• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      初中數(shù)學教學中數(shù)形結(jié)合思想的應用探究

      2022-03-03 18:11:39陳其濤
      成功密碼 2022年6期
      關(guān)鍵詞:數(shù)軸一元二次方程數(shù)形

      陳其濤

      數(shù)學這門學科具有極強的抽象性、邏輯性,特別是初中階段的數(shù)學,難度較大,學生在學習過程中會遇到很多的困難和阻礙。隨著素質(zhì)教育理念的不斷深入,初中數(shù)學作為基礎教育中重要環(huán)節(jié)之一,教師也應該對傳統(tǒng)的教學模式進行改革。數(shù)形結(jié)合能夠?qū)?shù)字和圖形進行有機轉(zhuǎn)換,在課堂中運用數(shù)形結(jié)合的思想,學生能夠加強對數(shù)學知識的整合、融匯,靈活地構(gòu)建系統(tǒng)性的知識結(jié)構(gòu),在潛移默化的過程中,學生學科素養(yǎng)得到發(fā)展,高效初中數(shù)學課堂構(gòu)建目標得以落地。

      (一)數(shù)形結(jié)合的內(nèi)涵

      數(shù)形結(jié)合是一種以數(shù)字和圖形為基礎的直觀性教學方法,主要通過以形化數(shù)、以數(shù)化形、數(shù)形互變等方式,讓學生能夠更深刻理解、學習數(shù)學知識,掌握學習技巧、技能。

      首先,根據(jù)數(shù)的精確性特點與數(shù)量型的特征,數(shù)將輔助形并突出形所含有的數(shù)學屬性;根據(jù)形的直觀性特點與幾何型特征,形在數(shù)的問題中的應用,將幫助解題者有機簡化實際數(shù)學問題的文本,將抽象數(shù)學語言轉(zhuǎn)化為直觀圖形、位置關(guān)系,最終實現(xiàn)復雜問題簡單化、抽象問題具象化的應用目標。

      (二)數(shù)形結(jié)合的方式

      就數(shù)形結(jié)合的方式而言,具體可以分為三個方面。其一,以數(shù)化形。在數(shù)學學習中,數(shù)和形是兩種最基本的形態(tài),且彼此之間存在著密切的關(guān)聯(lián),不可分割、相輔相成。形具有極強的直觀性、圖像化特征,能夠引領(lǐng)學生進入具體的情境中。以數(shù)化形的關(guān)鍵則是將數(shù)學問題轉(zhuǎn)化為圖形問題,使學生獲得直觀的感官體驗與啟迪,快速解決數(shù)學問題,實現(xiàn)深度學習。其二,以形變數(shù)。雖然形具有直觀性的特點,但是對于定量、精確的數(shù)學表達式而言,則需要借助數(shù)才能夠?qū)崿F(xiàn)由形向數(shù)的轉(zhuǎn)化。通常情況下,在運用“以形變數(shù)”這一方法時,強調(diào)學生應該加強對問題的深入分析,結(jié)合問題所展示的圖表,獲取關(guān)鍵信息,找到相應的數(shù)字關(guān)系,用簡潔明了的數(shù)量關(guān)系解決實際問題。其三,數(shù)與形互變。在數(shù)學學習中,學生要靈活實現(xiàn)數(shù)與形之間的有機轉(zhuǎn)化,動態(tài)轉(zhuǎn)變,將形的直觀性特征與數(shù)的嚴謹性特征緊密結(jié)合,使學生思維更加靈活。

      (一)有助于引領(lǐng)學生的學習興趣

      就初中階段的數(shù)學知識而言,所囊括的知識范圍比較廣,有大量抽象性、概念性的知識點,晦澀難懂,這無疑給學生的數(shù)學學習造成了極大的阻礙,逐漸消磨了學生的學習興趣,甚至有很多學生對數(shù)學學習產(chǎn)生了排斥抗拒的情緒。為了有效改善當前的現(xiàn)狀,讓學生重新迸發(fā)出數(shù)學學習的熱情、動力、激情,教師在教學過程中應該主動融合滲透數(shù)形結(jié)合思想。比如,可以借助圖片、視頻等方式將抽象的知識具象化呈現(xiàn),讓學生獲得直觀的體驗、感知,帶給學生更多的思想碰撞、思維啟迪。同時,數(shù)形結(jié)合思想在初中數(shù)學課堂中的運用,能夠真正意義上做到化繁為簡,讓學生不斷攻克數(shù)學學習的難關(guān),重新拾起數(shù)學學習的自信,提升參與數(shù)學學習的主動性、積極性。

