǒng)籌兼顧成本、通量及精準(zhǔn)度,充分結(jié)合傳統(tǒng)方法及新型技術(shù),確定適用于不同作物的根系樣本采集方法及鑒定流程,歸納根系表型性狀量化參數(shù),建立根系表型鑒定評(píng)價(jià)技術(shù)規(guī)范,構(gòu)建參數(shù)化根系表型分類標(biāo)準(zhǔn)及共享數(shù)據(jù)庫。
總之,未來通過顯微成像、遙感觀測(cè)、人工智能及大數(shù)據(jù)分析等技術(shù)的深度結(jié)合,將實(shí)現(xiàn)精準(zhǔn)化、規(guī)?;⒆詣?dòng)化和共享化根系表型鑒定,突破作物根系選擇和遺傳改良的技術(shù)瓶頸,深化對(duì)“理想根型”的認(rèn)知和實(shí)踐,通過根系改良提高作物產(chǎn)量潛力和適應(yīng)性。
[1] TRACY S R, NAGEL K A, POSTMA J A, FASSBENDER H, WASSON A, WATT M. Crop improvement from phenotyping roots: Highlights reveal expanding opportunities. Trends in Plant Science, 2020, 25: 105-118.
[2] THORUP-KRISTENSEN K, HALBERG N, NICOLAISEN M, OLESEN J E, CREWS T E, HINSINGER P, KIRKEGAARD J, PIERRET A, DRESBOLL D B. Digging deeper for agricultural resources, the value of deep rooting. Trends in Plant Science, 2020, 25: 406-417.
[3] GREGORY P J, MCGOWAN M, BISCOE P V. Water relations of winter wheat. 2. Soil water relations. Journal of Agricultural Science, 1978, 91: 103-116.
[4] VAN DER BOM F J T, WILLIAMS A, BELL M J. Root architecture for improved resource capture: Trade-offs in complex environments. Journal of Experimental Botany, 2020, 71: 5752-5763.
[5] SUN B, GAO Y, LYNCH J P. Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiology, 2018, 177: 90-104.
[6] LYNCH J P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist, 2019, 223: 548-564.
[7] BAILEY-SERRES J, PARKER J E, AINSWORTH E A, OLDROYD G E D, SCHROEDER J I. Genetic strategies for improving crop yields. Nature, 2019, 575: 109-118.
[8] LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M P, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124: 993-1006.
[9] ATKINSON J A, POUND M P, BENNETT M J, WELLS D M. Uncovering the hidden half of plants using new advances in root phenotyping. Current Opinion in Biotechnology, 2019, 55: 1-8.
[10] BEKKERING C S, HUANG J, TIAN L. Image-based, organ-level plant phenotyping for wheat improvement. Agronomy-Basel, 2020, 10: 1287.
[11] TAKAHASHI H, PRADAL C. Root phenotyping: Important and minimum information required for root modeling in crop plants. Breeding Science, 2021, 71: 109-116.
[12] WASSON A P, NAGEL K A, TRACY S, WATT M. Beyond digging: Noninvasive root and rhizosphere phenotyping. Trends in Plant Science, 2020, 25: 119-120.
[13] WALLER S, WILDER S L, SCHUELLER M J, HOUSH A B, FERRIERI R A. Quantifying plant-borne carbon assimilation by root-associating bacteria. Microorganisms, 2020, 8: 700.
[14] LIU X L, LI R Z, CHANG X P, JING R L. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 2013, 189: 51-66.
[15] RICHARD C A I, HICKEY L T, FLETCHER S, JENNINGS R, CHENU K, CHRISTOPHER J T. High-throughput phenotyping of seminal root traits in wheat. Plant Methods, 2015, 11: 13.
[16] RICH S M, CHRISTOPHER J, RICHARDS R, WATT M. Root phenotypes of young wheat plants grown in controlled environments show inconsistent correlation with mature root traits in the field. Journal of Experimental Botany, 2020, 71: 4751-4762.
[17] PAEZ-GARCIA A, MOTES C M, SCHEIBLE W R, CHEN R J, BLANCAFLOR E B, MONTEROS M J. Root traits and phenotyping strategies for plant improvement. Plants, 2015, 4: 334-355.
[18] CORONA-LOPEZ D D J, SOMMER S, ROLFE S A, PODD F, GRIEVE B D. Electrical impedance tomography as a tool for phenotyping plant roots. Plant Methods, 2019, 15: 49.
