• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel NIRS modelling method with OPLS-SPA and MIX-PLS for timber evaluation

    2022-02-26 10:15:34JinhaoChenHuiligYuDapengJiangYizhuoZhangKeqiWang
    Journal of Forestry Research 2022年1期

    Jinhao Chen · Huilig Yu,2 · Dapeng Jiang · Yizhuo Zhang · Keqi Wang

    Abstract The identification of timber properties is important for safe application.Near Infrared Spectroscopy (NIRS) technology is widely-used because of its simplicity, effi-ciency, and positive environmental attributes.However, in its application, weak signals are extracted from complex, overlapping and changing information.This study focused on the stability of NIR modeling.The Orthogonal Partial Least Squares(OPLS) and Successive Projections Algorithm (SPA) eliminates noise and extracts effective spectra, and an ensemble learning method MIX-PLS, is applied to establish the model.The elastic modulus of timber is taken as an example, and 201 wood samples of three species, Xylosmacongesta (Lour.) Merr., Acer pictum subsp.mono, and Betula pendula, samples were divided into three groups to investigate modelling performance.The results show that OPLS can preprocess the near-infrared spectroscopy information according to the target object in the face of the system error and reduce errors to minimum.SPA finally selects 13 spectral bands, simplifies the NIR spectral data and improves model accuracy.The Pearson’s correlation coefficient of Calibration (Rc) and the Pearson’s correlation coefficient of Prediction (Rp) of Mix Partial Least Squares (MIX-PLS) were 0.95 and 0.90, and Root Mean Square Error of Calibration (RMSEC) and Root Mean Square Error of Prediction (RMSEP) are 2.075 and 6.001, respectively, which shows the model has good generalization abilities.

    Keywords NIR prediction · Orthogonal partial least squares (OPLS) · Successive projections algorithm (SPA) · Mix partial least squares (MIX-PLS) modulus of elasticity

    Introduction

    Wood is a major material of buildings, furniture products, composite materials, wood-based panels and other products.Accurate, rapid and non-destructive measurement of its mechanical properties is a basic requirement of many forest processing and grading industries.Near-infrared spectroscopy (NIRS) is considered to be one of the most beneficial non-destructive techniques for wood analysis and has many unique advantages (Li et al.2018).Compared with X-ray technology, NIRS technology is not harmful and ensures the safety of detection personnel (Jacquin et al.2017).Related to ultrasonic waves, it does not require a coupling agent in the detection process and is easy to carry out in the field (Cavalcanti et al.2018).Further, in comparison with nuclear magnetic resonance techniques, NIRS instrumentation is small and easy to carry (Zupanc et al.2019), and compared with mechanical stress waves, easy to operate.The accuracy of measurements is high (Feng et al.2016).

    In the application of near-infrared spectral analysis, Weak signals should be extracted for modeling from normally possess broad overlapping NIR absorption bands (Magalh?es et al.2018).The core technologies include preprocessing, wavelength extraction and identification model establishment.Preprocess technology can solve the baseline drift caused by solid particle scattering (Fitamo et al.2017; Rivard and Sánchez-Azofeita 2018).(Wang et al.2020) monitored the nutritional status of plants by exploring the relationship between hyperspectral imaging and phosphorus and potassium.The performance of PLS calibration models based on standard normal variables (SNV), multiplicative scattering correction (MSC), frist derivative (1-Der) and second derivation (2-Der) are compared.The results show that the PLS model with SNV preprocessed has the highest accuracy.(Nascimento et al.2016) established the near-infrared spectral calibration model to predict external parameters such as maturity, hardness and color of ’Aurora-1′ peach.Four preprocessing methods standard normal variable (SNV), multiplicative scatter correction (MSC), standard normal variable (SNV) + de trend processing and SG convolution smoothing are compared.The experimental results show that the PLS model based on standard normal variable (SNV) and the De trend method has the best performance.Although these preprocess methods filter out certain noises and suppress baseline drift, they face a common problem, which lacks a relatively objective reference frame to evaluate and separate the characteristic and baseline drift components in the spectrum.Therefore, With environment changes caused by the light source of the spectrometer and the baseline drift caused by the scattered light of solid particles, the above preprocess methods are not effective.

