張晉龍,趙志博,劉巍,黃麗麗
獼猴桃細菌性潰瘍病菌T3SS關(guān)鍵效應蛋白基因致病功能
張晉龍,趙志博,劉巍,黃麗麗*
西北農(nóng)林科技大學植物保護學院/旱區(qū)作物逆境生物學國家重點實驗室,陜西楊陵 712100
【目的】由丁香假單胞菌獼猴桃致病變種(pv.,)引起的獼猴桃細菌性潰瘍病是全球獼猴桃產(chǎn)業(yè)最具毀滅性的病害。病原細菌主要通過III型分泌系統(tǒng)(type III secretion system,T3SS)將多種效應蛋白(T3SS effector,T3SE)注入寄主植物細胞,進而促進病菌侵染和致病。本研究旨在解析基因組中T3SE的信息并對其T3SS和T3SE的致病功能進行系統(tǒng)分析,為潰瘍病菌致病機制的研究和防治策略的制定提供依據(jù)?!痉椒ā坷胢arker-free同源重組基因敲除技術(shù)獲得M228菌株的T3SS功能缺陷突變體Δ和Δ,觀察突變體在寄主上的致病力,同時檢測突變體誘導本氏煙產(chǎn)生細胞壞死的情況;隨后利用從Pseudomonas-Plant Interaction數(shù)據(jù)庫下載的T3SE數(shù)據(jù)庫,本地BLAST多序列比對構(gòu)建強、弱致病菌株M228和M227的T3SE庫,并對二者的T3SE基因信息進行比對分析;另外,獲得M228菌株T3SE單、多效應子突變菌株20株及2株基因回補菌株(共涉及19個T3SE),并將各突變體室內(nèi)有傷接菌獼猴桃枝條,系統(tǒng)評價各突變體致病力變化并進行統(tǒng)計分析?!窘Y(jié)果】通過對的和基因進行突變,證明T3SS是其在寄主上致病以及非寄主上過敏性壞死反應(HR)所必需的。通過數(shù)據(jù)庫同源比對,發(fā)現(xiàn)在強毒株系和弱毒株系中有31個T3SE基因具有100%的同源性,選取一些基因進行缺失突變,發(fā)現(xiàn)/和是重要的毒性因子,且二者不存在功能冗余。另外,單獨敲除或均能提高致病力。在缺失A-F-E基因簇和的菌株中,敲除/和也分別導致的致病力顯著下降;而同時敲除/、、和A-F-E基因簇導致病菌完全喪失致病力?!窘Y(jié)論】HopM1/AvrE1與同家族HopR1均為重要致病因子,且獨立于其他效應子發(fā)揮作用;和基因缺失可以增強的致病力。
獼猴桃潰瘍??;丁香假單胞菌獼猴桃致病變種;效應蛋白;III型分泌系統(tǒng);致病力
【研究意義】由丁香假單胞菌獼猴桃致病變種(pv.,)引起的獼猴桃細菌性潰瘍病是獼猴桃產(chǎn)業(yè)最具毀滅性的病害,在全球獼猴桃栽培區(qū)均有發(fā)生,嚴重制約著獼猴桃產(chǎn)業(yè)的健康發(fā)展[1-2]。該病害可以攻擊寄主獼猴桃地上的多個組織,包括枝干、葉片和花蕾,具有侵染迅速、危害嚴重、防治困難等特點。對于獼猴桃潰瘍病這樣一個新的病害體系,其致病機制研究尚處于初級階段。因此,明確主要攻擊‘武器’III型效應蛋白(type III effector,T3SE)的致病功能進而解析其對植物的識別機制,對該病害新型防治策略的開發(fā)具有重要意義。【前人研究進展】筆者實驗室前期調(diào)查了陜西省的種群結(jié)構(gòu)和致病力差異,并利用比較基因組學分析了同一亞群的強、弱致病菌株M228(登錄號GCA_000344475.3)和M227(登錄號GCA_002890365.1)的遺傳差異,發(fā)現(xiàn)一個位于III型分泌系統(tǒng)(type III secretion system,T3SS)基因簇上游啟動子-930 bp區(qū)域的致病分化關(guān)鍵差異位點,該位點很可能調(diào)控/轉(zhuǎn)錄水平進而影響“HrpR/S-HrpL-T3SS/ effecors”級聯(lián)通路導致致病力下降[3]。T3SS在許多革蘭氏陰性菌中普遍存在,尤其在許多動物和植物病原細菌中對致病力起著關(guān)鍵作用[4-5]。T3SS結(jié)構(gòu)通常由染色體上T3SS相關(guān)基因簇表達裝配成一個“針狀”的注射器結(jié)構(gòu)[6-8]。病原細菌通過T3SS這樣一個精密裝置將多種T3SE直接注入寄主細胞內(nèi),進而引起寄主細胞一系列反應如免疫應答、激素信號轉(zhuǎn)導和細胞代謝等,最終促進病原菌增殖侵染[9]。T3SE存在功能冗余、相互作用和不同菌株間復雜多樣性等特征[5,10-11]。例如,在丁香假單胞菌番茄致病變種(pv.,)DC3000中有36個效應蛋白,其中至少存在2個功能冗余群[12-13];在缺失28個效應子基因的突變體D28E中,最少回補8個效應蛋白便可達到野生菌株的致病力水平[12]。因此,在一個病害體系中,僅有少數(shù)T3SE發(fā)揮關(guān)鍵致病作用。