• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Balanced-switch-current-based modulation strategy for a three-level DC/DC converter with input-parallel-output-parallel structure

    2022-02-25 03:24:24LIUDongWUJiahuiCHENZhe
    長江大學學報(自科版) 2022年1期
    關鍵詞:曲線效率試驗

    LIU Dong, WU Jiahui, CHEN Zhe

    1.Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom2.Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark

    [Abstract]This paper first discussed the evolution of three-level (TL) DC/DC converters, then introduced the study focus changes from topics of soft switching techniques and the efficiency to the reliability performance of the converter.On this basis, a three-level DC/DC converter (TLDC) consisting of two four-switch half-bridge three-level (HBTL) DC/DC converters with an interleaving and input-parallel output-parallel (IPOP) connection structure was proposed and the topology, operation principle, characteristics, and performances of the proposed converter were analyzed in details.The IPOP structure can effectively reduce the current stresses of main power components, which makes the proposedconverter more applicable for higher power applications.More significantly, by combining the proposed topology with a corresponding periodically swapping modulation (PSM) strategy, not only the currents of two input capacitors can be balanced and greatly reduced, but also the currents of primary-side power switches can be balanced, thus the reliability performance of the converters can be improved.Finally, both simulation and experimental results were presented to verify the proposed converter with a PSM strategy.

    [Key words]balanced switch currents; input-parallel output-parallel (IPOP) structure; three-level DC/DC converter (TLDC)

    1 Introduction

    A three-level (TL)DC/DC converter (TLDC) was first proposed in ref.[1, 2] to reduce the voltage stresses on power switches for higher voltage applications in comparison with the two-level converter. So far, many studies have been conducted on TLDCs[3-6]. In 2004, a novel four-switch half-bridge three-level DC/DC converter (HBTL-DC) was proposed[7], which is more attractive for industrial applications due to its simpler structure and lower cost in comparison with the conventional diode-clamped TLDC[4]. Then, many studies have been conducted based on the four-switch HBTL-DC. Ref.[8] discusses several new solutions to achieve the wide range of soft switching. For high voltage applications, a zero-voltage-switching TLDC with a second-side phase-shift-control is proposed in ref.[9]. Also, to optimize the switching loss and increase the converter’s efficiency, a new zero-voltage and zero-current switching TLDC is proposed in ref.[10]. The above studies mainly focus on the topics of soft switching techniques and the efficiency of the converter.

    Recently, more and more studies pay attention to another important design index for the TLDC, i.e., the reliability performance. To ensure the voltages on two input capacitors balancing, a new modulation strategy is proposed for the four-switch HBTL-DC[11]. Ref.[12] proposes a new modulation strategy to balance the currents on input capacitors in four-switch HBTL-DC. In ref.[13], input-parallel output-parallel (IPOP) connected HBTL-DCs with an interleaving control strategy are proposed to improve the reliability of input capacitors by balancing and minimize the currents on them. However, the currents of primary-side power switches in the IPOP TLDCs are unbalanced, which thus causes the unequal distribution of power losses and thermal stresses among them.

    This paper proposes a TLDC with an IPOP structure and a corresponding periodically swapping modulation (PSM) strategy. The IPOP structure can effectively reduce the current stresses of main power components, which makes the proposed converter more applicable for higher power applications. More significantly, by combining the proposed topology with a corresponding PSM strategy, not only the currents of two input capacitors can be balanced and greatly reduced, but also the currents of primary-side power switches can be balanced. Finally, the proposed converter with a PSM strategy is validated by both simulation and experimentation results.