      (二)有助于培養(yǎng)學生的數(shù)學思維能力

      在素質(zhì)教育背景之下,初中數(shù)學教學的主要落腳點之一在于提升學生的數(shù)學思維層次、強化學生的認知能力?;诖?,教師在初中數(shù)學教學的推進過程中,應該將數(shù)形結(jié)合的思想貫穿于各個教學環(huán)節(jié),在潛移默化的過程中促進學生思維的有效發(fā)展,助力學生形成發(fā)散思維、邏輯思維、抽象思維等,能夠?qū)?shù)與形進行靈活、動態(tài)化、有機的切換,根據(jù)數(shù)學知識,了解數(shù)學現(xiàn)象,進一步挖掘數(shù)學規(guī)律,走進數(shù)學世界,在知識的海洋中遨游,讓學生的數(shù)學思維能力、綜合能力獲得真正意義上的強化,切實落實素質(zhì)教育的根本任務。

      (三)有助于構(gòu)建高校的初中數(shù)學課堂

      初中數(shù)學是基礎教育中非常重要的一門學科,學好數(shù)學對學生的未來發(fā)展而言具有深遠意義和重要影響。數(shù)和形是學生在數(shù)學學習中不可避免的兩大要素,教師在實際的教學環(huán)節(jié),要科學地滲透數(shù)形結(jié)合的思想,將龐大的“形”和虛擬世界的“數(shù)”進行連接,這是構(gòu)建高效數(shù)學課堂的關(guān)鍵。教師熟練運用數(shù)形結(jié)合思想落實教學,同時引導學生利用數(shù)形結(jié)合的思想解決具體的數(shù)學問題,讓學生在不斷學習的過程中建立起良好的數(shù)學思維,在課堂中和同學、教師達成有機的互動,形成多元互動關(guān)系網(wǎng),循序漸進地攻破數(shù)學學習中的重點和難點,真正意義上提升課堂教學效率,優(yōu)化課堂教學效果,凸顯數(shù)形結(jié)合思想運用的價值和意義。

      (一)在概念教學中運用數(shù)形結(jié)合思想

      在初中數(shù)學教材中,涉及很多的概念性內(nèi)容,數(shù)學概念是對數(shù)學重點知識的提煉、濃縮。但不可忽視的是,數(shù)學概念本身也具有極強的抽象性,很多學生只是處于感性的認知層面,難以上升到理性的認知高度,這使得學生在后續(xù)學習中受到阻礙和限制。在教學改革的背景之下,著重強調(diào)教師要加強對初中數(shù)學教學模式的創(chuàng)新性探究,特別是針對概念性的內(nèi)容,不能夠一味地以灌輸為主,讓學生死記硬背,而是應該注重數(shù)形結(jié)合思想的滲透,使學生對數(shù)學概念形成具象化的認知,切實掌握數(shù)學概念的內(nèi)涵。

      例如,以北師大版九年級下冊“直線與圓的位置關(guān)系”這一模塊知識為例,教師在指導學生學習直線與圓的三種位置關(guān)系的概念時,可以借助多媒體技術(shù),將抽象的知識具象化、生動化呈現(xiàn),借助圖片展示日出,然后讓學生仔細觀察太陽升起的整個過程,牢牢地把握住在這一環(huán)節(jié)中所存在的特殊位置關(guān)系,其中主要涉及三個關(guān)鍵點,老師則可以根據(jù)三個關(guān)鍵點切入直線與圓位置關(guān)系的教學,自然而然地滲透數(shù)形結(jié)合思想,讓學生能夠更加直觀感知直線和圓之間的位置關(guān)系。學生可以將圓看作太陽,將線看作地平線,然后根據(jù)太陽和地平線有2個、1個、0個公共點的三種情況,展開具體的探究,讓學生深刻把握直線與圓的三種位置關(guān)系的定義。就第一種情況而言,太陽和地平線相交,那么學生則可以利用數(shù)形結(jié)合思想將抽象的事物具象化,這個時候直線叫作圓的切線。就第二種情況而言,太陽和地平線有一個交點,學生則可以抽象出圓和直線相切,將交點叫作切點。就第三種情況而言,太陽和地平線沒有交點,學生則抽象出圓和直線相離?;趫D片的直觀化展示,教師可以組織學生就直線與圓的不同位置進行總結(jié)和判定,對相交、相切、相離三種情況進行判定。在圓與直線位置關(guān)系的教學中,教師主要是讓學生從形的認知上著手,然后逐漸過渡到數(shù)的認知上,由此讓學生把握相關(guān)的數(shù)學概念,強化內(nèi)化遷移能力和應用能力,為學生后續(xù)解決圓與直線位置關(guān)系的實際問題打牢基礎。