具有典型的/group I基因簇[14],同時具有約30個T3SE基因。Choi等[15]調(diào)查了T3SE的亞細胞定位及激發(fā)或抑制煙草過敏性壞死反應(hypersensitive response,HR)的能力;Jayaraman等[16]發(fā)現(xiàn)效應蛋白HopZ5是定位于質(zhì)膜的乙酰轉(zhuǎn)移酶,可在非寄主本氏煙()和擬南芥()中激發(fā)依賴于SGT1的HR;隨后,Choi等[17]發(fā)現(xiàn)擬南芥SOBER1可抑制HopZ5激發(fā)的HR;Yoon等[18]發(fā)現(xiàn)煙草Rpa1,而非RPM1,介導了T3SE AvrRpm1激發(fā)的HR。這些研究借助非寄主植物探索了部分T3SE的功能,但不清楚其在侵染獼猴桃致病中的作用。近期,Jayaraman等[19]發(fā)現(xiàn)AvrE1和HopR1參與了對寄主的致病過程,而HopM1可能由于伴侶蛋白shcM的不完整而不發(fā)揮致病功能?!颈狙芯壳腥朦c】是一個新的病害體系,具有典型的T3SS基因簇和約30個效應蛋白基因,關(guān)于攻擊植物的主要T3SE“武器庫”只有少量報道,尚不清楚中大多數(shù)T3SE的致病功能?!緮M解決的關(guān)鍵問題】通過生物信息學解析的T3SE庫,通過構(gòu)建單、多基因突變體,系統(tǒng)評價T3SE的致病力貢獻,鑒定部分T3SE功能,為深入研究病原菌-寄主互作機制打下基礎。
試驗于2017—2019年在西北農(nóng)林科技大學旱區(qū)作物逆境生物學國家重點實驗室完成。
供試M228和M227屬于biovar3(3)的強、弱致病菌株,分離自中國陜西眉縣‘紅陽’獼猴桃[20]。供試菌株及其突變體菌株全部由西北農(nóng)林科技大學植物保護學院果樹病害綜合防治研究團隊保存,保存條件為-80℃,50%甘油。
取保存的供試菌株及其突變體在LB平板上劃線培養(yǎng),25℃,48 h;大腸桿菌菌株DH5和S17-1/pir均培養(yǎng)于LB培養(yǎng)基,37℃,16 h。供試獼猴桃品種包括‘紅陽’(var.cv. ‘HongYang’)、‘海沃德’(var.cv. ‘Hayward’)、‘翠香’(cv. ‘CuiXiang’)、‘亞特’(cv. ‘Yate’)、‘華優(yōu)’(×cv. ‘HuaYou’),其枝條和葉片來自盆栽苗和周圍農(nóng)戶。本氏煙來自于全天候的溫室(14 h 22℃﹕10 h 20℃(L﹕D),相對濕度70%)。限制內(nèi)切酶購自寶日醫(yī)生物技術(shù)(北京)有限公司;抗生素包括卡那霉素(Kan)、氨芐青霉素(Amp)和其他生化試劑萘啶酮酸(Nal)等均購自北京索萊寶科技有限公司。
為了鑒定M228和M227菌株的T3SE,從Pseudomonas-Plant Interaction網(wǎng)站下載T3SE本地數(shù)據(jù)庫(http://www.pseudomonas-syringae.org/),然后基于M228和M227菌株基因組數(shù)據(jù)進行本地BLAST比對并對T3SE注釋。
質(zhì)粒pDSK-GFPuv[21]用于構(gòu)建基因回補表達載體,目標基因用各自特異引物進行PCR擴增回收得到目的基因片段,相關(guān)引物參考文獻[20],將pDSK-GFPuv用H I和d III雙酶切后與已回收目標基因片段按一定比例混合,通過一步克隆酶進行連接,然后轉(zhuǎn)化大腸桿菌DH5,驗證和測序正確后,電轉(zhuǎn)至目標菌株獲得回補突變菌株。同樣,質(zhì)粒pK18mobSacB用于構(gòu)建基因敲除自殺載體[22],用R I和d III進行雙酶切,然后與待敲除目標基因上下游同源臂片段進行多步克隆酶連接,同源臂片段擴增及檢測引物參考文獻[23],測序正確后的重組pK18mobSacB載體轉(zhuǎn)入S17-1/pir,然后通過接合轉(zhuǎn)移方式[20]將重組敲除載體轉(zhuǎn)入至各自親本菌株中,將接合子涂布于含15%蔗糖的LB培養(yǎng)基篩選敲除突變體,所有敲除突變體最終通過PCR電泳檢測和Sanger測序驗證,檢測引物參照文獻[20]。本論文中提到的敲除和回補突變體均在M228菌株及其突變體的遺傳學背景下通過分子生物學技術(shù)構(gòu)建,所有突變體為本實驗室構(gòu)建并保存,詳細信息如表1所示。
采用室內(nèi)枝條有傷接菌的方式評價各突變體的致病力差異。采集45 cm長的當年生獼猴桃健康枝條,用0.6% HClO表面消毒10 min,無菌水清洗3次,處理過的枝條晾干后剪切成5 cm左右的短枝條,兩端石蠟封存?zhèn)溆?。然后,無菌手術(shù)刀處理枝條切2 mm左右的傷口至木質(zhì)部,調(diào)整菌液濃度OD600至2×108cfu/mL,接種10 μL至傷口處,每次10個重復,接種的枝條放置在全天候氣候培養(yǎng)箱,培養(yǎng)條件16 h 18℃﹕8 h 14℃(L﹕D),相對濕度70%)。
