• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A study of emissions and marker gases from smouldering combustion in Larix gmelinii plantations of the Daxing’an Mountains

    2022-02-26 10:15:10ShuyuanTangSainanYinYanlongShanBoGaoLongSunXiyueHanMingxiaWangMingyuWangZongshiChen
    Journal of Forestry Research 2022年1期

    Shuyuan Tang · Sainan Yin · Yanlong Shan · Bo Gao · Long Sun · Xiyue Han · Mingxia Wang · Mingyu Wang · Zongshi Chen

    Abstract Underground fires are characterized by smouldering combustion with a slow rate of spread rate and without flames.Although smouldering combustion releases large amounts of gaseous pollutants, it is difficult to discover by today’s forest fire monitoring technologies.Carbon monoxide (CO), nitrogen oxides (NOx) and sulfur dioxide (SO2) were identified as high concentration marker gases of smouldering combustion-easily-be monitored.According to a two-way ANOVA, combustion time had a significant impact on CO and NOx emissions; smoldering-depth also had a significant impact on NOx emissions but not on CO emissions.Gas emission equations were established by multiple linear regression, Cco=156.989-16.626 t and CNOx=3.637-0.252 t-0.039 h.

    Keywords Gas emissions · Marker gases · Influence factors · Smouldering combustion

    Introduction

    Underground fires in forests are smouldering combustion in humus and peat layers, with frequency of occurrence lower than above-ground forest fires, the damage of which is considerable (Huang and Rein 2017).Researchers have found that particulate emissions from smouldering combustion are much higher than from other forest combustions (Akagi et al.2011).Suspended in the air for a long time in small sizes, particulate emissions accumulate and lead to largescale haze (Rein 2013; Black et al.2016).

    During 1997-1998, combustion from smouldering fires in Indonesia led to large-scale hazy conditions in Southeast Asia, with millions of people affected with respiratory diseases, millions of hectares of forests destroyed and billions of dollars lost (Tacconi 2003).In 2010, forest fires in Russia resulted in approximately 50 smouldering combustions, and weeks-long air pollution (Cancellieri et al.2012).In 2015, smouldering combustion caused economic losses of $ 16 billion in South Sumatra, Indonesia, 1.9% of GDP.Air pollution in Indonesia and surrounding countries was critical, with PM2.5, fine inhalable particles, up more than 1500, causing serious damage to biodiversity and ecosystems (Atwood et al.2016).

    In addition to particulate emissions, smouldering combustion also leads to emission of various gases, with upwards of more than 100 types of gases and aerosols being released during the combustion process, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), ammonia (NH3) and alkanes (Stockwell et al.2014; Hatch et al.2015), with CO2and CO being the highest emissions (Hu et al.2018a).In addition, because the smouldering combustion is an incomplete process with an oxygen deficit, CO emissions are much higher than from ordinary forest combustion (Rein 2015).

    Smouldering combustion spreads slowly without flames, making difficult to discover by standard forest fire monitoring technologies (Huang and Rein 2017).However, the high concentrations of gas emissions might be used as fire monitoring indexes (Hu et al.2018b) to monitor the occurrence and spread of smouldering combustion.

    However, research on gas emissions from smouldering combustion is still in preliminary stages, and there are only a few studies on gas varieties and their concentration that can be used for smouldering combustion monitoring (Hatch et al.2015; Wilson et al.2015).The purpose of this study is to explore the marker gases in the smouldering combustion process and to analyze the influence of concentrations.

    Materials and method

    Study area

    The study area is the eastern slope of the Daxing’an Mountains, 15 km south of the Jiagedaqi region in the forest management technology extension station of Jiagedaqi (50°20′-50°23′ E, 123°57′-124°0′ N).Annual average temperatures range from-1 to 2 °C, with the annual effective accumulative temperature 1800-2000 °C, a frost-free period of 90-120 days, and annual rainfall 450-500 mm.The main tree species areQuercus mongolica(Fisch.) Turcz.,Larix gmelinii(Rupr.) Rupr.,Betula platyphyllaSuks.,B.davuricaPall.andPopulus davidianaDode.

    Sample collection

    Larix gmeliniiplantations were the sample fields selected (Table 1), and 15 soil samples of 50 cm × 50 cm were collected.According to the classification of smoldering (Usup et al.2004), we divided the sample depth into two groups.The depth in the shallow smoldering furnace was less than 20 cm, and the depth in the deep smoldering furnace was between 20 and 50 cm.