      (二)在數(shù)軸教學中滲透數(shù)形結(jié)合思想

      在初中教育階段,數(shù)軸作為教材中的重要內(nèi)容,具有基礎性作用,學好這一知識內(nèi)容對學生的后續(xù)學習會產(chǎn)生直接影響,同時也是學生數(shù)學學習和研究的重要工具。在具體的學習探究中,數(shù)軸在學生學習絕對值概念、有理數(shù)運算法則的推導以及不等式的求解等領(lǐng)域都發(fā)揮著不可忽視的作用。老師在具體的教學環(huán)節(jié),則可以以數(shù)軸教學作為數(shù)形結(jié)合思想滲透的起點,以數(shù)軸教學為切入點,將數(shù)與形進行有機轉(zhuǎn)化,讓學生能夠深刻認識到數(shù)軸在數(shù)學問題以及生活實際中的具體運用。

      以北師大版七年級上冊“數(shù)軸”這一模塊知識為例,首先在課前導入環(huán)節(jié),教師可以從三個層次出發(fā)實現(xiàn)情境引入,揭示課程主題。在第1層次中,教師可以讓學生根據(jù)家鄉(xiāng)地圖,標出自己家位于學校的什么方位。就第2個層次而言,教師則可以讓學生在一條直線上畫出各個物體的相對位置。而就第3個層次而言,教師則可以讓學生仔細觀察溫度計,認識到溫度計主要是以0刻度為分水嶺,具體劃分為正數(shù)以及負數(shù)。在這一環(huán)節(jié)中,教師將動手、動口、動腦相結(jié)合,激活學生的求知欲望,為接下來數(shù)形結(jié)合思想的滲透奠定良好的基礎。而后教師可以引導學生探究有理數(shù)與數(shù)軸上點的關(guān)系。教師展示溫度計圖片,提出問題:我們通過觀察可以看到當前溫度計上所顯示的度數(shù)值是多少?溫度計和數(shù)軸具有哪些相似點?可以將溫度計看作是一條數(shù)軸嗎?在這一環(huán)節(jié)中,教師提出啟發(fā)性問題,引導學生將溫度計看成一條數(shù)軸,在溫度計上初步建立“由點表示數(shù),由數(shù)找到點”的數(shù)形結(jié)合思想,幫助學生進一步了解數(shù)軸,強化學生的圖形識別能力,凸顯數(shù)形結(jié)合的重要應用價值。

      (三)在一元二次方程教學中運用數(shù)形結(jié)合思想

      一元二次方程是初中數(shù)學階段非常重要的學習內(nèi)容,它是一元一次方程、方程組和不等式等相關(guān)知識的拓展、延伸、深化。以北師大版九年級上冊“一元二次方程”這一模塊知識為例,這一模塊知識的重難點內(nèi)容包括一元二次方程的基本概念、解法以及在實際問題中的具體運用。教師在具體教學過程中,要善用、巧用、會用數(shù)形結(jié)合的思想,推進教學活動的有序、有效開展,引導學生全身心地投入一元二次方程的學習中,利用已有的知識進一步探究一元二次方程的幾種解法。教師在完成教學任務之后可以展示具體的例題,讓學生求解。如:求方程 x2-x-1 = 0 的解。在任務的導向之下,教師可以將班級學生劃分為多個小組,組織小組成員展開深度的探討、研究,在交流、碰撞過程中摩擦出更多的思維火花,尋找不同的解題方法,獲得更多的解題靈感,從不同的視角切入,積極探求解題的路徑。方法一: 利用一元二次方程的求根公式進行解答。 學生可以直接套用公式,這是最方便、最快捷,但也是最死板的解法。方法二:學生可以運用數(shù)形結(jié)合的思想,運用數(shù)與形之間有機的轉(zhuǎn)換,完成解題任務。學生可以將題目中的方程式變形成為x2 = x+1,然后繪制出函數(shù)圖像: y = x+1 與 y = x2,學生將兩個函數(shù)圖像的解繪制出來,得出兩個函數(shù)圖像相交,而相交的點則是需要求出的方程的解。在這一教學過程中,教師通過數(shù)形結(jié)合方法的有效運用,打開學生的解題思路,提高學生思維的靈活性,同時帶給學生更直觀、豐富的學習體驗,這樣可以取得事半功倍的教學效果。