[19] TERAMOTO S, TAKAYASU S, KITOMI Y, ARAI-SANOH Y, TANABATA T, UGA Y. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography. Plant Methods, 2020, 16: 66.
[20] VAN DUSSCHOTEN D, METZNER R, KOCHS J, POSTMA J A, PFLUGFELDER D, BUEHLER J, SCHURR U, JAHNKE S. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiology, 2016, 170: 1176-1188.
[21] ROGERS E D, MONAENKOVA D, MIJAR M, NORI A, GOLDMAN D I, BENFEY P N. X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiology, 2016, 171: 2028-2040.
[22] BAO Y, AGGARWAL P, ROBBINS N E, STURROCK C J, THOMPSON M C, TAN H Q, THAM C, DUAN L, RODRIGUEZ P L, VERNOUX T, MOONEY S J, BENNETT M J, DINNENY J R. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 9319-9324.
[23] PFLUGFELDER D, METZNER R, VAN DUSSCHOTEN D, REICHEL R, JAHNKE S, KOLLER R. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Methods, 2017, 13: 102.
[24] METZNER R, EGGERT A, VAN DUSSCHOTEN D, PFLUGFELDER D, GERTH S, SCHURR U, UHLMANN N, JAHNKE S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods, 2015, 11: 17.
[25] JAHNKE S, MENZEL M I, VAN DUSSCHOTEN D, ROEB G W, BUEHLER J, MINWUYELET S, BLUEMLER P, TEMPERTON V M, HOMBACH T, STREUN M, BEER S, KHODAVERDI M, ZIEMONS K, COENEN H H, SCHURR U. Combined MRI-PET dissects dynamic changes in plant structures and functions. The Plant Journal, 2009, 59: 634-644.
[26] OYIGA B C, PALCZAK J, WOJCIECHOWSKI T, LYNCH J P, NAZ A A, LEON J, BALLVORA A. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. Plant, Cell & Environment, 2020, 43: 692-711.
[27] ZHENG Z, HEY S, JUBERY T, LIU H, YANG Y, COFFEY L, MIAO C, SIGMON B, SCHNABLE J C, HOCHHOLDINGER F, GANAPATHYSUBRAMANIAN B, SCHNABLE P S. Shared genetic control of root system architecture betweenand. Plant Physiology, 2020, 182: 977-991.
[28] WASSON A P, REBETZKE G J, KIRKEGAARD J A, CHRISTOPHER J, RICHARDS R A, WATT M. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding. Journal of Experimental Botany, 2014, 65: 6231-6249.
[29] KITOMI Y, HANZAWA E, KUYA N, INOUE H, HARA N, KAWAI S, KANNO N, ENDO M, SUGIMOTO K, YAMAZAKI T, SAKAMOTO S, SENTOKU N, WU J, KANNO H, MITSUDA N, TORIYAMA K, SATO T, UGA Y. Root angle modifications by thehomolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 21242-21250.
[30] VOSS-FELS K P, ROBINSON H, MUDGE S R, RICHARD C, NEWMAN S, WITTKOP B, STAHL A, FRIEDT W, FRISCH M, GABUR I, MILLER-COOPER A, CAMPBELL B C, KELLY A, FOX G, CHRISTOPHER J, CHRISTOPHER M, CHENU K, FRANCKOWIAK J, MACE E S, BORRELL A K, EAGLES H, JORDAN D R, BOTELLA J R, HAMMER G, GODWIN I D, TREVASKIS B, SNOWDON R J, HICKEY L T.modulates root system architecture in wheat and barley. Molecular Plant, 2018, 11: 226-229.
[31] LOU Q, CHEN L, MEI H, WEI H, FENG F, WANG P, XIA H, LI T, LUO L. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. Journal of Experimental Botany, 2015, 66: 4749-4757.
[32] UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J, MATSUMOTO T, TAKAI T, OKUNO K, YANO M. Control of root system architecture byincreases rice yield under drought conditions. Nature Genetics, 2013, 45: 1097-1102.
[33] BATES G H. A device for the observation of root growth in the soil. Nature, 1937, 139: 966-967.
[34] MAJDI H. Root sampling methods - applications and limitations of the minirhizotron technique. Plant and Soil, 1996, 185: 255-258.
[35] SVANE S F, DAM E B, CARSTENSEN J M, THORUP- KRISTENSEN K. A multispectral camera system for automated minirhizotron image analysis. Plant and Soil, 2019, 441: 657-672.