    Table 1 Sample plot information

    Sample processing

    The soil samples were placed into a smoldering furnace 1.5 m long × 0.5 m wide × 0.5 m deep (Fig.1).A far-infrared heating plate (700 °C) was used as the ignition device; a k-type thermocouple and data acquisition module were used to record the surface soil temperatures during the smouldering combustion process.The concentration of gas emissions was detected by an emission analytical instrument (ecom-J2KN) every two hours.

    Fig.1 Schematic diagram of the smouldering combustion experiment

    Statistical analysis

    Statistical analysis was performed by SPSS 19.0, and twoway ANOVA used to assess the influence factors of gas emissions.Least significant difference (LSD) was used in the multiple comparisons and correlation analysis and multiple linear regression used to establish the regression equations.Statistical significance was accepted at *=P< 0.05, **=P< 0.01.Figures were furnished by OriginPro 9.1.

    Results

    Smouldering combustion process

    The process was carried out in the combustion furnace and the soil surface temperature measured every two hours.The results showed that the variations in temperature and combustion kinetics at different times were inconsistent (Fig.2) (Hu et al.2018a) and the process was divided into four stages: (1) Ignition Stage (0-2 h): soil temperature rose rapidly to more than 100 °C; (2) Combustion Stage (2-6 h): soil temperature rose gradually to about 400 °C; (3) Steady Stage (6-12 h): soil temperatures stayed around 400 °C to 500 °C; (4) Extinguishing Stage (after 12 h): soil temperatures decreased slowly by degrees, and no CO, NOxand SO2could be detected after 12 h.

    Fig.2 Surface temperature of the soil in the smouldering combustion process

    Gas emissions detection

    According to the depth of the combustion, smouldering combustion could be classified as shallow (< 20 cm) and deep (> 20 cm) (Usup et al.2004).In this study, the soil surface temperature ranged from 81.0 °C to 486.0 °C, and the average combustion temperature was 312.2 ± 19.6 °C.Carbon monoxide, NOxand SO2were detected during the smouldering but surface temperatures had no significant influence on emissions (P> 0.05).

    High concentrations of CO were detected and declined gradually as the combustion time increased; the rate of decline in the steady stage was higher than that in the combustion stage.The release of NOxwas mainly concentrated in the ignition and combustion stages but could also be detected in the steady stage.Small quantities of SO2could be detected in the combustion and steady stages (Fig.3).

    Fig.3 Gas emissions of the smouldering combustion process: a CO emissions; b SO2 emission; c NOx emission of the shallow smoldering furnace; d NOx emission of the deep smoldering furnace

    The highest emission of CO was 187.5 mg/m3after 2 h, gradually dropping and by 16 h could not be detected in some experiments.The average CO concentration was 66.2 ± 8.8 mg/m3.

    The emission characteristics of NOxin various smoldering furnaces were different.Concentrations in the deep smoldering furnace ranged from zero to 3.4 mg/m3, with an average concentration of 0.9 ± 1.1 mg/m3.Levels consistently decreased and could not be detected after 6 h.

    NOxconcentrations in the shallow smoldering furnace ranged from zero to 4.7 mg/m3, with an average of 2.0 ± 1.1 mg/m3.Unlike the deep smoldering furnace, the concentration continued upward after 6 h until 12 h.

    SO2concentrations ranged from zero to 8.6 mg/m3, with the average being 0.8 ± 1.8 mg/m3.A peak was detected at 6 h and then rapidly decreased.However, the data samples of SO2were not abundant in this study and further research is required.

    Effect of combustion time and smoldering furnace depth on gas emissions

    This study analyzed the effect of combustion time and smoldering furnace depth on CO and NOx, with SO2not further studied for a lack of data.

    The results of the analysis by two-way ANOVA showed that combustion time had a significant impact on the concentration of CO (P< 0.01), while the smoldering furnace depth had no significant impact (P> 0.05) (Table 2).As theresult of difference analysis, the concentration of CO had no significant difference between ignition stage (0-2 h), combustion stage (2-6 h), and the early time of the steady stage (6-8 h) (Fig.4).

    Fig.4 Effect of combustion time on CO emissions by multiple comparison (no significant difference between values that have at least one identical letter; there is a significant difference between values that have no identical letter)

    Table 2 The effect of combustion time and smoldering furnace depth on CO emissions by two-way ANOVA

    The combustion time and depth of the smoldering furnace had a significant impact on the concentration of NOx(P< 0.01) based on the results of two-way ANOVA which was different from CO factors (Table 3).This was consistent with the smoldering experiments, i.e., the NOxemissions in the deep smoldering furnace and shallow smoldering furnace was not the same (Fig.3).