葉盤真空滲透接種:葉片表面消毒后,使用打孔器(直徑11 mm)制葉盤,避開葉脈;葉盤置于菌液(104cfu/mL),真空滲透(0.1 MPa,10 s,反復3次),無菌水清洗3次,置于0.5%水瓊脂平板,每次試驗至少10個重復,接種葉盤放置全天候氣候培養(yǎng)箱16℃黑暗培養(yǎng)3 d后觀察拍照[3]。
煙草葉片接菌法:搖菌培養(yǎng)后調(diào)整至濃度約為108cfu/mL,使用無針頭5 mL注射器,從葉背面注射本氏煙葉片,至直徑約為1 cm。每菌株至少注射3株植物的3個葉片[3]。每次試驗至少3次獨立試驗。
SPSS 19.0(IBM,Armonk,NY)用于數(shù)據(jù)統(tǒng)計分析,獨立樣本差異檢驗使用Student’s-test,多樣本方差分析使用Duncan’s multiple range test。
表1 敲除和回補突變體信息匯總
T3SS是許多病原細菌攻擊植物的主要武器,為了驗證T3SS是否為致病所必需,將M228菌株的T3SS功能缺陷突變體Δ和Δ分別有傷接種獼猴桃枝條和真空滲透接種獼猴桃葉片,致病力分析結(jié)果顯示,與對照M228相比,突變體Δ和Δ均不能引起獼猴桃枝條和葉片的壞死反應(圖1-a、1-b)。進一步驗證T3SS是否影響對非寄主誘導的HR反應,通過將突變體注射接種至本氏煙葉片后進行表型觀察,與對照M228相比,突變體Δ和Δ同樣也不能引起本氏煙葉片的HR反應(圖1-c),綜上結(jié)果表明T3SS是引起寄主上致病性以及非寄主上HR反應所必需的。
病原細菌主要通過T3SS直接將T3SE注射至寄主細胞內(nèi)攻擊植物,達到侵染定殖的目的,為了進一步探究M228和M227致病力差異是否由T3SE決定,利用生物信息學進行T3SE注釋,結(jié)果發(fā)現(xiàn)M228和M227具有同等數(shù)量的T3SE,且序列100%相似,說明M228和M227菌株致病力分化與其他差異位點有關(guān)。另外,為了直觀地了解中T3SE的種類、數(shù)目和特異性,Sawada等[23]構(gòu)建3的33個T3SE基因庫。本試驗中通過本地blast同源庫比對,在M228和M227菌株基因組中T3SE 100%相似,均可以找到31個完整的T3SE基因(其中HopAM1-1和HopAM1-2為100%同源雙拷貝),約占3 T3SE基因庫總數(shù)的94%,故M228強致病菌株中T3SE功能解析對于3整個種群致病力均有借鑒作用。此外,M228菌株中還有8個基因序列不完整或提前終止的T3SE(HopAY1、HopAW1、HopAA1-1、HopW1、HopA1、HopAV1、HopAA1-2和AvrRpm2)。在M228基因組上,Cluster A、O、E、F和M相關(guān)T3SE基因分別成簇存在,其中Cluster O中AvrE1和HopM1為core effectors,位于pathogenicity island側(cè)翼CEL(conserved effector locus)?;蚯贸龢俗R字母欄A、O、E、F和M分別對應各自的T3SE基因簇,涉及19個T3SE(表2),后續(xù)將構(gòu)建這些基因簇的敲除突變體和部分T3SE回補突變體,并進行致病力評估。
表2 Psa M228和M227菌株的T3SE庫
根據(jù)同源比對結(jié)果建立該表,列出T3SE在M228菌株中的分布情況T3SEs were listed according to the BLAST results against to thehop database;3菌株ICMP 18884(GCA_000648735.3)為參考3 strain ICMP 18884 genome as reference;右側(cè)基因敲除欄內(nèi)的符號表示敲除的基因/基因簇The deletion of T3SE for each gene or cluster was designated as the capital letter listed in the right column;在M228欄中,綠色方塊標識存在的完整基因,黃色方塊表示在M228中完整基因但在部分3中不完整,黑色方塊表示不完整或提前終止基因In M228 column, the green square represents the complete gene; the yellow square represents the complete gene in M228 but incomplete in partial stains of3; the black square represents the incomplete or early termination gene