    2 Topology and operating principle of the proposed converter with a PSM strategy

    Fig. 1 shows the topology of the proposed TLDC, which consists of two four-switch HBTL DC/DC converters namely module-1 and module-2. In Fig.1,C1andC2are two sharing input capacitors to split the input voltageVininto two voltagesV1andV2andCois a sharing output filter capacitor. In the module-1,S1,S2,S7,S8andD1,D2,D7,D8are power switches and diodes;Tr1is the isolated transformer;Lr1is the leakage inductance ofTr1;Cb1is the DC-blocking capacitor;Dr1~Dr4are output rectifier diodes;Lo1is the output filter inductor. The structure of module-2 is the same as that of module-1. Besides, in Fig.1,iinis the input current;i1~i8are the currents flowing throughS1/D1~S8/D8;ic1andic2are currents onC1andC2;ip1andip2are currents throughTr1andTr2;iLo1andiLo2are currents throughLo1andLo2;Vcb1andVcb2are voltages onCb1andCb2;ioandVoare output current and voltage;n1andn2are turns ratios ofTr1andTr2.

    Fig. 2 presents typically operating waveforms of the proposed converter with a PSM strategy. In Fig. 2,drv1~drv8are driving signals ofS1~S8,d1is a duty ratio in one switching period,Tsis one switching period,Vadis the voltage from pointatod,Vcbis the voltage between pointcandb. Besides, (S1,S2), (S3,S4), (S5,S6), and (S7,S8) are complementary switch pairs. (S1,S3), (S2,S4), (S5,S7), and (S6,S8) are switch pairs having the same driving signal.

    Fig. 1 The structure of the proposed IPOP TL DC/DC converters

    Fig. 2 The main operating waveforms with a PSM strategy

    To simplify the following analysis, some assumptions are made:

    1)Lo1andLo2are large enough to be regarded as the current sources;

    2) two modules are identical, i.e.,n1=n2=n;Lr1=Lr2=Lr;ip1= -ip2=ip;

    3)iinis regarded as a constant value.

    Fig. 3 presents equivalent circuits to illustrate the operating principle of the proposed converter with a corresponding PSM strategy shown in Fig. 2.

    Fig. 3 Equivalent circuits

    Stage 0[Beforet7]:S1S3,S6, andS8are all in on-state. For module-I, the power from the input source transfers to the output throughTr1,Dr1, andDr4. For module-II, the power fromCb2transfers to the output throughTr2,Dr6, andDr7. During this stage, the primary currentsip1andip2areio/2nand -io/2n, respectively; and the absolute values ofic1andic2are both |ip1|-|iin|.

    Stage 1 [t7~t8]:Att7,S6andS8are switched off. The parasitic capacitorsC6,C8begin to be charged and the parasitic capacitorsC5,C7begin to be discharged. Also,VadandVcbstart to decrease and increase, respectively. During this stage,ip1andip2are kept atio/2nand -io/2n, respectively; and the absolute values ofic1andic2are both |iin|.

    Stage 2 [t8~t9]:Att8,C6,C8andC5,C7are charged and discharged toVin/2 and 0, respectively. Also,Vaddecreases toVin/2 andVcbincreases toVin/2. Then, bothD5andD7conduct. Thus,ip1andip2flow throughLr1,Tr1,Lr2,Tr2,S1,S3,D5, andD7. During this stage,ip1andip2remainio/2nand -io/2n, respectively; and the absolute values ofic1andic2are still |iin|.

    Stage 3 [t9~t10]:Att9,S1andS3are switched off.C1,C3are charged and the parasitic capacitorsC2,C4are discharged.VadandVcbcontinue to decrease and increase, respectively. Besides,ip1andip2start to decrease and increase linearly, respectively. And they are not enough to provideio, soDr1~Dr8conduct simultaneously. The absolute values ofic1andic2change to |iin|+|ip2|. During this stage, the equations forip1andip2can be expressed as (1) and (2):

    (1)

    (2)

    Stage 4 [t10~t11]:Att10,C1,C3andC2,C4are charged and discharged toVin/2 and 0, respectively. Also,Vaddecreases to 0 andVcbincreases toVin. Then,D2andD4conduct. Thus, in the primary-side,ip1flows throughLr1,Tr1,D2,D7andip2flows throughLr2,Tr2,D4,D5. During this stage,ip1andip2still decrease and increase linearly, respectively; and the absolute values ofic1andic2remain |iin|+|ip2|.