    The multi-collinearity of the original spectrum without dimension reduction is serious, and therefore it is necessary to select an appropriate characteristic selection method to extract the original spectral band (Houby et al.2017; Yu et al.2019; Zhang et al.2019b).Wavelength extraction technology includes UVE, SPA, PCA and other optimization algorithms.(Huang et al.2014) proposed using an ant colony algorithm combined with interval partial least squares (iPLS) to optimize the characteristic sub interval corresponding to anthocyanin content in spectral data ofCamellia oleiferaC.Abel., on which a calibration model of near-infrared spectroscopy was established.(Zhang et al.2019a) improved and optimized the nearinfrared spectrum of silage corn raw materials using a discrete particle swarm optimization model, and established a nearinfrared spectral model for moisture content detection.The common mechanism of random optimization algorithms, such as ant colony algorithm, particle swarm optimization algorithm, and GA algorithm, is to select the spectral variable to meet the minimum ftiness function.This ftiness function often selects model evaluation indexes such as correlation coeffi-cients and only optimizes the final model result but ignores the optimization of spectral characteristic number.Therefore, a redundancy problem often occurs in the optimized spectrum subset.

    The prediction method is the core part of near-infrared spectroscopy modeling and analysis, and preprocessing and characteristic selection exist for the purpose of establishing a more accurate model.(Xian et al.2016) used interval partial least squares (iPLS), synergy interval partial least squares (SiPLS) and backward interval partial least squares (BiPLS) to establish a prediction model for the doping amount of virgin olive oil based on different content and type of fried oil.The results showed that the correlation coefficient and root mean square error of prediction between the SiPLS and BiPLS models are lower than those of the iPLS model.Using PLS, iPLS and GA-PLS models, (De Assis et al.2018) established the pH, high titratable acidity and low soluble solid content of Dover fruit.The results showed that the PLS model is the most accurate for predicting the contents of low soluble solids and the GA-PLS the most accurate for predicting pH and high titratable acidity.

    Although PLS, iPLS, BiPLS calibration models can carry out small sample modeling, the generalization ability of the models is not strong (Sun et al.2016).OPLS correction technology is robust in complex external environments, which can suppress baseline drift, random noise and background changes in the original spectral matrix, and extract and fliter the noise in the original spectral matrix (Yin et al.2015).SPA algorithm eliminates collinearity by retaining the corresponding sub vector of maximum projection (Yuan et al.2016; Zhu et al.2017; Mesquita et al.2018; Krepper et al.2018).Compared with the ant colony algorithm, particle swarm optimization algorithm, GA algorithm and other random optimization algorithms, the SPA has faster speed and it can minimize redundancy problems (Yuan et al.2016); MIX-PLS is a multi-model integrated learning method which can improve the generalization ability by building multiple simple models for accurate modelling (Souza and Araújo 2014).

    In this study, the elastic modulus ofXylosma-congesta(Lour.) Merr.,Acer pictumsubsp.mono andBetula pendulawere determined.NIRQuest512 spectrometer was used to collect the original spectral data of the samples.The OPLSSG composite preprocess method was used to process the data and the SPA method used to extract the characteristic bands.The MIX-PLS model of wood elastic modulus was established.

    Materials and methods

    Materials

    Three wood species were selected:Xylosma-congesta(Lour.) Merr.,Acer pictumsubsp.Mono,andBetulapendula.The wood was from the Qingshuihe Forest Farm in Yichun City, Heilongjiang Province, at 128°01′ E, 42°30′ N, and an altitude of 600-700 m.Each material was numbered and measured for modulus of elasticity in static bending according to the "Method for Determination of the Modulus of Elasticity in Static Bending of Wood" (GB 1936.2-2009).

    The spectrometer was equipped with an optical fiber probe covering wavelengths 900-1700 nm, with a 3.0 nm resolution.SPEC View 7.1 collected and recorded the spectra.The laboratory temperature was maintained at 22 ± 2 °C and relative humidity at 50%.A ring gasket was installed outside the optical fiber probe, and the distance between the probe and the sample was kept at 2 mm.Eight groups of near-infrared spectral data were collected by moving the spectrometer probe on the surface of the sample at a uniform speed.The schematic of spectrum acquisition is shown in Fig.1.

    Fig.1 Schematic of spectrum acquisition

    The near-infrared spectrometer was used to collect 210 experimental materials.In order to compare the stability of the spectral preprocess methods as a result of changes in the external environment, three spectral data groups were collected and set as A, B, C.The near-infrared spectrometer was reset for each measurement and three time points randomly selected and measured by different personnel.

    The Emperor told him he had more than he knew what to do with, and that a new one had been captured that very night for trying to steal his magic bird, but that as he had already more than enough to feed and support, he was going to have this last captive hanged next morning

    Preprocessing based on OPLS

    In the process of preprocessing with OPLS, the spectral matrix and the elastic modulus of wood were assumed to be X and y, respectively and can be expressed in Eqs.1 and 2:

    where, E and f are the residual matrix, U the data score matrix of y , C the prediction component weight matrix of y , T the prediction score matrix, and Tothe orthogonal fractional matrix.