a:Psa菌株M228及其ΔhrcC、ΔhrcS突變體接種‘紅陽’獼猴桃枝條,2×108 cfu/mL(15 dpi)Psa M228 strain and its T3SS-deficient mutants ΔhrcC, ΔhrcS were inoculated on canes of ‘HongYang’ with 2×108 cfu/mL concentration (15 days post inoculation);b:接種葉盤,上排為‘紅陽’獼猴桃葉片,下排為‘翠香’獼猴桃葉片,104 cfu/mL(5 dpi)Leaf discs of ‘HongYang’ (upper) and ‘CuiXiang’ (bottom) with 104 cfu/mL concentration (5 days post inoculation);c:注射本氏煙葉片,108 cfu/mL(2 dpi)N. benthamina leaves with 108 cfu/mL concentration (2 days post inoculation)。每菌株接種至少10個枝條或葉盤,每菌株至少注射3株煙草的3個葉片。試驗重復至少2次,得相似結(jié)果For the inoculation, at least 10 canes or leaf discs were used for each strain, and at least three tobacco leaves from three plants were treated with each strain. Experiments were repeated at least twice with similar results
為了探究M228菌株發(fā)揮致病功能的關(guān)鍵T3SE基因,從核心效應蛋白HopM1/AvrE1出發(fā),構(gòu)建其缺失突變體ΔO。利用獼猴桃枝條室內(nèi)有傷接菌方式評估各菌株的致病力,與對照M228相比,突變體ΔO致病力降低50%左右,且在不同寄主‘紅陽’和‘海沃德’中致病力表現(xiàn)一致(圖2),說明HopM1/AvrE1為M228的重要致病因子。
構(gòu)建基因敲除突變體ΔM,有傷接種至不同的寄主枝條,致病力分析發(fā)現(xiàn),與對照M228相比,突變體在不同寄主品種上的致病力均顯著下降30%左右(圖3-b),當回補后,致病力均恢復至其親本菌株水平(圖3-a),表明HopR1也是的關(guān)鍵致病因子。
為了進一步探究HopM1/AvrE1與HopR1的關(guān)系,在缺失突變體ΔM的基礎上,敲除/基因,獲得突變體ΔMO,發(fā)現(xiàn)突變體的致病力仍然繼續(xù)下降50%左右,且在不同寄主品種中表現(xiàn)一致(圖2);此外,以ΔO為親本菌株獲得的缺失突變體ΔOM,并評價其致病力。結(jié)果顯示,無論/是否存在,缺失后,菌株的致病力均顯著下降30%,且在不同寄主品種上表現(xiàn)一致(圖3);當回補后,致病力恢復至親本菌株水平(圖3-a),表明HopR1與HopM1/AvrE1不存在致病功能冗余。
縱坐標為各菌株接種獼猴桃枝條后病斑長度與M228病斑長度的比值。下同The lesion length for each strain was normalized to that of the control strain M228. The same as below
菌株M228的T3SE庫中除了核心效應蛋白外,還存在T3SE基因簇,為了研究這些基因簇對致病力的影響,對基因簇A(包含11個基因)、E(和)和F(、和)分別進行單基因簇和多基因簇敲除,獲得ΔA、ΔE、ΔF、ΔAF和ΔAFE 5株M228突變體菌株,并評估各突變體的致病力差異。結(jié)果表明,單獨敲除每個基因簇后,對‘紅陽’獼猴桃枝條致病力分別降低約15%,說明基因簇A、E、F均有效應蛋白參與致病;與?AF相比,當基因簇A-F-E全部敲除時,對‘紅陽’獼猴桃枝條致病力顯著降低約40%,說明E基因簇在M228菌株致病過程中起著關(guān)鍵作用(圖4-a)。上述突變體接種‘華優(yōu)’獼猴桃枝條時,致病力測定結(jié)果表明僅基因簇A無顯著致病功能(圖4-b)。另外,單獨敲除基因簇A或F與同時敲除基因簇A和F致病力下降水平無顯著差異(圖4),說明基因簇A和F中存在功能冗余的效應蛋白,且可能共同靶向同一關(guān)鍵免疫通路。