[36] WANG T, ROSTAMZA M, SONG Z, WANG L, MCNICKLE G, IYER-PASCUZZI A S, QIU Z, JIN J. Segroot: A high throughput segmentation method for root image analysis. Computers and Electronics in Agriculture, 2019, 162: 845-854.
[37] ALANI A M, LANTINI L. Recent advances in tree root mapping and assessment using non-destructive testing methods: A focus on ground penetrating radar. Surveys in Geophysics, 2020, 41: 605-646.
[38] STREDA T, HABERLE J, KLIMESOVA J, KLIMEK-KOPYRA A, STREDOVA H, BODNER G, CHLOUPEK O. Field phenotyping of plant roots by electrical capacitance-a standardized methodological protocol for application in plant breeding: A review. International Agrophysics, 2020, 34: 173-184.
[39] WASSON A P, RICHARDS R A, CHATRATH R, MISRA S C, PRASAD S V S, REBETZKE G J, KIRKEGAARD J A, CHRISTOPHER J, WATT M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 2012, 63: 3485-3498.
[40] LI X, INGVORDSEN C H, WEISS M, REBETZKE G J, CONDON A G, JAMES R A, RICHARDS R A. Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. Journal of Experimental Botany, 2019, 70: 4963-4974.
[41] JIN X, ZARCO-TEJADA P J, SCHMIDHALTER U, REYNOLDS M P, HAWKESFORD M J, VARSHNEY R K, YANG T, NIE C, LI Z, MING B, XIAO Y, XIE Y, LI S. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, 2021, 9: 200-231.
[42] DELORY B M, LI M, TOPP C N, LOBET G. Archidart v3.0: A new data analysis pipeline allowing the topological analysis of plant root systems version 1; referees: 2 approved, 1 approved with reservations. F1000Research, 2018, 7: 22.
[43] LE BOT J, SERRA V, FABRE J, DRAYE X, ADAMOWICZ S, PAGES L. Dart: A software to analyse root system architecture and development from captured images. Plant and Soil, 2010, 326: 261-273.
[44] DAS A, SCHNEIDER H, BURRIDGE J, ASCANIO A K M, WOJCIECHOWSKI T, TOPP C N, LYNCH J P, WEITZ J S, BUCKSCH A. Digital imaging of root traits (DIRT): A high- throughput computing and collaboration platform for field-based root phenomics. Plant Methods, 2015, 11: 51.
[45] SYMONOVA O, TOPP C N, EDELSBRUNNER H. Dynamicroots: A software platform for the reconstruction and analysis of growing plant roots. PLoS One, 2015, 10: e0127657.
[46] SHAHZAD Z, KELLERMEIER F, ARMSTRONG E M, ROGERS S, LOBET G, AMTMANN A, HILLS A. EZ-root-VIS: A software pipeline for the rapid analysis and visual reconstruction of root system architecture. Plant Physiology, 2018, 177: 1368-1381.
[47] GALKOVSKYI T, MILEYKO Y, BUCKSCH A, MOORE B, SYMONOVA O, PRICE C A, TOPP C N, IYER-PASCUZZI A S, ZUREK P R, FANG S, HARER J, BENFEY P N, WEITZ J S. GiA roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biology, 2012, 12: 116.
[48] BORIANNE P, SUBSOL G, FALLAVIER F, DARDOU A, AUDEBERT A. GT-RootS: An integrated software for automated root system measurement from high-throughput phenotyping platform images. Computers and Electronics in Agriculture, 2018, 150: 328-342.
[49] SCHMIDT T, PASTERNAK T, LIU K, BLEIN T, AUBRY-HIVET D, DOVZHENKO A, DUERR J, TEALE W, DITENGOU F A, BURKHARDT H, RONNEBERGER O, PALME K. The iRoCS Toolbox-3D analysis of the plant root apical meristem at cellular resolution. The Plant Journal, 2014, 77: 806-814.
[50] GONZALEZ A, SEVILLANO X, BETEGON-PUTZE I, BLASCO- ESCAMEZ D, FERRER M, CANO-DELGADO A I. MYROOT 2.0: An automatic tool for high throughput and accurate primary root length measurement. Computers and Electronics in Agriculture, 2020, 168: 105125.
[51] SEETHEPALLI A, GUO H, LIU X, GRIFFITHS M, ALMTARFI H, LI Z, LIU S, ZARE A, FRITSCHI F B, BLANCAFLOR E B, MA X, YORK L M. RhizoVision Crown: An integrated hardware and software platform for root crown phenotyping. Plant Phenomics, 2020, 2020: 3074916.