    In OPLS processing, the orthogonal variables to the elastic modulus y are eliminated, i.e., XP=is the product of the orthogonal component score matrix Toand the orthogonal component load matrix; Secondly, a partial least squares analysis was performed on the XPand elastic modulus y to obtain XP=TWT+E in which the product TWTof the predicted component score matrix T and the predicted component load matrix WTare the final output Xopls.The OPLS algorithm corrects the original NIR spectral matrix X according to the elastic modulus y , and removes the orthogonal part which is independent of y in the original spectral matrix X and outputs Xopls.

    The study found that the S-G convolution smoothing had a good effect on spectral smoothing after OPLS correction (Eq.3):

    where,xis the absorbance,λ the wavelength,iandjare serial numbers in the range of wavelength points,Δλ the wavelength interval,k!the factorial of the derivative order,akis weight coefficient.

    Spectral selection based on SPA

    When SPA was applied to the preprocessed spectral matrixXopls, the largestiandjof projection were calculated, wherexiandxjwere the two sub bands of the preprocessed spectral matrixXopls.Theiwas then recorded in the selected wavelength dictionary and set as xj=Pxj.The largestiwhich maximizes the projection Pxj=was calculated and theirecorded in the wavelength dictionary.When the number of wavelengths in the dictionary reached a predetermined value, the program was terminated.

    NIR nonlinear modeling based on MIX-PLS

    The MIX-PLS model is derived from the multi expert model.The real probability distribution is obtained by superposition of output values of each PLS model (Fig.2).Among them, the subsystem is a simple PLS model, f(x(i)|θ) is the probability distribution of the output vector of the PLS sub model.The number of subsystems isp, and the gate function is softmax function.

    Fig.2 MIX-PLS block flowchart

    Equation 4 is the total probability formula, the given vector Z controls the output proportion of the subsystem, when the subsystem is determined as thepPLS subsystem, the final output of the model is p(y(i)|zp(i),x(i),ε).p(y(i)|zp(i),x(i),ε) is the probability distribution of PLS output under certain conditions, ε is the set of all PLS subsystem parameter, i.e.,ε={θ1,w1...θp,wp}.p(zp(i)=1|x(i),V) is the output probability distribution of the gate function, and the term by term product of the two is the solution of p(y,Z|X,?).]

    The p(y(i)|zp(i),x(i),ε) obeys Gaussian distribution N(y(i)|fp(x(i),θp),wp) y(i) and x(i) is the mechanical property characteristics and spectrum samples of the group i , θpand wpare the parameter matrix of the MIX-PLS algorithm.The analytical solutions of θpand wpare given by Eqs.6 and 7:

    where, Γp=diag(γp(1),γp(2),...,γp(k)) is diagonal matrix, theith element of diagonal matrix γp(i) is the expectation of the implicit variable zp(i) of MIX-PLS on p(Z|y,X,?).

    p(zp(i)=1|x(i),Vold) is the output probability distribution of the gate function which controls the opening and closing of each subsystem, balances the output of each subsystem and determines the final output.The number of subsystempis the parameter of MIX-PLS model which needs to be determined.The probability distribution obeys softmax regression, Voldis the weight of the softmax regression,vland vpare vectors in the weight matrix Vold.The distribution can be expressed by Eq.8:

    Results and discussion

    NIR preprocessing based on OPLS

    The number of original spectral data bands collected by NIRQuest512 spectrometer is 512 (Fig.3) and preprocessed spectral data are shown in Fig.5.Among them, the OPLS method cycle number was set at 50, the S-G convolution smoothing window at 9, and the approximate polynomial order was Fig.3, the original near-infrared spectra of the three species of wood.From the 1650 band, the data fluctuated with a lot of noise.Due to error factors such as nearinfrared spectrum drift, the absorption peaks of some spectral curves at 1200 band are not obvious.Figure 4 is the near infrared spectrum processed by the OPLS-SG algorithm.Noise in the 1650-1700 band has almost disappeared and the absorption peak near the 1200 band becomes clear.

    Fig.3 Near-infrared spectra of Xylosma-congesta (Lour.) Merr., Acer pictum subsp.mono and Betula pendula species

    To verify the superiority of OPLS, three methods, OPLSSG、SNV-SG and OSC-SG, were used to model the elastic modulus PLS to the three data groups A, B and C of full spectrum data after spectral normalization.After establishing the calibration model of elastic modulus by selecting one group from the three, the spectral data of the other two groups were input into the model for analysis.The three data groups were measured at different time points and by different personnel.The higher the evaluation indexes of the model, the stronger the robustness of the calibration model.