a:接種至‘華優(yōu)’inoculation on cultivar ‘HuaYou’;b:野生型菌株M228及其hopR1突變體分別接種至‘亞特’‘翠香’和‘華優(yōu)’M228 and the hopR1 mutant were inoculated on ‘Yate’ ‘CuiXiang’ and ‘HuaYou’。試驗至少重復2次,得相似結(jié)果Experiments were repeated at least twice with similar results (Student’s t-test or Duncan’s multiple range test, P<0.01)
圖中比較的是各菌株接種至同一品種后的致病力。圖5同
在突變體ΔAFE的基礎上,敲除,獲得突變體ΔAFEL。當接種‘紅陽’獼猴桃枝條時,ΔAFEL的致病力較ΔAFE顯著提升。在突變體ΔOM的基礎上,敲除,獲得突變體ΔOMN。當接種‘紅陽’獼猴桃枝條時,ΔOMN的致病力較ΔOM顯著提升(圖5),表明當存在AvrPto5和AvrRpm1時,可能被寄主識別,激發(fā)了一定程度的抗病性。
此外,在ΔAFEL的基礎上,敲除獲得突變體ΔAFELM,敲除獲得突變體ΔAFELO。在ΔAFELO的基礎上敲除獲得突變體ΔAFELOM。當接種‘紅陽’獼猴桃枝條時,單獨敲除或均能導致致病力顯著下降,同時敲除和/,完全喪失致病力,表明HopR1和HopM1/AvrE1在致病中獨立發(fā)揮關(guān)鍵作用,且與A/E/F基因簇靶向的抗病通路不同。
接種15 d后測量病斑擴展長度The length of lesion expansion of the above mutants was measured 15 days post inoculation
本研究通過對菌株的T3SE進行預測,共找到31個完整的T3SE,系統(tǒng)地分析了M228中19個T3SE相關(guān)突變體致病力,從整體上明確了T3SE的種類和功能。結(jié)果表明,19個T3SE基因全敲除突變體ΔAFELOM接種寄主獼猴桃,其致病力完全喪失,說明M228菌株主要致病力蛋白集中在這19個T3SE內(nèi)。通過對HopM/AvrE家族保守蛋白HopM1/AvrE1和HopR1功能進行研究,發(fā)現(xiàn)其均對菌株M228的致病力起重要作用,且兩者不存在致病功能冗余。近期Jayaraman等[19]也發(fā)現(xiàn)了核心效應蛋白AvrE1和可變效應子HopR1對的重要致病作用,然而HopM1由于其伴侶分子shcM不完整而導致不發(fā)揮致病作用。在M228菌株中伴侶分子shcM基因也不完整,HopM1很有可能由于伴侶蛋白shcM的不完整而不發(fā)揮致病功能。與DC3000相似,利用AvrE1可能作用于抗病物質(zhì)運輸及創(chuàng)造胞間水環(huán)境,以及減少胼胝質(zhì)的積累和活性氧的迸發(fā)[24-26]。HopR1屬于HopM/AvrE蛋白家族,在DC3000中存在功能冗余,但對的致病力和適應性起著關(guān)鍵作用,關(guān)于其致病機理知之甚少,可能作用于抗病物質(zhì)運輸及關(guān)鍵的防衛(wèi)路徑,值得進一步深入研究。
進一步驗證其他T3SE基因簇A、E和F的功能,發(fā)現(xiàn)這幾個基因簇間存在功能冗余T3SE,且各基因簇對的致病力均有貢獻?;虼卮嬖诠δ苄鞍兹哂啵湓蚩赡艽嬖诓煌鞍装邢蛲粋€關(guān)鍵PTI/ETI的識別與信號傳遞通路。另外E基因簇的HopZ5對致病功能顯著,可能靶向其他關(guān)鍵的免疫信號通路。HopZ5屬于YopJ serine/threonine acetyltransferase家族,在多種動植物病原菌中存在,例如(YopJ)、(PopP1和PopP2)、(ORFB)、(AvrRxv,AvrXv4,AvrBsT和XopJ)和(HopZ family),其分化程度較高、作用方式多樣[27-33]。在3中T3SE HopZ5屬于特異效應子,該基因可以作為3菌種鑒定的特異序列[34]。此外,研究發(fā)現(xiàn)在-基因簇E中,HopZ5而非HopH1對致病力有貢獻[3];HopZ5可以激發(fā)模式植物擬南芥和煙草的HR反應[16-17],但HopZ5互作的寄主靶標仍然未知。
敲除效應蛋白基因和后突變體對獼猴桃枝條的致病力上升,說明AvrPto5和AvrRpm1可以一定程度激發(fā)寄主的抗病性。據(jù)報道,Avr蛋白為一類無毒因子,可以與R蛋白互作激發(fā)植物的防御反應,缺失后可導致病原菌的致病力增強,如AvrPto5同源蛋白AvrPto是最早發(fā)現(xiàn)并鑒定的一類無毒蛋白,可以與R蛋白識別激活ETI途徑從而增強寄主的抗性[35];同樣,AvrRpm1也廣泛存在于多種病原菌中,靶向R蛋白并激發(fā)寄主的抗性[36]。在中AvrPto5和AvrRpm1也可能為無毒因子,推測可能被寄主獼猴桃R蛋白識別并激發(fā)寄主抗病性,故和缺失導致病原菌的致病力增強。