    Table 3 Effect of combustion time and smoldering furnace depth on NOx emissions by two-way ANOVA

    Through further analysis, this study examined the effect of combustion time on NOxemissions when the smoldering furnace depth was the same.Combustion time had no effect on NOxemissions in the shallow smoldering furnace (P> 0.05), but did affect emissions in the deep smoldering furnace (P< 0.05); high concentrations of NOxoccurred at 2 h, 4 h and 6 h, with a significant difference between 2 and 6 h and the other combustion times (P< 0.05, Fig.5).The main reason for the significant difference was the sharply decreased concentration of NOxafter 6 h which could not be detected after 8 h.

    Fig.5 Effect of combustion time on NOx emissions in the deep smoldering furnace by multiple comparison; (no significant difference between values that have at least one identical letter; there is a significant difference between values that have no identical letter)

    This study evaluated the effect of smoldering furnace depth on NOxemissions when combustion times were the same.As the results show (Table 4), depth had no significant effect on the NOxemissions at 2 h, 4 h, 6 h, 8 h and 18 h (P> 0.05); depth had a significant effect on NOxemissions at 10 h, 12 h, 14 h, 16 h (P< 0.05).This was because NOxcould still be detected after 10 h of the shallow smoldering furnace but the concentration tended to zero and could not be detected after 10 h of the deep smoldering furnace.

    Regression analysis of the CO and NOx emissions

    Concentrations of CO had high negative correlation with combustion time as shown by multivariate linear regression, and with the increase of combustion time, concentration of CO gradually decreased.However, there was no correlation between the concentration of CO and the smoldering furnace depth (Table 5).The regression equation for the concentration of CO wasCco=156.989-16.626t(R2=0.606), wheretis the combustion time.

    The concentration of NOxwas highly negatively correlated with both combustion time and smoldering furnace depth (Table 5) and the regression equation for the concentration of NOxwasCNOx=3.637-0.252t-0.039 h (R2=0.458), wheretis the combustion time;his the smoldering furnace depth.

    Table 4 ANOVA for the effect of smoldering furnace depth on NOx emissions

    Table 5 Significance test of regression equations (P value)

    Discussion

    Combustion times and smoldering temperatures

    This study divided the smouldering combustion process into the ignition stage, combustion stage, steady stage, and extinguishing stage, according to temperature variations.This is consistent with the conclusion of Hu et al.(2018a).In the ignition stage, oxygen in the soil taking part in the reaction was an important factor for accelerated combustion(Ohlemiller 1985) so temperatures rose rapidly in a short time.In the combustion stage, heat energy diffused into the surrounding areas and sustained the combustion without the ignition source (Hu et al.2018a).In the steady stage, the burning areas extended to the maximum, combustion heat accumulated continually, and the smouldering combustion process reached the peak temperature (Rein et al.2009).In the extinguishing stage, the smouldering combustion did not continue because of loss of heat energy, reduced combustibles, and shortage of oxygen, and the combustion temperatures fell until the smouldering was extinguished.

    Marker gases of the smoldering combustion

    There are considerable CO2and CO gases in the combustion for the oxidation of carbon particles and shortage of oxygen (Rein et al.2009).High concentrations of CO were continuously detected during the process, above the ambient air quality standards of China and the background value of CO in the general forest environment (Table 6) (Su et al.2013).CO emissions were also the predominant emissions in this study, consistent with the results of Hu et al.(2018a).Nitrogen and sulfur in the semi-decomposed and humus layers were also released as NOxand SO2and the concentrations were much higher than the ambient air quality standards of China and the background value of NOxand SO2in the general forest environment (Su et al.2013).

    Table 6 Concentration of marker gases in different combustion stages (mg/m3)

    CO, NOxand SO2can be detected by a handheld device or online monitoring instrument, and therefore easier monitored in the field.Compared to other gas emissions during the smouldering combustion such as methane (CH4),particulate matter (PM), and other organic gases (VOCs), the detection of CO, NOxand SO2is relatively simple.These gases can therefore be used as marker gases to detect the occurrence of smouldering combustion.As noted earlier, smouldering combustion is difficult to monitor because it is flameless (Huang and Rein 2017), and thus marker gases could help to solve the difficulty in locating and monitoring smouldering combustion.

    Carbon monoxide may be regarded as the key marker gas for large emissions, NOxas the periodical marker gas for different emission trends in different smoldering depths.Although there was only a little SO2released during the smouldering combustion process, SO2emissions were much higher than general forest emissions.Therefore, SO2could be regarded as a secondary marker gas.