    Model evaluation index table of different models in different spectral data groups are shown in Table 1.By comparing the model evaluation indexes Rcand RMSEC, it can be seen that the spectral matrix model evaluation results processed by OPLS are the highest, and the model is more stable.The OPLS method can identify and separate the spectral matrix of wood samples orthogonal to the mechanical properties of wood, suppress the spectral fluctuation caused by external disturbances, baseline drift and signal noise caused by solid sample scattering, and ensure the robustness of the model.

    Fig.4 Preprocess diagram of the three wood samples

    Results

    SPA-MIX-PLS spectral calibration model

    A SPA algorithm was used to select the characteristic band and the maximum number of components of the model was 20.The best number of subsystems of MIX-PLS was optimized by a fivefold search cross validation, and the optimal number of bands obtained was 13.MIX-PLS optimization of a number of subsystems as shown in Table 2, and it was determined to be four by correction set.The correlation coefficient RC was 0.95 and the root mean square error (RMSEC) was 2.075.The projection proportion of each SPA band the proportion of band importance is shown in Fig.5, and the screening results of SPA spectral bands was shown in Fig.6.In this study, 13 bands with the largest weight were selected from 512 bands at 900-1700.

    Fig.5 Proportion of spectral band interval importance

    Fig.6 SPA selecting the best band range

    Table 1 Influence of preprocessing methods on modelling

    Table 2 MIX-PLS optimization of number of subsystems

    MIX-PLS model of wood mechanical properties

    This was established based on the data of training set processed by the SPA algorithm, and the model evaluated onthe prediction set.Figures 7 and 8 show the verification and prediction results of the calibration model.

    Fig.7 Validation of the MIX-PLS model

    Fig.8 Predictions of the MIX-PLS model

    In order to verify the effectiveness of the SPA-MIXPLS model, PLS, iPLS, BiPLS and PCR modeling methods were used for comparison.Correlation coefficient RC, RMSEC, predictive correlation coefficient (Rp) and predicted root mean square error (RMSEP) were selected as evaluation indexes.The results of the established models were compared and analyzed.The relevant parameters are shown in Table 3.

    The accuracy of the iPLS, BiPLS and MIX-PLS models improved after SPA algorithm was applied (Table 3).Although the performance of the SPA-MIX-PLS model was not the best in the calibration set, it had strong generalization abilities, and prediction accuracy.

    Table 3 Comparison of calibration model results

    Conclusions

    In this study, the prediction of the elastic modulus of wood was determined, near infrared spectroscopy as the detection means, OPLS and SG methods selected to preprocess the spectrum, the SPA method used to optimize the characteristic spectrum, the MIX-PLS used to establish the model, and three wood materials ofXylosma-congesta(Lour.) Merr., Acer pictum subsp.Mono,andBetula pendulaspecies? were selected to verify the effectiveness of the method.The results show that OPLS correction can preprocess the near-infrared spectrum according to the target object, improve the quality of spectral matrix, and effectively simplify the subsequent model data processing, SPA, as a classical algorithm, can quickly extract the characteristic spectral bands and improve the accuracy of the prediction model.The correlation coefficients RC and RP of the MIX-PLS calibration model were 0.95 and 0.90.Root mean square error (RMSEC) and RMSEP were 2.075 and 6.001, respectively.The comparison of PLS, iPLS, BiPLS, PCR and MIX-PLS showed that the MIX-PLS calibration model had the best prediction performance and the strongest generalization ability.