通過對M228菌株T3SE單、多基因敲除和突變體致病力評價,系統(tǒng)對其中19個T3SE進行功能分析與鑒定,發(fā)現(xiàn)HopR1與HopM1/AvrE1為主要影響M228致病力的功能蛋白,致病功能不冗余,且獨立于其他效應子發(fā)揮關(guān)鍵致病作用;基因簇A、E和F對致病功能微效且存在功能冗余的效應蛋白;和缺失后可以增加對寄主的致病力。
[1] 秦虎強, 高小寧, 趙志博, 朱穗層, 李建民, 黃麗麗. 陜西獼猴桃細菌性潰瘍病田間發(fā)生動態(tài)和規(guī)律. 植物保護學報, 2013, 40(3): 225-230.
QIN H Q, GAO X N, ZHAO Z B, ZHU H C, LI J M, HUANG L L. The prevalence dynamics and rules of bacterial canker of kiwifruit in Shaanxi. Acta Phytophylacica Sinica, 2013, 40(3): 225-230. (in Chinese)
[2] 高小寧, 趙志博, 黃其玲, 秦虎強, 黃麗麗. 獼猴桃細菌性潰瘍病研究進展. 果樹學報, 2012, 29(2): 262-268.
GAO X N, ZHAO Z B, HUANG Q L, QIN H Q, HUANG L L. Advances in research on bacterial canker of kiwifruit. Journal of Fruit Science, 2012, 29(2): 262-268. (in Chinese)
[3] ZHAO Z, CHEN J, GAO X, ZHANG D, ZHANG J, WEN J, QIN H, GUO M, HUANG L. Comparative genomics reveal pathogenicity- related loci inpv.biovar 3. Molecular Plant Pathology,2019, 20(7): 923-942.
[4] 孫思, 牛建軍, 王岱. 細菌三型分泌系統(tǒng)效應蛋白轉(zhuǎn)運的研究進展. 微生物學報, 2017, 57(10): 1452-1460.
SUN S, NIU J J, WANG D. Advances in studies of translocation of effector by bacterial type 3 secretion system. Acta Microbiologica Sinica, 2017, 57(10): 1452-1460. (in Chinese)
[5] LINDEBERG M, CUNNAC S, COLLMER A.type III effector repertoires: last words in endless arguments. Trends in Microbiology,2012, 20(4): 199-208.
[6] DOS SANTOS A M P, FERRARI R G, CONTE-JUNIOR C A. Type three secretion system in: the key to infection. Genes and Genomics,2020, 42(5): 495-506.
[7] 朱秀秀, 高必達, 趙廷昌, 張月娟. 植物病原細菌Ⅲ型分泌系統(tǒng)及pv.的信號分子分泌研究進展. 湖南農(nóng)業(yè)科學, 2009(2): 19-22.
ZHU X X, GAO B D, ZHAO Y C, ZHANG Y J. Research progress of type III secretory system of plant pathogenic bacteria and signal molecule secretion ofpv.Hunan Agricultural Sciences, 2009(2): 19-22. (in Chinese)
[8] MARLOVITS T C, KUBORI T, LARA-TEJERO M, THOMAS D, UNGER V M, GALAN J E. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature,2006, 441(7093): 637-640.
[9] MACHO A P, ZIPFEL C. Plant PRRs and the activation of innate immune signaling. Molecular Cell,2014, 54(2): 263-272.
[10] 溫晶. 獼猴桃潰瘍病菌Ⅲ型效應蛋白的篩選及效應蛋白HopX3功能的初步研究[D]. 楊凌: 西北農(nóng)林科技大學, 2016.