    Influence factors of gas emissions

    Heat energy spreads continuously into the deeper soil layer as the combustion time increases, so this layer also burns (Svensen et al.2003).Soil carbon is continuously converted into CO gas and released due to a lack of oxygen.Nitrogen in the semi-decomposed and humus layers is also be transformed into NOxand released.

    The concentration of CO in the ignition stage was the highest in this study.Because smouldering combustion mainly focused on the soil surface layer which is rich in humus and is soft and high in organic carbon, the rate of combustion increases rapidly (Hu et al.2018a).Although combustion spreads downward with the increase in temperature, the concentration of CO in the combustion and steady stages was lower than in the ignition stage because of the reduced carbon and oxygen contents.

    As noted previously, both combustion time and smoldering furnace depth had a significant effect on NOxemissions.NOxcould only be continuously detected in the shallow smoldering furnace and was undetected after 6 h in the deep smoldering furnace.The main reason for this is that, as the smouldering combustion spreads downward, humus and total nitrogen (TN) contents decline (Knops and Bradley 2009; Yao et al.2020), so the concentration of NOxis extremely low after 6 h in the deep smoldering furnace.In addition, as the smouldering combustion proceeds, a large mass of combustion particles are released and leads to plugging of soil pores (Hu et al.2018b).Gas emissions of the deep smoldering furnace are unable to spread to the surface smoothly, and NOxwas not detected after 10 h.

    Conclusions

    Gas emissions from smouldering combustion were investigated in a smoldering furnace.The main conclusions are as follows:

    High concentrations of CO were continuously released during the smouldering combustion process.Combustion time had a significant impact on CO emissions with a peak detected in the early stage of the process.In order to improve the efficiency of monitoring smouldering combustion, CO may be considered as a key marker gas as it was highly concentrated and easily monitored.

    Both combustion time and furnace depth had a significant impact on NOxemissions.NOxwere continuously detected during the entire combustion process in the shallow smoldering furnace, and only detected during the ignition and combustion stages in the deep smoldering furnace.

    The concentration of SO2was higher than the ambient air quality standards of China and the background value of SO2in forest.But SO2emissions were difficult to analyse in depth in this study because the sample was inadequate.Further research will be carried out in the future.