    Stage 5 [t11~t12]: Att11,S2S4,S5, andS7are switched on at zero-voltage. Then,ip1andip2flow throughS2,S7andS4,S5, respectively, instead ofD2,D7andD4,D5.

    Stage 6 [t12~t13]: Att12,ip1andip2decrease and increase to 0, respectively. Then,ip1andip2change their current directions, i.e., become negative and positive respectively. During this stage, the absolute value ofic1andic2change to |ip2|-|iin|.

    Stage 7 [t13~t14]: Att13,ip1andip2decrease and increase to -io/2nandio/2n, respectively. Then,Dr1,Dr4,Dr6, andDr7become off-state. For module-I, the power from the input source transfers to the output throughTr1,Dr2, andDr3. For module-II, the power fromCb2transfers to the output throughTr2,Dr5, andDr8. During this stage,ip1andip2are kept at -io/2nandio/2n, respectively; and the absolute values ofic1andic2are still |ip2|-|iin|.

    The analysis of the following half switching period [t14~t21] is similar to that of the half-period [t7~t14], which is not repeated here. It should be mentioned that a corresponding PSM strategy is utilized for the proposed converter, i.e., duty ratios for switches pairsS1,S3,S5,S7and for switches pairsS2,S4,S6,S8are swapped in every switching frequency. Accordingly, the currents on the switchesS1~S8can be balanced in every two switching periods, whose detailed analysis are presented in Section 3.

    3 Performances and characteristics

    3.1 Voltage stresses on power switches

    The voltage stresses onS1~S8are only half of the input voltage (Vin/2) in steady states thanks to the TL structure.

    3.2 Duty cycle loss

    The duty cycle loss nameddlossin one switching periodTscan be obtained by:

    (3)

    3.3 Output voltage characteristics

    After considering the effect ofdlosson the output voltageVo,Vocan be calculated by:

    (4)

    where:d1is the duty ratio in one switching period.

    3.4 Currents on primary-side power switches

    Fig. 4 presents typical waveforms of the currents onS1/D1~S8/D8in the proposed converter with a corresponding PSM strategy.

    From Fig. 4, it can be seen thati1~i8are balanced in every two switching periods. Here, only the expression ofi1in two switching periods [t2~t30] is provided as (5):

    (5)

    According to (5), the root-mean-square (RMS) values ofi1~i8in the proposed converter namelyi1_rms-i8_rmscan be calculated by (6):

    (6)

    Note: i1~i8 are currents flowing through S1/D1 ~S8/D8, and ic1, ic2 are currents flowing through C1 and C2.Fig. 4 Tyical waveforms of i1~i8 and ic1, ic2

    3.5 Currents on input capacitors

    In Fig. 4, typical waveforms ofic1andic2are presented. It can be observed from Fig. 4 that the frequencies ofic1andic2are twice the switching frequency thanks to the interleaving control.

    According to Fig. 4,ic1andic2in a half switching period can be expressed as:

    (7)

    Because of utilizing the interleaving control,ip1andip2are just opposite as shown in Fig. 2.ip1andip2in a half switching period can be given as:

    Fig. 5 The simulation results

    (8)

    Time period [t2~t6] can be calculated as:

    (9)

    According to (7) ~ (9), RMS values ofic1andic2namelyic1_rmsandic2_rmscan be obtained as:

    (10)

    4 Simulation and experimental verification

    4.1 Simulation verification

    A simulation model is built in PLECS to verify the proposed converter with a corresponding PSM strategy. Its circuit parameters are presented in the Appendix.

    Fig. 5 presents simulation results includingVin,Vad,Vcb,Vo,iin,ip1,ip2,io,i1,i2,i3,i4,i5,i6,i7,i8,ic1andic2. From Fig. 5, it can be observed thati1~i8are balanced in every two switching periods, and the frequencies ofic1andic2are twice the switching frequency. Besides, the RMS values ofi1~i8are the same (i.e., 4.58A) and RMS values ofic1andic2are also the same (i.e., 3.49A).