    亚洲av片天天在线观看| av片东京热男人的天堂| 夜夜夜夜夜久久久久| 久久久久久亚洲精品国产蜜桃av| 日韩制服骚丝袜av| 久久久久久亚洲精品国产蜜桃av| 欧美日韩亚洲国产一区二区在线观看 | 国产福利在线免费观看视频| 成年美女黄网站色视频大全免费| 最近中文字幕2019免费版| 日本a在线网址| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美精品济南到| 精品国产一区二区久久| 桃花免费在线播放| 欧美中文综合在线视频| 亚洲国产精品一区三区| 50天的宝宝边吃奶边哭怎么回事| 丝袜美足系列| 国产精品久久久久久精品电影小说| 黑人巨大精品欧美一区二区mp4| 亚洲成人免费电影在线观看| 麻豆乱淫一区二区| 不卡一级毛片| 97在线人人人人妻| 涩涩av久久男人的天堂| 在线观看一区二区三区激情| 亚洲视频免费观看视频| 女人久久www免费人成看片| 黄频高清免费视频| 嫁个100分男人电影在线观看| 视频区图区小说| 狂野欧美激情性xxxx| 精品欧美一区二区三区在线| 国产人伦9x9x在线观看| 日日爽夜夜爽网站| av不卡在线播放| 国产日韩欧美视频二区| 女人被躁到高潮嗷嗷叫费观| 嫩草影视91久久| 美女午夜性视频免费| 久久精品国产亚洲av香蕉五月 | 欧美人与性动交α欧美软件| 99热全是精品| 91字幕亚洲| 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜一区二区| 最近中文字幕2019免费版| 男女边摸边吃奶| 一进一出抽搐动态| 日本猛色少妇xxxxx猛交久久| 国产有黄有色有爽视频| 精品福利永久在线观看| 国产精品偷伦视频观看了| 99久久精品国产亚洲精品| 午夜久久久在线观看| 一级毛片女人18水好多| 美国免费a级毛片| 又紧又爽又黄一区二区| 18禁观看日本| 精品国产一区二区三区四区第35| 亚洲国产精品999| 黄色视频,在线免费观看| 亚洲国产欧美一区二区综合| 男人操女人黄网站| 日韩大片免费观看网站| 国产高清videossex| 日日爽夜夜爽网站| 曰老女人黄片| 亚洲精品中文字幕在线视频| 波多野结衣av一区二区av| 欧美午夜高清在线| 久久女婷五月综合色啪小说| a级毛片在线看网站| 日本一区二区免费在线视频| 亚洲精品国产一区二区精华液| 亚洲精品久久午夜乱码| 国产精品久久久久成人av| 亚洲成人免费电影在线观看| 天天影视国产精品| 日本黄色日本黄色录像| 亚洲精品中文字幕一二三四区 | 亚洲av男天堂| 成人影院久久| 一本综合久久免费| 激情视频va一区二区三区| 国产亚洲av片在线观看秒播厂| 国产又色又爽无遮挡免| 国产av精品麻豆| 日本av免费视频播放| 人妻久久中文字幕网| 黑人操中国人逼视频| 亚洲熟女毛片儿| 无遮挡黄片免费观看| 日本精品一区二区三区蜜桃| 日本a在线网址| av福利片在线| 亚洲综合色网址| 久久 成人 亚洲| 国产精品久久久久久精品电影小说| 成人av一区二区三区在线看 | 操美女的视频在线观看| 欧美久久黑人一区二区| 国产免费一区二区三区四区乱码| 久久久久国产精品人妻一区二区| 嫩草影视91久久| 18禁国产床啪视频网站| 中文字幕人妻丝袜制服| 国产色视频综合| 十分钟在线观看高清视频www| 国产成人av激情在线播放| 超碰成人久久| av线在线观看网站| 热99久久久久精品小说推荐| 亚洲欧美一区二区三区黑人| 91国产中文字幕| 777米奇影视久久| 亚洲成人手机| 久久人人爽人人片av| av在线老鸭窝| 国产一卡二卡三卡精品| 永久免费av网站大全| 亚洲伊人久久精品综合| 国产高清国产精品国产三级| 欧美乱码精品一区二区三区| 丰满饥渴人妻一区二区三| 搡老岳熟女国产| 国产亚洲欧美在线一区二区| 亚洲精品日韩在线中文字幕| 亚洲免费av在线视频| 黄色怎么调成土黄色| 欧美日韩精品网址| 精品人妻一区二区三区麻豆| 人妻一区二区av| 欧美在线一区亚洲| 亚洲伊人久久精品综合| 免费在线观看日本一区| 久热爱精品视频在线9| videos熟女内射| 黄色视频不卡| 国产成人影院久久av| 色综合欧美亚洲国产小说| 精品高清国产在线一区| 久久久久久免费高清国产稀缺| h视频一区二区三区| 视频区欧美日本亚洲| 久久精品亚洲av国产电影网| 2018国产大陆天天弄谢| 99久久综合免费| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产 | 777米奇影视久久| 国产免费视频播放在线视频| 侵犯人妻中文字幕一二三四区| 国产精品麻豆人妻色哟哟久久| 日韩熟女老妇一区二区性免费视频| 国产有黄有色有爽视频| 18禁黄网站禁片午夜丰满| 