WEN J. Identification oftype III effectors and preliminary analysis of effector HopX3 in pathogenicity[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[11] BALTRUS D A, NISHIMURA M T, ROMANCHUK A, CHANG J H,
MUKHTAR M S, CHERKIS K, ROACH J, GRANT S R, JONES C D, DANGL J L. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19isolates. PLoS Pathogens,2011, 7(7): e1002132.
[12] CUNNAC S, CHAKRAVARTHY S, KVITKO B H, RUSSELL A B, MARTIN G B, COLLMER A. Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in. Proceedings of the National Academy of Sciences of the United States of America,2011, 108(7): 2975-2980.
[13] KVITKO B H, PARK D H, VELASQUEZ A C, WEI C F, RUSSELL A B, MARTIN G B, SCHNEIDER D J, COLLMER A. Deletions in the repertoire ofpv.DC3000 type III secretion effector genes reveal functional overlap among effectors. Plos Pathogens,2009, 5(4): e1000388.
[14] TAMPAKAKI A P, SKANDILIS N, GAZI A D, BASTAKI M N, PANAGIOTIS F S, CHAROVA S N, KOKKINIDIS M, PANOPOULOS N J. Playing the “Harp”: Evolution of our understanding of hrp/hrc genes 1. Annual review of phytopathology, 2010, 48: 347-370.
[15] CHOI S, JAYARAMAN J, SEGONZAC C, PARK H J, PARK H, HAN S W, SOHN K H.pv.type III effectors localized at multiple cellular compartments activate or suppress innate immune responses in. Frontiers in Plant Science,2017, 8: 2157.
[16] JAYARAMAN J, CHOI S, PROKCHORCHIK M, CHOI D S, SPIANDORE A, RIKKERINK E H, TEMPLETON M D, SEGONZAC C, SOHN K H. A bacterial acetyltransferase triggers immunity inindependent of hypersensitive response. Scientific Reports,2017, 7(1): 3557.
[17] CHOI S, JAYARAMAN J, SOHN K H.SOBER1 (SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors. New Phytologist,2018, 219(1): 324-335.
[18] YOON M, RIKKERINK E H A.mediates an immune response toavrRpm1and confers resistance againstpv.. The Plant Journal,2020, 102(4): 688-702.
[19] JAYARAMAN J, YOON M, APPLEGATE E R, STROUD E A, TEMPLETON M D. AvrE1 and HopR1 frompv.are additively required for full virulence on kiwifruit. Molecular Plant Pathology,2020, 21(11): 1467-1480.
[20] 趙志博. 獼猴桃細菌性潰瘍病菌群體結(jié)構(gòu)與致病機制研究[D]. 楊凌: 西北農(nóng)林科技大學, 2016.
ZHAO Z B. Population composition and pathogenetic mechanism inpv.[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[21] WANG K, KANG L, ANAND A, LAZAROVITS G, MYSORE K S. Monitoringbacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. New Phytologist,2007, 174(1): 212-223.
[22] Kvitko B H, Collmer A. Construction ofpv.DC3000 mutant and polymutant strains//Plant Immunity. Methods and Protocols, 2011, 712: 109-128.
[23] SAWADA H, FUJIKAWA T. Genetic diversity ofpv., pathogen of kiwifruit bacterial canker. Plant Pathology,2019, 68(7): 1235-1248.
[24] XIN X F, NOMURA K, AUNG K, VELASQUEZ A C, YAO J, BOUTROT F, CHANG J H, ZIPFEL C, HE S Y. Bacteria establish an aqueous living space in plants crucial for virulence. Nature,2016, 539(7630): 524-529.
[25] JIN L, HAM J H, HAGE R, ZHAO W, SOTO-HERNANDEZ J, LEE S Y, PAEK S M, KIM M G, BOONE C, COPLIN D L, MACKEY D. Direct and indirect targeting of PP2A by conserved bacterial type-III effector proteins. PLoS Pathogens,2016, 12(5): e1005609.
[26] DEGRAVE A, SIAMER S, BOUREAU T, BARNY M A. The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity. Molecular Plant Pathology,2015, 16(8): 899-905.
[27] PALACE S G, PROULX M K, SZABADY R L, GOGUEN J D. Gain-of-function analysis reveals important virulence roles for thetype III secretion system effectors YopJ, YopT, and YpkA. Infection and Immunity,2018, 86(9): e00318-18.
[28] üSTüN S, K?NIG P, GUTTMAN D S, B?RNKE F. HopZ4 from, a member of the HopZ type III effector family from the YopJ superfamily, inhibits the proteasome in plants. Molecular Plant-Microbe Interactions,2014, 27(7): 611-623.