    4.2 Experimental verification

    To verify the proposed converter with a corresponding PSM strategy, a 2kW experimental prototype is also established. Its circuit parameters are listed in Appendix.

    Fig. 6 shows the experimental results includingVin,Vo,ip1andip2. From Fig. 6, it can be observed thatip1andip2are just opposite because of the interleaving control.Fig. 7 shows the experimental results includingVad,Vcb,ic1andic2, in which it can be observed thatic1andic2are almost the same and relatively small.

    Fig. 6 The experimental results including Fig. 7 The experimental results including Vin, Vo, ip1 and ip2 Vad, Vcb, ic1and ic2

    The experimental results ofi1,i2,i7, andi8are shown in Fig. 8, in which it can be observed that their RMS values are almost the same.Fig. 9 shows the efficiencies of the proposed converter, in which the peak efficiency can reach 94.6%.

    In summary, the experimental results above are consistent with the theoretical analysis and simulation results, which verify that the proposed converter with a PSM strategy can achieve high efficiencies and effectively balance the currents among the primary-side power switches.

    Fig. 8 The experimental results including Fig. 9 The efficiencies results when i1, i2, i7 and i8 Vin = 550V and Vo= 50V 圖8 i1, i2, i7和i8試驗結果 圖9 當Vin=550V和Vo= 50V (逆變器)的效率曲線

    5 Conclusion

    In this paper, a new TLDC with a corresponding PSM strategy is proposed. The proposed converter is composed of two IPOP connected four-switch HBTL-DCs. Thus, the current stresses of the main power components in the proposed converter can be reduced due to the IPOP structure. Besides, the proposed converter with a corresponding PSM strategy has the following merits: balancing and minimizing the currents on two input capacitors, and balancing the currents among primary-side power switches. Consequently, the improved reliability performances can be achieved. Finally, the effectiveness and validities of the proposed converter with a PSM strategy are verified by both simulation and experimental results.