    99香蕉大伊视频| 国产单亲对白刺激| 久久天躁狠狠躁夜夜2o2o| 少妇裸体淫交视频免费看高清 | 国产精品免费视频内射| 韩国av一区二区三区四区| 怎么达到女性高潮| 看免费av毛片| 免费在线观看日本一区| 亚洲欧美日韩高清在线视频| 中文字幕av电影在线播放| 国产片内射在线| 法律面前人人平等表现在哪些方面| 亚洲精品国产一区二区精华液| 欧美丝袜亚洲另类 | 成人永久免费在线观看视频| 一本综合久久免费| 美国免费a级毛片| 国产精品乱码一区二三区的特点 | 香蕉久久夜色| 在线十欧美十亚洲十日本专区| 国产成+人综合+亚洲专区| 日韩国内少妇激情av| 中文字幕精品免费在线观看视频| 岛国在线观看网站| 亚洲一区中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 咕卡用的链子| 韩国av一区二区三区四区| 一本大道久久a久久精品| 搡老熟女国产l中国老女人| 欧美 亚洲 国产 日韩一| 亚洲一区中文字幕在线| av免费在线观看网站| 久久国产精品影院| 精品少妇一区二区三区视频日本电影| a级毛片黄视频| 亚洲人成网站在线播放欧美日韩| 午夜精品国产一区二区电影| 伊人久久大香线蕉亚洲五| 亚洲成人免费av在线播放| 一a级毛片在线观看| 老汉色av国产亚洲站长工具| 19禁男女啪啪无遮挡网站| 午夜福利在线免费观看网站| 精品免费久久久久久久清纯| 丝袜人妻中文字幕| 亚洲色图 男人天堂 中文字幕| 久久久精品国产亚洲av高清涩受| 十分钟在线观看高清视频www| √禁漫天堂资源中文www| 国产激情欧美一区二区| 又黄又粗又硬又大视频| 亚洲人成网站在线播放欧美日韩| 日本免费一区二区三区高清不卡 | 亚洲人成网站在线播放欧美日韩| 国产亚洲av高清不卡| 脱女人内裤的视频| 国产精品电影一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区av网在线观看| 色播在线永久视频| 久久精品亚洲精品国产色婷小说| 亚洲色图av天堂| 久久精品91蜜桃| 亚洲av成人不卡在线观看播放网| 日本欧美视频一区| 精品人妻在线不人妻| 国产黄a三级三级三级人| 亚洲av电影在线进入| 最近最新中文字幕大全免费视频| 黄片大片在线免费观看| 欧美日韩视频精品一区| 日本vs欧美在线观看视频| 欧美中文综合在线视频| 黄片播放在线免费| 人妻丰满熟妇av一区二区三区| 亚洲av片天天在线观看| 色老头精品视频在线观看| 黄网站色视频无遮挡免费观看| 一进一出抽搐gif免费好疼 | 无人区码免费观看不卡| 国产91精品成人一区二区三区| 精品久久久久久久毛片微露脸| 交换朋友夫妻互换小说| 亚洲人成电影观看| 无人区码免费观看不卡| 99久久综合精品五月天人人| 黄色a级毛片大全视频| 韩国av一区二区三区四区| a级毛片黄视频| 悠悠久久av| 国产精品久久久av美女十八| 国产91精品成人一区二区三区| 亚洲精品美女久久av网站| 免费观看人在逋| 后天国语完整版免费观看| 女人精品久久久久毛片| 美女扒开内裤让男人捅视频| 人人妻人人添人人爽欧美一区卜| 韩国av一区二区三区四区| 亚洲精品成人av观看孕妇| 人人妻,人人澡人人爽秒播| 少妇被粗大的猛进出69影院| 淫秽高清视频在线观看| 亚洲国产欧美一区二区综合| 久9热在线精品视频| 国产成人欧美在线观看| 国产精品一区二区免费欧美| 欧美乱码精品一区二区三区| 午夜两性在线视频| www.自偷自拍.com| 免费看a级黄色片| 一进一出好大好爽视频| 国产一区二区三区综合在线观看| 免费高清在线观看日韩| 这个男人来自地球电影免费观看| 国产成人一区二区三区免费视频网站| 多毛熟女@视频| 国产成人免费无遮挡视频| 欧美日韩瑟瑟在线播放| 亚洲精品中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩一区二区三| 丝袜美腿诱惑在线| 国产成人精品无人区| 欧美日韩一级在线毛片| 成人亚洲精品av一区二区 | 久久中文看片网| 成人亚洲精品一区在线观看| 一个人观看的视频www高清免费观看 | 长腿黑丝高跟| 国内毛片毛片毛片毛片毛片| 日韩人妻精品一区2区三区| 91国产中文字幕| 免费不卡黄色视频| 91大片在线观看| 99久久99久久久精品蜜桃| 精品福利观看| 午夜精品国产一区二区电影| 亚洲国产精品sss在线观看 | 欧美精品一区二区免费开放| 中出人妻视频一区二区| 国产精品一区二区在线不卡| 国产熟女xx| 久久国产精品影院| 最好的美女福利视频网| 亚洲av美国av| 久久亚洲真实| 国产精品秋霞免费鲁丝片| 桃色一区二区三区在线观看| 人人妻人人添人人爽欧美一区卜| 