[52] POUND M P, FRENCH A P, ATKINSON J A, WELLS D M, BENNETT M J, PRIDMORE T. RootNav: Navigating images of complex root architectures. Plant Physiology, 2013, 162: 1802-1814.
[53] MAIRHOFER S, ZAPPALA S, TRACY S R, STURROCK C, BENNETT M, MOONEY S J, PRIDMORE T. RooTrak: Automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiology, 2012, 158: 561-569.
[54] CLARK R T, FAMOSO A N, ZHAO K, SHAFF J E, CRAFT E J, BUSTAMANTE C D, MCCOUCH S R, ANESHANSLEY D J, KOCHIAN L V. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant, Cell & Environment, 2013, 36: 454-466.
[55] CLARK R T, MACCURDY R B, JUNG J K, SHAFF J E, MCCOUCH S R, ANESHANSLEY D J, KOCHIAN L V. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiology, 2011, 156: 455-465.
[56] NARISETTI N, HENKE M, SEILER C, SHI R, JUNKER A, ALTMANN T, GLADILIN E. Semi-automated root image analysis (saRIA). Scientific Reports, 2019, 9: 19674.
[57] LOBET G, PAGES L, DRAYE X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology, 2011, 157: 29-39.
[58] PANG W, CROW W T, LUC J E, MCSORLEY R, GIBLIN-DAVIS R M, KENWORTHY K E, KRUSE J K. Comparison of water displacement and WINRHIZO software for plant root parameter assessment. Plant Disease, 2011, 95: 1308-1310.
[59] BEYER S, DABA S, TYAGI P, BOCKELMAN H, BROWN- GUEDIRA G, MOHAMMADI M, IWGSC. Loci and candidate genes controlling root traits in wheat seedlings - a wheat root GWAS. Functional & Integrative Genomics, 2019, 19: 91-107.
[60] FERNANDO K M C, EHOCHE O G, ATKINSON J A, SPARKES D L. Root system architecture and nitrogen uptake efficiency of wheat species. Journal of Agricultural Sciences, 2021, 16: 37-53.
[61] VESCIO R, ABENAVOLI M R, SORGONA A. Single and combined abiotic stress in maize root morphology. Plants-Basel, 2021, 10: 5.
[62] YASRAB R, ATKINSON J A, WELLS D M, FRENCH A P, PRIDMORE T P, POUND M P. RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. Gigascience, 2019, 8: giz123.
[63] GUICHARD M, ALLAIN J M, BIANCHI M W, FRACHISSE J M. Root hair sizer: An algorithm for high throughput recovery of different root hair and root developmental parameters. Plant Methods, 2019, 15: 104.
[64] PAULUS S. Measuring crops in 3D: Using geometry for plant phenotyping. Plant Methods, 2019, 15: 103.
[65] UGA Y, ASSARANURAK I, KITOMI Y, LARSON B G, CRAFT E J, SHAFF J E, MCCOUCH S R, KOCHIAN L V. Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis. BMC Genomics, 2018, 19: 273.
[66] POSTMA J A, KUPPE C, OWEN M R, MELLOR N, GRIFFITHS M, BENNETT M J, LYNCH J P, WATT M. OPENSIMROOT: Widening the scope and application of root architectural models. New Phytologist, 2017, 215: 1274-1286.
[67] LOBET G, POUND M P, DIENER J, PRADAL C, DRAYE X, GODIN C, JAVAUX M, LEITNER D, MEUNIER F, NACRY P, PRIDMORE T P, SCHNEPF A. Root system markup language: Toward a unified root architecture description language. Plant Physiology, 2015, 167: 617-627.
[68] LOBET G, DRAYE X, PéRILLEUX C. An online database for plant image analysis software tools. Plant Methods, 2013, 9: 38.
[69] 劉旭, 李立會(huì), 黎裕, 方溈. 作物種質(zhì)資源研究回顧與發(fā)展趨勢(shì). 農(nóng)學(xué)學(xué)報(bào), 2018, 8: 1-6.
LIU X, LI L H, LI Y, FANG W. Crop germplasm resources: Advances and trends. Journal of Agriculture, 2018, 8: 1-6. (in Chinese)
[70] LI C N, LI L, REYNOLDS M P, WANG J Y, CHANG X P, MAO X G, JING R L. Recognizing the hidden half in wheat: Root system attributes associated with drought tolerance. Journal of Experimental Botany, 2021, 72: 5117-5133.