    猜你喜歡
    曲線效率試驗
    未來訪談:出版的第二增長曲線在哪里?
    出版人(2022年8期)2022-08-23 03:36:50
    幸福曲線
    英語文摘(2020年6期)2020-09-21 09:30:40
    提升朗讀教學效率的幾點思考
    甘肅教育(2020年14期)2020-09-11 07:57:42
    沿平坦凸曲線Hilbert變換的L2有界性
    CS95
    世界汽車(2017年8期)2017-08-12 04:39:15
    C-NCAP 2016年第八號試驗發(fā)布
    汽車與安全(2016年5期)2016-12-01 05:22:16
    試驗
    太空探索(2016年12期)2016-07-18 11:13:43
    多穗柯扦插繁殖試驗
    夢寐以求的S曲線
    Coco薇(2015年10期)2015-10-19 12:42:05
    跟蹤導練(一)2
    干丝袜人妻中文字幕| 搡老熟女国产l中国老女人| 欧美区成人在线视频| 亚洲乱码一区二区免费版| 国产av不卡久久| 久久久久九九精品影院| 国产大屁股一区二区在线视频| 久久精品国产亚洲av涩爱 | 久久国产精品人妻蜜桃| 亚洲人成网站在线播放欧美日韩| av国产免费在线观看| 久久久久久久午夜电影| 一进一出抽搐动态| netflix在线观看网站| 国产精品综合久久久久久久免费| 国产一区二区在线av高清观看| 啪啪无遮挡十八禁网站| 亚洲图色成人| 欧美区成人在线视频| 男女做爰动态图高潮gif福利片| 搡老妇女老女人老熟妇| 精品日产1卡2卡| 国产精品精品国产色婷婷| 久久久久久久久久黄片| 亚洲精品久久国产高清桃花| 一本精品99久久精品77| 婷婷亚洲欧美| 亚洲美女视频黄频| 久久亚洲真实| av黄色大香蕉| 日本熟妇午夜| 精华霜和精华液先用哪个| 久久久精品欧美日韩精品| 简卡轻食公司| 看黄色毛片网站| 国产高清视频在线播放一区| 国国产精品蜜臀av免费| 午夜激情福利司机影院| 中文资源天堂在线| 一级a爱片免费观看的视频| 亚洲性夜色夜夜综合| 日韩 亚洲 欧美在线| 免费观看精品视频网站| 久久精品人妻少妇| 欧美性感艳星| 国产精品久久久久久久久免| 老熟妇乱子伦视频在线观看| 久久婷婷人人爽人人干人人爱| 女人十人毛片免费观看3o分钟| 久久久国产成人精品二区| 免费av观看视频| 午夜福利高清视频| 国产国拍精品亚洲av在线观看| 禁无遮挡网站| 成人综合一区亚洲| 一进一出抽搐gif免费好疼| 国产91精品成人一区二区三区| 天天躁日日操中文字幕| 亚洲图色成人| 婷婷精品国产亚洲av| 国产主播在线观看一区二区| 夜夜爽天天搞| 国产精品一区二区免费欧美| 亚洲专区中文字幕在线| 亚洲18禁久久av| 99久久精品国产国产毛片| 亚洲天堂国产精品一区在线| 欧美日韩黄片免| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 亚洲av中文字字幕乱码综合| 色在线成人网| 夜夜爽天天搞| av在线老鸭窝| 嫩草影视91久久| 欧美一区二区国产精品久久精品| 很黄的视频免费| 欧美日韩国产亚洲二区| 国产不卡一卡二| 欧美zozozo另类| 欧美日韩亚洲国产一区二区在线观看| 九九在线视频观看精品| 99热网站在线观看| 久99久视频精品免费| 精品一区二区三区av网在线观看| 91午夜精品亚洲一区二区三区 | 亚洲国产精品合色在线| 免费电影在线观看免费观看| 俺也久久电影网| 亚洲av成人精品一区久久| 国产一级毛片七仙女欲春2| 88av欧美| 国产视频内射| 国产精品一区二区三区四区免费观看 | 人人妻人人澡欧美一区二区| 久久6这里有精品| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人看人人澡| 亚洲精品一区av在线观看| 欧美性感艳星| 国产精品久久电影中文字幕| 精品福利观看| 久久人人爽人人爽人人片va| 美女 人体艺术 gogo| 国产午夜精品论理片| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区三区| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 成人永久免费在线观看视频| avwww免费| 亚洲精品久久国产高清桃花| 赤兔流量卡办理| 欧美又色又爽又黄视频| 欧美激情在线99| 国产精品永久免费网站| 