不卡av一区二区三区| 一区二区三区激情视频| 亚洲成人精品中文字幕电影 | 久久午夜亚洲精品久久| 首页视频小说图片口味搜索| 亚洲精品国产色婷婷电影| 99国产精品99久久久久| 亚洲欧美精品综合一区二区三区| av中文乱码字幕在线| 人人妻人人爽人人添夜夜欢视频| 国产午夜精品久久久久久| 51午夜福利影视在线观看| 亚洲欧美日韩无卡精品| 两个人免费观看高清视频| 90打野战视频偷拍视频| 亚洲人成电影观看| 老司机午夜福利在线观看视频| 麻豆一二三区av精品| 777久久人妻少妇嫩草av网站| 国产成人欧美| avwww免费| 亚洲性夜色夜夜综合| 麻豆av在线久日| bbb黄色大片| 国产av一区在线观看免费| 国产成+人综合+亚洲专区| 亚洲一区二区三区色噜噜 | 亚洲九九香蕉| tocl精华| 国产高清国产精品国产三级| 中文字幕高清在线视频| 日本黄色视频三级网站网址| 欧美av亚洲av综合av国产av| 亚洲午夜理论影院| 老司机深夜福利视频在线观看| 波多野结衣高清无吗| 99国产精品免费福利视频| 丝袜人妻中文字幕| 夫妻午夜视频| www日本在线高清视频| 日本五十路高清| 久久久国产精品麻豆| 99香蕉大伊视频| 亚洲在线自拍视频| 国产精品亚洲一级av第二区| 国产不卡一卡二| 18禁美女被吸乳视频| 99久久精品国产亚洲精品| 国产1区2区3区精品| 18禁观看日本| 成年人免费黄色播放视频| 制服诱惑二区| 丁香六月欧美| 国产在线观看jvid| 午夜老司机福利片| 精品国产超薄肉色丝袜足j| 91av网站免费观看| 黄色a级毛片大全视频| 国产成人系列免费观看| 免费在线观看黄色视频的| 亚洲午夜精品一区,二区,三区| 久久久水蜜桃国产精品网| 99久久综合精品五月天人人| 波多野结衣高清无吗| 中国美女看黄片| 国产激情欧美一区二区| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 麻豆成人av在线观看| 老汉色av国产亚洲站长工具| 成熟少妇高潮喷水视频| 国产三级在线视频| 在线观看日韩欧美| 欧美日韩瑟瑟在线播放| 热99国产精品久久久久久7| 久久中文看片网| 首页视频小说图片口味搜索| 成人国产一区最新在线观看| 青草久久国产| 又紧又爽又黄一区二区| а√天堂www在线а√下载| 人妻丰满熟妇av一区二区三区| 精品国产一区二区三区四区第35| 夜夜夜夜夜久久久久| 热re99久久精品国产66热6| 欧美日韩乱码在线| 丝袜美足系列| 亚洲av成人av| 午夜成年电影在线免费观看| 免费少妇av软件| 中文字幕人妻熟女乱码| 曰老女人黄片| 91成年电影在线观看| 91大片在线观看| 搡老岳熟女国产| 日韩有码中文字幕| 国产99白浆流出| 亚洲aⅴ乱码一区二区在线播放 | 人成视频在线观看免费观看| 欧美乱色亚洲激情| 一个人免费在线观看的高清视频| 午夜免费鲁丝| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| 水蜜桃什么品种好| 国产成人精品无人区| 亚洲国产欧美网| 午夜免费观看网址| 中文字幕色久视频| 亚洲自拍偷在线| 一级作爱视频免费观看| 又紧又爽又黄一区二区| 母亲3免费完整高清在线观看| 咕卡用的链子| 欧美日本中文国产一区发布| 在线播放国产精品三级| 亚洲精品久久成人aⅴ小说| 极品人妻少妇av视频| 国产99白浆流出| 国产精品 国内视频| 成人永久免费在线观看视频| 91字幕亚洲| 久久久久久久久久久久大奶| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩视频精品一区| 成人特级黄色片久久久久久久| 高清黄色对白视频在线免费看| 亚洲av片天天在线观看| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 在线免费观看的www视频| 熟女少妇亚洲综合色aaa.| 最好的美女福利视频网| 日本vs欧美在线观看视频| 老司机靠b影院| 一边摸一边抽搐一进一小说| 亚洲av五月六月丁香网| 久久久久久久精品吃奶| 欧美国产精品va在线观看不卡| 午夜福利免费观看在线| 成人精品一区二区免费| 久久久久久久午夜电影 | 国内毛片毛片毛片毛片毛片| 韩国av一区二区三区四区| 日韩三级视频一区二区三区| 黄色a级毛片大全视频| 婷婷六月久久综合丁香| 久久伊人香网站| 波多野结衣av一区二区av| 欧美日韩福利视频一区二区| 成人av一区二区三区在线看| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 最近最新中文字幕大全免费视频| 