[71] PATURKAR A, SEN GUPTA G, BAILEY D. Making use of 3D models for plant physiognomic analysis: A review. Remote Sensing, 2021, 13: 2232.
[72] GAO K, CHEN F, YUAN L, ZHANG F, MI G. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant, Cell & Environment, 2015, 38: 740-750.
[73] VYSOTSKAYA L, AKHIYAROVA G, FEOKTISTOVA A, AKHTYAMOVA Z, KOROBOVA A, IVANOV I, DODD I, KULUEV B, KUDOYAROVA G. Effects of phosphate shortage on root growth and hormone content of barley depend on capacity of the roots to accumulate ABA. Plants-Basel, 2020, 9: 1722.
[74] SCHNEIDER H M, LYNCH J P. Should root plasticity be a crop breeding target? Frontiers in Plant Science, 2020, 11: 546.
[75] SIDDIQUI M N, LEON J, NAZ A A, BALLVORA A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. Journal of Experimental Botany, 2021, 72: 1007-1019.
[76] WANG C, LI X, CARAGEA D, BHEEMANAHALLIA R, JAGADISH S V K. Root anatomy based on root cross-section image analysis with deep learning. Computers and Electronics in Agriculture, 2020, 175: 105549.
[77] 武晶, 黎裕. 基于作物種質(zhì)資源的優(yōu)異等位基因挖掘: 進(jìn)展與展望. 植物遺傳資源學(xué)報(bào), 2019, 20: 1380-1390.
WU J, LI Y. Mining superior alleles in crop germplasm resources: Advances and perspectives. Journal of Plant Genetic Resources, 2019, 20: 1380-1390. (in Chinese)
[78] DEJA-MUYLLE A, PARIZOT B, MOTTE H, BEECKMAN T. Exploiting natural variation in root system architecture via genome- wide association studies. Journal of Experimental Botany, 2020, 71: 2379-2389.
[79] 劉旭. 四十年改革開放幾代人夢(mèng)想成真——記中國(guó)作物種質(zhì)資源40年發(fā)展巨變. 中國(guó)種業(yè), 2019, 1: 1-6.
LIU X. Forty years of reform and opening-up and several generations' dreams come true-Recording the great changes in the development of crop germplasm resources in China in the past 40 years. China Seed Industry, 2019, 1: 1-6. (in Chinese)
Advances and Perspectives of Approaches to Phenotyping Crop Root System
LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian*
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
Roots are the vital organs for fixing the plant shoots and absorbing soil water and nutrients. The phenotypic characteristics of roots directly affect crop productivity and adaptability. Optimizing root phenotypes is considered to be one of the important ways to achieve the second “Green Revolution”. However, the invisibility, complexity and plasticity of root system greatly restrict the efficiency of root phenotyping, which makes the root optimization process lag far behind that of aboveground organs. With the rapid development of new technologies, i.e. spectral imaging, machine learning and three-dimensional reconstruction, the approaches to phenotyping roots gradually changed from traditional sampling observation to in-situ, nondestructive and automatic detection, and the evaluation basis expanded from two-dimensional morphological indices to three-dimensional parameters, which promoted the efficiency of root phenotyping and dramatically enriched the data of root phenotype. Meanwhile, the massive data exhibited problems, such as data redundancy and low use efficiency of information resources, which put forward new requirements, i.e. standardization and shareability, for root phenotype studies. This paper summarized the principles and technical keys of main approaches to phenotyping roots, and compared systematically in terms of precision, cost and throughput. The commonly used software for quantification of root phenotype were listed out from the aspects of license, operating platform, analysis mode and so on. The important research direction in the future was put forward, that is, to develop effective approaches to phenotyping roots in the field, to establish the evaluation system for root plasticity, to strengthen the identification and utilization of root anatomical characters, to strengthen the application of molecular detection techniques in root phenotyping, and to promote standardization of root phenotyping techniques and data sharing. The aim is to provide reference for the reasonable selection and improvement of approaches to phenotyping crop root system, so as to promote crop root improvement.
crop; root phenotype; phenotyping in the laboratory; phenotyping in the field; evaluation method
2021-07-21;
2021-08-09
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0300202)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程重大科研任務(wù)(CAAS-ZDRW202002)
李龍,E-mail:lilong01@caas.cn。通信作者景蕊蓮,E-mail:jingruilian@caas.cn
(責(zé)任編輯 李莉)