久久精品91蜜桃| 十八禁网站免费在线| 99精品久久久久人妻精品| 国产亚洲精品综合一区在线观看| 日韩精品有码人妻一区| av女优亚洲男人天堂| av专区在线播放| 婷婷精品国产亚洲av在线| 偷拍熟女少妇极品色| 成年女人毛片免费观看观看9| 黄色一级大片看看| 十八禁网站免费在线| 99热6这里只有精品| 亚洲性久久影院| 久久精品久久久久久噜噜老黄 | 此物有八面人人有两片| 91久久精品国产一区二区成人| 高清在线国产一区| 成人国产一区最新在线观看| 亚洲欧美日韩卡通动漫| 大又大粗又爽又黄少妇毛片口| 91午夜精品亚洲一区二区三区 | 全区人妻精品视频| 亚洲性夜色夜夜综合| 午夜福利成人在线免费观看| 亚洲成人久久性| 亚洲最大成人av| 男人狂女人下面高潮的视频| 日本黄大片高清| 我要看日韩黄色一级片| 午夜福利成人在线免费观看| 老熟妇仑乱视频hdxx| 最近视频中文字幕2019在线8| 欧美中文日本在线观看视频| 国产精品一区二区性色av| 九九热线精品视视频播放| 免费看日本二区| 欧美区成人在线视频| 精品久久国产蜜桃| 亚洲美女搞黄在线观看 | 国产男人的电影天堂91| 91麻豆av在线| 国产女主播在线喷水免费视频网站 | 色哟哟哟哟哟哟| 精品久久国产蜜桃| 亚洲图色成人| 婷婷精品国产亚洲av在线| 亚洲七黄色美女视频| 乱码一卡2卡4卡精品| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 精品99又大又爽又粗少妇毛片 | 成年免费大片在线观看| 免费av不卡在线播放| 十八禁网站免费在线| 美女高潮的动态| 成人国产综合亚洲| 久久久久久国产a免费观看| 国产69精品久久久久777片| 免费看光身美女| 99热只有精品国产| 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸| 国国产精品蜜臀av免费| 中文在线观看免费www的网站| 男女啪啪激烈高潮av片| 一区二区三区免费毛片| 中文字幕av在线有码专区| 婷婷色综合大香蕉| 禁无遮挡网站| 国产白丝娇喘喷水9色精品| 97超视频在线观看视频| 91精品国产九色| 国产熟女欧美一区二区| 嫩草影院新地址| 久久国产精品人妻蜜桃| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 免费观看在线日韩| а√天堂www在线а√下载| 乱码一卡2卡4卡精品| 神马国产精品三级电影在线观看| a在线观看视频网站| 国产精品不卡视频一区二区| 亚洲av免费在线观看| 99热这里只有是精品在线观看| av福利片在线观看| 黄色视频,在线免费观看| 亚洲精品乱码久久久v下载方式| 国产精品一区二区性色av| 男女之事视频高清在线观看| 小蜜桃在线观看免费完整版高清| 99热网站在线观看| 欧美丝袜亚洲另类 | 热99re8久久精品国产| 一个人看的www免费观看视频| 麻豆国产97在线/欧美| 亚洲男人的天堂狠狠| 日本免费一区二区三区高清不卡| 亚洲精品久久国产高清桃花| 人妻制服诱惑在线中文字幕| 亚洲狠狠婷婷综合久久图片| 久久久精品大字幕| 国产主播在线观看一区二区| 免费看av在线观看网站| 91久久精品电影网| 亚洲va在线va天堂va国产| 91狼人影院| 亚洲18禁久久av| 国产v大片淫在线免费观看| 国产精品一区二区性色av| 91在线精品国自产拍蜜月| 国产精品电影一区二区三区| 亚洲一级一片aⅴ在线观看| 干丝袜人妻中文字幕| 日本黄大片高清| 一区二区三区四区激情视频 | 级片在线观看| 男人舔女人下体高潮全视频| 夜夜夜夜夜久久久久| 熟女电影av网| 免费看美女性在线毛片视频| 看片在线看免费视频| 色综合亚洲欧美另类图片| 桃色一区二区三区在线观看| 成人av一区二区三区在线看| 亚洲五月天丁香| 色综合婷婷激情| 免费电影在线观看免费观看| 亚洲图色成人| 精品久久久久久久久亚洲 | 亚洲成人中文字幕在线播放| 久久久国产成人免费| 成人国产综合亚洲| 国产黄色小视频在线观看| 精品久久久噜噜| 亚洲精品成人久久久久久| 精品欧美国产一区二区三| 欧美激情久久久久久爽电影| 少妇裸体淫交视频免费看高清| 免费在线观看日本一区| 国产91精品成人一区二区三区| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕一区二区三区有码在线看| av在线天堂中文字幕| 人妻丰满熟妇av一区二区三区| 男女下面进入的视频免费午夜| 