[29] LEWIS J D, LEE A H Y, HASSAN J A, WAN J, HURLEY B, JHINGREE J R, WANG P W, LO T, YOUN J Y, GUTTMAN D S, DESVEAUX D. TheZED1 pseudokinase is required for ZAR1-mediated immunity induced by thetype III effector HopZ1a. Proceedings of the national academy ofsciences of the United States of America,2013, 110(46): 18722-18727.
[30] LEWIS J D, LEE A, MA W B, ZHOU H B, GUTTMAN D S, DESVEAUX D. The YopJ superfamily in plant-associated bacteria. Molecular Plant Pathology,2011, 12(9): 928-937.
[31] ZHOU H B, LIN J A, JOHNSON A, MORGAN R L, ZHONG W W, MA W B.type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host and Microbe,2011, 9(3): 177-186.
[32] MACHO A P, GUIDOT A, BARBERIS P, BEUZON C R, GENIN S. A competitive index assay identifies severaltype III effector mutant strains with reduced fitness in host plants. Molecular Plant-Microbe Interactions,2010, 23(9): 1197-1205.
[33] BARTETZKO V, SONNEWALD S, VOGEL F, HARTNER K, STADLER R, HAMMES U Z, BORNKE F. Thepv.type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall-associated defense eesponses. Molecular Plant-Microbe Interactions,2009, 22(6): 655-664.
[34] CHEN H, HU Y, QIN K Y, YANG X Z, JIA Z J, LI Q, CHEN H B, YANG H. A serological approach for the identification of the effectorofpv.: a tool for the rapid immunodetection of kiwifruit bacterial canker. Journal of Plant Pathology,2018, 100(2): 171-177.
[35] KRAUS C M, MUNKVOLD K R, MARTIN G B. Natural variation in tomato reveals differences in the recognition of AvrPto and AvrPtoB effectors from. Molecular Plant,2016, 9(5): 639-649.
[36] KIM M G, GENG X, LEE S Y, MACKEY D. Thetype III effector AvrRpm1 induces significant defenses by activating thenucleotide-binding leucine-rich repeat protein RPS2. The Plant Journal,2009, 57(4): 645-653.
The function of key T3SS effectors inpv.
Zhang JinLong, Zhao ZhiBo, Liu Wei, Huang LiLi*
College of Plant Protection, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
【Objective】pv.(),the causal agent of bacterial canker of kiwifruit, is the most devastating pathogen in global kiwifruit production. The pathogenic bacteria secrete a series of effectors (T3SEs) into host cell to promote infection and pathogenesis by the type III secretion system (T3SS). The objective of this study is to analyze the T3SEs information ingenome and systematically evaluate the pathogenicity function of T3SS and T3SEs, and to provide the basis evidence for the research of the pathogenic mechanism and the establishment of the control strategies.【Method】By marker-free homologous recombination knockout technique, the M228 deficiency mutants of T3SS, Δand Δ, were obtained for inoculating on host to evaluate the pathogenicity and injecting onto observe the cell death response. Then, based on the T3SEs database downloaded from Pseudomonas-Plant interaction, the T3SEs library of strong pathogenicity M228 and weak pathogenicity M227 was separately constructed against the database by local BLAST multiple sequence alignment program, and then the T3SEs information between them was compared. Moreover, 20 T3SE single- and poly-genetic mutants from M228 and 2-genetic complementing mutants were constructed, involving 19 T3SEs, and then the mutants were wound-inoculated on kiwifruit canes for assessing and statistical analyzing the pathogenicity.【Result】T3SS was proved to be essential forpathogenicity on host and hypersensitive response (HR) on non-host by theandmutants, separately. Further the BLAST results against database showed there were almost 31 complete T3SE genes and their sequences were displayed 100% similarity between the strong pathogenicity strain and attenuated strain. Then, some T3SE genes were selected for deletion mutants. The results showed that/andgenes were essential forpathogenicity and had no function redundant with each other. In addition, the- and-deletion mutant could in turn increase thepathogenicity. Based on- and T3SE group (cluster A, E and F) deletion mutant, single- or poly-genetic mutantofand/could still separately lead to a significant decrease inpathogenicity. However,simultaneous deletion of/,,andA-F-Ecluster resulted in complete loss of pathogenicity.【Conclusion】HopR1 and its homologous family HopM1/AvrE1, which don’t have a redundant function independent with others, are the unique key pathogenicity factors in, butand-deletion can enhancepathogenicity.
bacterial canker of kiwifruit;pv.(); effector; T3SS; pathogenicity
2021-07-14;
2021-08-26
陜西省特支計劃杰出人才項目、國家自然科學基金(32102174)
張晉龍,E-mail:535268139@qq.com。通信作者黃麗麗,E-mail:huanglili@nwsuaf.edu.cn
(責任編輯 岳梅)