50天的宝宝边吃奶边哭怎么回事| 侵犯人妻中文字幕一二三四区| 搡老岳熟女国产| 最近中文字幕2019免费版| 免费在线观看黄色视频的| 久久久久精品国产欧美久久久 | 欧美激情 高清一区二区三区| 最近中文字幕2019免费版| 美女扒开内裤让男人捅视频| 久久久久久久国产电影| 伊人亚洲综合成人网| 久久久久久久久免费视频了| 国产精品麻豆人妻色哟哟久久| 亚洲一区二区三区欧美精品| 午夜91福利影院| 午夜免费观看性视频| 国产av又大| 99九九在线精品视频| 日韩欧美一区视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲三区欧美一区| 精品国产乱码久久久久久男人| 高清在线国产一区| 国产亚洲精品第一综合不卡| 免费观看a级毛片全部| 午夜福利影视在线免费观看| www.999成人在线观看| 成人手机av| 亚洲免费av在线视频| 91av网站免费观看| 国产极品粉嫩免费观看在线| 久久ye,这里只有精品| 国产一级毛片在线| 欧美日本中文国产一区发布| 99热国产这里只有精品6| 中文字幕av电影在线播放| 少妇 在线观看| a 毛片基地| 另类亚洲欧美激情| 少妇裸体淫交视频免费看高清 | 亚洲欧美色中文字幕在线| 99国产精品一区二区蜜桃av | 一二三四社区在线视频社区8| 交换朋友夫妻互换小说| www.熟女人妻精品国产| 国产成人欧美| 亚洲男人天堂网一区| 国产av又大| 黄色a级毛片大全视频| 九色亚洲精品在线播放| 搡老岳熟女国产| 男女免费视频国产| 亚洲伊人久久精品综合| 精品少妇内射三级| 热re99久久精品国产66热6| 亚洲av美国av| 如日韩欧美国产精品一区二区三区| 黄色a级毛片大全视频| 91字幕亚洲| 久久精品人人爽人人爽视色| 欧美人与性动交α欧美精品济南到| 久久综合国产亚洲精品| 999久久久精品免费观看国产| 亚洲国产日韩一区二区| 啪啪无遮挡十八禁网站| 国精品久久久久久国模美| 蜜桃国产av成人99| 一区二区日韩欧美中文字幕| 伊人亚洲综合成人网| av又黄又爽大尺度在线免费看| 欧美人与性动交α欧美软件| 久久av网站| 啪啪无遮挡十八禁网站| 精品一区二区三区av网在线观看 | 欧美乱码精品一区二区三区| 乱人伦中国视频| 亚洲av日韩在线播放| 首页视频小说图片口味搜索| 一本久久精品| 精品人妻1区二区| 成年美女黄网站色视频大全免费| 2018国产大陆天天弄谢| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| 欧美激情高清一区二区三区| 精品久久久久久电影网| 99国产精品99久久久久| 久久精品国产a三级三级三级| 国产麻豆69| 国产成人啪精品午夜网站| a级毛片黄视频| 国产精品国产av在线观看| 大型av网站在线播放| 国产激情久久老熟女| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人爽人人添夜夜欢视频| 午夜福利在线观看吧| 亚洲av电影在线观看一区二区三区| 99热全是精品| 少妇粗大呻吟视频| 丰满饥渴人妻一区二区三| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久久人妻精品电影 | 王馨瑶露胸无遮挡在线观看| 啦啦啦 在线观看视频| 国产精品免费大片| 国产一区有黄有色的免费视频| 在线观看免费午夜福利视频| 妹子高潮喷水视频| 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 永久免费av网站大全| 精品国产国语对白av| 一本一本久久a久久精品综合妖精| 亚洲国产欧美在线一区| 国产亚洲av片在线观看秒播厂| 别揉我奶头~嗯~啊~动态视频 | 国产欧美日韩综合在线一区二区| 午夜91福利影院| av视频免费观看在线观看| 99精品久久久久人妻精品| 国产精品久久久久成人av| 久久久欧美国产精品| 欧美成狂野欧美在线观看| 亚洲欧美成人综合另类久久久| 色视频在线一区二区三区| 日韩免费高清中文字幕av| 国产日韩欧美亚洲二区| 51午夜福利影视在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡| 国产91精品成人一区二区三区 | av片东京热男人的天堂| 不卡av一区二区三区| av视频免费观看在线观看| 制服诱惑二区| 99久久99久久久精品蜜桃| 精品视频人人做人人爽| 国产一区二区三区av在线| 色播在线永久视频| 男女无遮挡免费网站观看| 中文字幕人妻熟女乱码| 欧美 日韩 精品 国产| 国产成人影院久久av| 老熟妇乱子伦视频在线观看 | 在线观看免费高清a一片| 日本精品一区二区三区蜜桃| 