      (四)在概率教學中運用數(shù)形結(jié)合的思想

      概率問題是很多學生學習的難點,但同時也是初中數(shù)學教學的重點。在傳統(tǒng)的課堂教學中,教師往往注重理論知識的講解,忽視了和學生之間的有效互動,也沒有將數(shù)形結(jié)合思想融入其中。隨著教學改革的推進,有效地運用數(shù)形結(jié)合思想能夠為“概率課堂”注入更多新鮮的血液。例如,以北師大版教材九年級上冊“概率的進一步認識”這一模塊知識為例,首先在課前導入環(huán)節(jié),教師可以借助多媒體輔助教學,通過播放課件的方式創(chuàng)設教學情境:小平、小方、小米三個人是非常好的朋友,在參加一次比賽中獲得了一張電影票,所以三個人決定一起通過做游戲的方式選出誰能獲得這張電影票。小平、小方、小米設置游戲規(guī)則:連續(xù)投擲兩枚相同的硬幣,查看投擲的結(jié)果,如果兩枚硬幣都是正面朝上,那么就由小方去看電影,如果都是反面朝上,那么則由小平去看電影,而如果是一正一反,則由小米去看電影,你覺得這個游戲公平嗎?在問題的啟發(fā)之下,學生可以以小組為單位,對于其中涉及的概率問題展開深刻的探究,在批判、質(zhì)疑的過程中解決一系列問題。而為了使得學生的討論過程可視化,可以借助樹狀圖或者列表法列舉投擲兩枚硬幣可能會出現(xiàn)的結(jié)果。由此使得數(shù)形之間能夠?qū)崿F(xiàn)動態(tài)轉(zhuǎn)變,使得小平、小方、小米獲勝的概率更加直觀、形象,最終得出具體的結(jié)果:小平獲勝的概率是四分之一、小方獲勝的概率也是四分之一,而小米獲勝的概率是二分之一。由此可見小米的獲勝概率是最大的,這個游戲并不公平。

      (五)在三角函數(shù)的應用教學中運用數(shù)形結(jié)合的思想

      三角函數(shù)的應用作為初中數(shù)學教學的重點,同樣是學生數(shù)學學習的難點,其中涵蓋了以數(shù)化形、以形變數(shù)、數(shù)與形互變的三種數(shù)形結(jié)合思想的應用。在傳統(tǒng)的數(shù)學課堂教學中,教師往往采取平鋪直敘的教學方式為學生講解題目,卻忽視了數(shù)形結(jié)合思想,導致部分學生在獨立解題時不知所措,從而難以獲得理想的教學效果。以北師大版教材九年級下冊“三角函數(shù)的應用”這一模塊知識為例,首先在引領(lǐng)讀題環(huán)節(jié),教師可以針對題目文本,引導學生運用以數(shù)化形的方式將抽象問題具象化,即將題目文本轉(zhuǎn)化為清晰可視化的圖形;而后在圖形辨析環(huán)節(jié),教師可以針對缺乏數(shù)量關(guān)系的圖形,引導學生根據(jù)題意運用以形變數(shù)的方式明確圖形中的數(shù)量關(guān)系,從而達成形數(shù)互變、學以致用的教學目標,給學生指明解題方向,提升學生的數(shù)學應用能力。

      總而言之,教師作為整個教學活動的組織者、引導者,要積極運用數(shù)形結(jié)合思想,圍繞著學生的實際情況,展開多樣化的教學活動,讓學生能夠結(jié)合不同的知識點,實現(xiàn)數(shù)與形的有機轉(zhuǎn)化,強化自身的邏輯思維能力、解題能力、創(chuàng)新意識,讓整個課堂呈現(xiàn)出別樣的生氣和活力。

      猜你喜歡
      數(shù)軸一元二次方程數(shù)形
      攻克“一元二次方程”易錯點
      數(shù)形結(jié)合 理解坐標
      數(shù)形結(jié)合 相得益彰
      “一元二次方程”易錯題
      數(shù)形結(jié)合百般好
      數(shù)形結(jié)合 直觀明了
      數(shù)軸的作用
      巧用數(shù)軸定解集
      “咬住”解集,“握緊”數(shù)軸,“破解”參數(shù)
      2.2 一元二次方程
      福清市| 仁布县| 沈阳市| 丹阳市| 南雄市| 巴南区| 碌曲县| 玛沁县| 孙吴县| 五峰| 房产| 定边县| 宜兰县| 吴旗县| 沙田区| 南投市| 玛曲县| 大悟县| 平顶山市| 从化市| 郴州市| 清丰县| 松溪县| 铁岭市| 印江| 泸水县| 常德市| 泰兴市| 荔浦县| 莲花县| 介休市| 赤水市| 长兴县| 乌什县| 吴川市| 和林格尔县| 彰化县| 乡宁县| 益阳市| 古蔺县| 永年县|