老司机亚洲免费影院| 国产一区二区三区在线臀色熟女 | 久久人妻熟女aⅴ| 国产成人精品久久二区二区免费| 女生性感内裤真人,穿戴方法视频| 黄片播放在线免费| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全电影3 | 一二三四在线观看免费中文在| 日本a在线网址| 91九色精品人成在线观看| 亚洲熟妇熟女久久| 中文字幕av电影在线播放| 中文字幕人妻丝袜一区二区| 人妻丰满熟妇av一区二区三区| 欧美激情 高清一区二区三区| 色尼玛亚洲综合影院| 天天影视国产精品| 成熟少妇高潮喷水视频| 日韩精品免费视频一区二区三区| 亚洲avbb在线观看| 久久国产精品男人的天堂亚洲| 夜夜夜夜夜久久久久| 韩国精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 久久人人97超碰香蕉20202| 一级作爱视频免费观看| 天天躁夜夜躁狠狠躁躁| 国产麻豆69| 伊人久久大香线蕉亚洲五| 亚洲人成电影免费在线| 大型黄色视频在线免费观看| 久久久精品国产亚洲av高清涩受| 午夜免费成人在线视频| 亚洲成a人片在线一区二区| 91精品三级在线观看| 国产av一区在线观看免费| 亚洲精品久久成人aⅴ小说| 色综合欧美亚洲国产小说| 国产成人系列免费观看| 欧美日韩亚洲国产一区二区在线观看| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| 久久国产乱子伦精品免费另类| e午夜精品久久久久久久| 亚洲伊人色综图| 69精品国产乱码久久久| 亚洲 国产 在线| 人人妻人人澡人人看| 大型黄色视频在线免费观看| aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 美女 人体艺术 gogo| 欧美一区二区精品小视频在线| 欧美日韩视频精品一区| 天天躁夜夜躁狠狠躁躁| e午夜精品久久久久久久| 日本五十路高清| av片东京热男人的天堂| 美女大奶头视频| 欧美一级毛片孕妇| 久久亚洲精品不卡| 国产高清国产精品国产三级| 99精品欧美一区二区三区四区| 久久人人爽av亚洲精品天堂| 亚洲精品美女久久久久99蜜臀| 日韩大尺度精品在线看网址 | 别揉我奶头~嗯~啊~动态视频| 身体一侧抽搐| 视频区图区小说| 99久久人妻综合| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 久久久久久亚洲精品国产蜜桃av| 国产在线观看jvid| 夫妻午夜视频| 午夜福利,免费看| 高潮久久久久久久久久久不卡| 天堂动漫精品| 亚洲中文日韩欧美视频| 中文字幕另类日韩欧美亚洲嫩草| 老司机亚洲免费影院| 人成视频在线观看免费观看| 国产精品亚洲一级av第二区| 成人黄色视频免费在线看| 久久久久久人人人人人| 99在线视频只有这里精品首页| 一进一出抽搐gif免费好疼 | 国产精品久久久人人做人人爽| 正在播放国产对白刺激| 亚洲av成人av| 精品国产国语对白av| 国内毛片毛片毛片毛片毛片| a级毛片黄视频| 亚洲国产精品一区二区三区在线| 变态另类成人亚洲欧美熟女 | 久久人人爽av亚洲精品天堂| av有码第一页| 无限看片的www在线观看| 51午夜福利影视在线观看| 色老头精品视频在线观看| 亚洲五月天丁香| 亚洲三区欧美一区| 日韩有码中文字幕| 国产野战对白在线观看| 成人亚洲精品av一区二区 | 91精品国产国语对白视频| 国产一区二区三区在线臀色熟女 | 午夜免费激情av| 国产无遮挡羞羞视频在线观看| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 女人被狂操c到高潮| 一a级毛片在线观看| 国产成人啪精品午夜网站| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 99精品欧美一区二区三区四区| 黄色怎么调成土黄色| 琪琪午夜伦伦电影理论片6080| 亚洲精品粉嫩美女一区| 久久 成人 亚洲| 国产精品自产拍在线观看55亚洲| 欧美激情久久久久久爽电影 | 最新美女视频免费是黄的| 国产欧美日韩精品亚洲av| 一级毛片精品| 免费观看人在逋| 亚洲色图av天堂| 在线观看免费日韩欧美大片| 大型黄色视频在线免费观看| 亚洲第一欧美日韩一区二区三区| 国产av一区二区精品久久| 黄片播放在线免费| 日韩视频一区二区在线观看| 国产精品国产高清国产av| 免费看十八禁软件| 国产精品综合久久久久久久免费 | 国产片内射在线| 91精品三级在线观看| 看黄色毛片网站| 18禁美女被吸乳视频| 国产精品免费视频内射| 一级作爱视频免费观看| 