人人澡人人妻人| 成年动漫av网址| 中文字幕色久视频| 国产精品麻豆人妻色哟哟久久| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 极品人妻少妇av视频| 老司机靠b影院| 免费高清在线观看视频在线观看| 国产亚洲av高清不卡| 大型av网站在线播放| 又黄又粗又硬又大视频| 欧美激情高清一区二区三区| 亚洲欧美清纯卡通| 亚洲精品美女久久av网站| 色综合欧美亚洲国产小说| 五月天丁香电影| 黄色怎么调成土黄色| 蜜桃国产av成人99| 视频区欧美日本亚洲| 老司机福利观看| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女 | av一本久久久久| 日韩中文字幕欧美一区二区| 性高湖久久久久久久久免费观看| 夜夜夜夜夜久久久久| 亚洲五月色婷婷综合| 国产精品九九99| 日韩中文字幕视频在线看片| 欧美一级毛片孕妇| 国产精品99久久99久久久不卡| 在线天堂中文资源库| 少妇的丰满在线观看| 亚洲熟女毛片儿| 女性生殖器流出的白浆| 老司机午夜福利在线观看视频 | 一本久久精品| 中文字幕人妻丝袜一区二区| 成人18禁高潮啪啪吃奶动态图| 国产主播在线观看一区二区| www.熟女人妻精品国产| 18禁国产床啪视频网站| 91老司机精品| 一二三四社区在线视频社区8| 9色porny在线观看| 精品人妻熟女毛片av久久网站| 黄片播放在线免费| 精品乱码久久久久久99久播| 青青草视频在线视频观看| 午夜福利,免费看| 国产一区二区 视频在线| 久久亚洲国产成人精品v| 18禁黄网站禁片午夜丰满| 啦啦啦啦在线视频资源| 欧美日韩视频精品一区| 久久久久久人人人人人| 日本wwww免费看| 日韩欧美国产一区二区入口| 国产区一区二久久| 搡老岳熟女国产| 久久久久国产一级毛片高清牌| 久久久国产欧美日韩av| 人妻久久中文字幕网| 亚洲国产看品久久| 国产片内射在线| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 丁香六月欧美| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 中亚洲国语对白在线视频| 狂野欧美激情性bbbbbb| 国产成人影院久久av| 建设人人有责人人尽责人人享有的| 桃红色精品国产亚洲av| 欧美亚洲日本最大视频资源| 视频区图区小说| av线在线观看网站| 成年女人毛片免费观看观看9 | 一边摸一边抽搐一进一出视频| 成年美女黄网站色视频大全免费| a 毛片基地| 午夜福利在线观看吧| 国产亚洲av高清不卡| 国产精品偷伦视频观看了| 超碰97精品在线观看| tocl精华| 黑人巨大精品欧美一区二区蜜桃| 夜夜夜夜夜久久久久| av在线老鸭窝| 午夜成年电影在线免费观看| 宅男免费午夜| 中文字幕av电影在线播放| 亚洲av日韩精品久久久久久密| 丝袜美足系列| 肉色欧美久久久久久久蜜桃| 下体分泌物呈黄色| 大香蕉久久成人网| 纯流量卡能插随身wifi吗| 久久精品久久久久久噜噜老黄| 日韩欧美国产一区二区入口| 亚洲第一欧美日韩一区二区三区 | 精品乱码久久久久久99久播| 一级毛片精品| 精品国产一区二区三区久久久樱花| 高清欧美精品videossex| 51午夜福利影视在线观看| 亚洲午夜精品一区,二区,三区| 欧美精品人与动牲交sv欧美| 一区二区三区激情视频| 国产极品粉嫩免费观看在线| 无遮挡黄片免费观看| 成人三级做爰电影| 91麻豆精品激情在线观看国产 | 狠狠狠狠99中文字幕| 黄色视频在线播放观看不卡| 久久性视频一级片| www.自偷自拍.com| 可以免费在线观看a视频的电影网站| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 欧美日本中文国产一区发布| 精品熟女少妇八av免费久了| 久热爱精品视频在线9| 超色免费av| 飞空精品影院首页| 久久久久久亚洲精品国产蜜桃av| 日韩精品免费视频一区二区三区| 久久久久久久久免费视频了| 国产三级黄色录像| 两性午夜刺激爽爽歪歪视频在线观看 | 色视频在线一区二区三区| 亚洲中文av在线| 一本大道久久a久久精品| 69av精品久久久久久 | 免费在线观看完整版高清| 看免费av毛片| 日韩欧美免费精品| 777久久人妻少妇嫩草av网站| 久久精品亚洲av国产电影网| 黑人巨大精品欧美一区二区蜜桃| 色综合欧美亚洲国产小说| 热99久久久久精品小说推荐| xxxhd国产人妻xxx| 欧美激情高清一区二区三区| 一级黄色大片毛片| 久久精品久久久久久噜噜老黄| 久久久国产欧美日韩av| 高清在线国产一区| av有码第一页| 色婷婷久久久亚洲欧美| 大香蕉久久成人网| 亚洲伊人色综图| 中文精品一卡2卡3卡4更新| 考比视频在线观看| 日日爽夜夜爽网站| 亚洲欧美精品自产自拍| 一区二区三区激情视频| 亚洲伊人久久精品综合| 久热这里只有精品99| 高潮久久久久久久久久久不卡| 亚洲人成77777在线视频| 在线十欧美十亚洲十日本专区| 亚洲精品日韩在线中文字幕| 好男人电影高清在线观看| 日韩中文字幕视频在线看片| 精品乱码久久久久久99久播| netflix在线观看网站| 交换朋友夫妻互换小说| 黄色 视频免费看| 免费不卡黄色视频| 亚洲精品久久成人aⅴ小说| 久久综合国产亚洲精品| 国产精品av久久久久免费| 亚洲午夜精品一区,二区,三区| 成人手机av| 亚洲少妇的诱惑av| 男女高潮啪啪啪动态图| 美女高潮到喷水免费观看| 99国产精品一区二区三区| 中国美女看黄片| 天天躁夜夜躁狠狠躁躁| 亚洲avbb在线观看| 啦啦啦 在线观看视频| 老司机深夜福利视频在线观看 | 久久人人97超碰香蕉20202| 精品久久蜜臀av无| 国产精品二区激情视频| 又黄又粗又硬又大视频| 亚洲人成电影观看| 极品少妇高潮喷水抽搐| 中文字幕最新亚洲高清| 国产一区二区三区在线臀色熟女 | 亚洲人成电影免费在线| 亚洲第一av免费看| 午夜免费鲁丝| 性色av乱码一区二区三区2| 国产日韩欧美视频二区| av片东京热男人的天堂| 亚洲精品一二三| 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 国产深夜福利视频在线观看| 夫妻午夜视频| 国产亚洲欧美在线一区二区| 丝袜脚勾引网站| 最黄视频免费看| 国产在线观看jvid| 高潮久久久久久久久久久不卡| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲一区二区精品| 成人国语在线视频| 欧美黑人欧美精品刺激| av不卡在线播放| 国产av又大| 日本欧美视频一区| av国产精品久久久久影院| 最近最新中文字幕大全免费视频| 亚洲国产欧美日韩在线播放| av又黄又爽大尺度在线免费看| 亚洲成av片中文字幕在线观看| 亚洲精品国产av成人精品| 欧美日韩成人在线一区二区| 日本91视频免费播放| 国产一区二区 视频在线| 久久中文字幕一级| 亚洲熟女毛片儿| 久久久久久亚洲精品国产蜜桃av| 亚洲av美国av| 欧美性长视频在线观看| 日本av免费视频播放| 在线观看一区二区三区激情| 看免费av毛片| 啪啪无遮挡十八禁网站| 成人国产一区最新在线观看| 伦理电影免费视频| 黄色视频,在线免费观看| 麻豆乱淫一区二区| 欧美黄色淫秽网站| 午夜激情av网站| 日韩有码中文字幕| 久久精品国产亚洲av香蕉五月 | 亚洲色图综合在线观看| 精品福利永久在线观看| 欧美+亚洲+日韩+国产| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久毛片微露脸 | cao死你这个sao货| 伊人久久大香线蕉亚洲五| √禁漫天堂资源中文www| videosex国产| 亚洲欧美激情在线| 国产97色在线日韩免费| www.999成人在线观看| 色老头精品视频在线观看| 操出白浆在线播放| 国产免费av片在线观看野外av| 国产成人a∨麻豆精品| 这个男人来自地球电影免费观看| 精品亚洲成国产av| 正在播放国产对白刺激| 日韩欧美免费精品| 飞空精品影院首页| 免费av中文字幕在线| 黄色视频,在线免费观看| 亚洲精品在线美女| 91麻豆av在线| 美女高潮到喷水免费观看| 国产精品免费视频内射| 操美女的视频在线观看| 99国产精品免费福利视频| 美女国产高潮福利片在线看| 国产国语露脸激情在线看| 热99久久久久精品小说推荐| 高清欧美精品videossex| 久久香蕉激情| 在线永久观看黄色视频| 天天躁日日躁夜夜躁夜夜| 制服诱惑二区| 欧美黑人精品巨大| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩视频精品一区| 午夜免费观看性视频| 天天躁日日躁夜夜躁夜夜| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 亚洲成人手机| 成人手机av| 亚洲精品久久成人aⅴ小说| 久久精品国产综合久久久| 成人手机av| 在线观看免费视频网站a站| 99九九在线精品视频| 男人操女人黄网站| 在线观看免费视频网站a站| 91九色精品人成在线观看| 国产欧美日韩一区二区精品| 精品一品国产午夜福利视频| 一区二区三区乱码不卡18| 麻豆国产av国片精品| 80岁老熟妇乱子伦牲交| 精品久久久精品久久久| 美女主播在线视频| 1024香蕉在线观看| 岛国在线观看网站| 性少妇av在线| 在线天堂中文资源库|