波多野结衣av一区二区av| 多毛熟女@视频| 亚洲久久久国产精品| 丝袜美足系列| 高清黄色对白视频在线免费看| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 亚洲国产精品sss在线观看 | 午夜a级毛片| 国产日韩一区二区三区精品不卡| 久久精品人人爽人人爽视色| 在线十欧美十亚洲十日本专区| 久久久久国内视频| 亚洲 国产 在线| 精品久久蜜臀av无| 亚洲av美国av| 91九色精品人成在线观看| 交换朋友夫妻互换小说| 欧美亚洲日本最大视频资源| 最新在线观看一区二区三区| 午夜福利一区二区在线看| 看免费av毛片| 久久人妻熟女aⅴ| 精品少妇一区二区三区视频日本电影| 国产极品粉嫩免费观看在线| 日韩 欧美 亚洲 中文字幕| 国产高清videossex| 男女床上黄色一级片免费看| 欧美乱码精品一区二区三区| 免费看十八禁软件| 动漫黄色视频在线观看| 国产色视频综合| 不卡一级毛片| 国产区一区二久久| 一区福利在线观看| 多毛熟女@视频| 日本 av在线| 淫妇啪啪啪对白视频| 大陆偷拍与自拍| 一二三四在线观看免费中文在| 午夜精品久久久久久毛片777| 亚洲自拍偷在线| 成人影院久久| 亚洲狠狠婷婷综合久久图片| 国产精品1区2区在线观看.| 99在线视频只有这里精品首页| 亚洲自拍偷在线| 国产精品一区二区在线不卡| 亚洲人成77777在线视频| 手机成人av网站| 麻豆国产av国片精品| 精品久久久久久,| 国产日韩一区二区三区精品不卡| 国产av精品麻豆| 亚洲欧美日韩另类电影网站| 精品一区二区三区四区五区乱码| 国产蜜桃级精品一区二区三区| 日日摸夜夜添夜夜添小说| 精品免费久久久久久久清纯| 亚洲精品在线美女| 久久精品国产99精品国产亚洲性色 | 色在线成人网| xxx96com| 国产伦人伦偷精品视频| 超碰97精品在线观看| 久久久国产成人精品二区 | 久久精品国产综合久久久| 日韩人妻精品一区2区三区| 亚洲专区中文字幕在线| 熟女少妇亚洲综合色aaa.| 在线天堂中文资源库| 757午夜福利合集在线观看| 亚洲色图 男人天堂 中文字幕| 在线视频色国产色| 人妻丰满熟妇av一区二区三区| 男女之事视频高清在线观看| 老汉色∧v一级毛片| 国产单亲对白刺激| 十八禁网站免费在线| 欧美国产精品va在线观看不卡| 久久午夜亚洲精品久久| 免费少妇av软件| 一区二区三区国产精品乱码| 一个人观看的视频www高清免费观看 | 国产精品亚洲一级av第二区| 99久久精品国产亚洲精品| 久久精品国产清高在天天线| 韩国av一区二区三区四区| 亚洲人成电影观看| 精品久久久久久,| 国产成人av激情在线播放| 精品免费久久久久久久清纯| 老司机靠b影院| 国产亚洲欧美精品永久| 国产亚洲欧美在线一区二区| 一级a爱视频在线免费观看| 久久这里只有精品19| 亚洲视频免费观看视频| 午夜福利影视在线免费观看| 久久午夜亚洲精品久久| 欧美在线黄色| 久久国产亚洲av麻豆专区| 色精品久久人妻99蜜桃| 久久久久亚洲av毛片大全| av天堂久久9| 91av网站免费观看| 老司机靠b影院| 亚洲男人的天堂狠狠| 久久久久久大精品| 在线观看免费视频日本深夜| 亚洲一区高清亚洲精品| 长腿黑丝高跟| 777久久人妻少妇嫩草av网站| 精品一区二区三区四区五区乱码| 欧美老熟妇乱子伦牲交| 国产免费男女视频| 久久久国产成人免费| 欧美黑人精品巨大| 9191精品国产免费久久| 大香蕉久久成人网| 在线观看一区二区三区激情| 可以在线观看毛片的网站| 色精品久久人妻99蜜桃| 国产亚洲精品第一综合不卡| 人人妻人人添人人爽欧美一区卜| 欧美在线一区亚洲| 日韩精品青青久久久久久| 成人影院久久| 天堂中文最新版在线下载| 纯流量卡能插随身wifi吗| 黄色丝袜av网址大全| 欧美激情高清一区二区三区| 身体一侧抽搐| 午夜成年电影在线免费观看| 俄罗斯特黄特色一大片| 国产成人欧美| 免费av中文字幕在线| 日韩视频一区二区在线观看| 国产一区二区三区视频了| 校园春色视频在线观看| 黑丝袜美女国产一区| 日本黄色视频三级网站网址| 成人亚洲精品av一区二区 | 国产精品1区2区在线观看.| 国产区一区二久久| 成年人免费黄色播放视频| 少妇 在线观看| 女人被狂操c到高潮| 亚洲精品国产精品久久久不卡| 精品少妇一区二区三区视频日本电影| 亚洲成国产人片在线观看| 美女高潮到喷水免费观看| 亚洲三区欧美一区| 国产亚洲欧美精品永久| 天天添夜夜摸| 亚洲精品在线美女| 亚洲五月婷婷丁香| 国产精品香港三级国产av潘金莲| 久久精品国产综合久久久| 一区在线观看完整版| 他把我摸到了高潮在线观看| 久久精品亚洲熟妇少妇任你|