无人区码免费观看不卡| 成人毛片a级毛片在线播放| 一个人观看的视频www高清免费观看| 少妇的逼水好多| 久久精品国产清高在天天线| 久久久久久久久久久丰满 | 国产人妻一区二区三区在| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 看片在线看免费视频| 美女黄网站色视频| 别揉我奶头 嗯啊视频| 午夜福利在线在线| 午夜激情福利司机影院| 日本黄大片高清| 一区二区三区免费毛片| 国语自产精品视频在线第100页| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 热99在线观看视频| 国产69精品久久久久777片| 国产精品综合久久久久久久免费| 好男人在线观看高清免费视频| 亚洲av二区三区四区| 亚洲av一区综合| 国产伦精品一区二区三区四那| 99热网站在线观看| 国内久久婷婷六月综合欲色啪| 国产精品福利在线免费观看| 在线免费观看不下载黄p国产 | 久久精品国产亚洲网站| 亚洲精品亚洲一区二区| 国产淫片久久久久久久久| 在线观看免费视频日本深夜| 97热精品久久久久久| 看免费成人av毛片| 69人妻影院| 国产精品不卡视频一区二区| 嫩草影院精品99| 窝窝影院91人妻| 色综合亚洲欧美另类图片| 亚洲欧美精品综合久久99| 97碰自拍视频| 午夜激情欧美在线| 97碰自拍视频| 精品无人区乱码1区二区| 1000部很黄的大片| 麻豆成人午夜福利视频| 成人av一区二区三区在线看| 麻豆成人午夜福利视频| 91久久精品电影网| 亚洲成人久久爱视频| 999久久久精品免费观看国产| 在线观看午夜福利视频| av福利片在线观看| 日韩欧美精品免费久久| 九九在线视频观看精品| 一本久久中文字幕| 亚洲中文字幕日韩| 国产亚洲精品av在线| 麻豆国产97在线/欧美| 亚洲人成网站高清观看| 五月玫瑰六月丁香| 人妻丰满熟妇av一区二区三区| 久久中文看片网| 国产久久久一区二区三区| www日本黄色视频网| 日本撒尿小便嘘嘘汇集6| 一进一出抽搐gif免费好疼| 亚洲av免费高清在线观看| 亚洲成人免费电影在线观看| 在线观看午夜福利视频| 国产熟女欧美一区二区| 久久九九热精品免费| 国产视频一区二区在线看| 免费搜索国产男女视频| 伦理电影大哥的女人| 两个人视频免费观看高清| netflix在线观看网站| 色综合站精品国产| 赤兔流量卡办理| 久久久久久国产a免费观看| 精品国内亚洲2022精品成人| 国产av不卡久久| 日韩大尺度精品在线看网址| 十八禁网站免费在线| 久久久久久久亚洲中文字幕| 波多野结衣高清作品| 国产在视频线在精品| 国产高清激情床上av| 精品99又大又爽又粗少妇毛片 | 午夜精品一区二区三区免费看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一区二区免费欧美| 我的女老师完整版在线观看| 午夜久久久久精精品| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| 搡老岳熟女国产| 婷婷丁香在线五月| 国产主播在线观看一区二区| 中文字幕人妻熟人妻熟丝袜美| 男女下面进入的视频免费午夜| 人妻久久中文字幕网| 男人舔女人下体高潮全视频| 亚洲第一电影网av| 久久久久久久久大av| 精品久久久久久久久久久久久| 久久婷婷人人爽人人干人人爱| 直男gayav资源| www.色视频.com| 在线播放国产精品三级| 久久久久久久久久黄片| 成人一区二区视频在线观看| 九九热线精品视视频播放| 人人妻人人看人人澡| 国产一区二区三区在线臀色熟女| 欧美激情国产日韩精品一区| 日本爱情动作片www.在线观看 | 少妇丰满av| 精品久久久久久成人av| 国产精品久久久久久精品电影| 久久精品国产亚洲av天美| 九九久久精品国产亚洲av麻豆| 内地一区二区视频在线| 国产精品免费一区二区三区在线| 国产成人a区在线观看| 欧美黑人欧美精品刺激| 99精品在免费线老司机午夜| 九九热线精品视视频播放| 日韩在线高清观看一区二区三区 | 窝窝影院91人妻| 色综合站精品国产| 久久久久久久久久成人| 日日干狠狠操夜夜爽| 黄色一级大片看看| 性色avwww在线观看| 久久精品91蜜桃| 1024手机看黄色片| 99国产极品粉嫩在线观看| 色视频www国产| 午夜影院日韩av| 国产v大片淫在线免费观看| 久久精品久久久久久噜噜老黄 | 欧美一区二区国产精品久久精品| 中国美白少妇内射xxxbb| 日本免费a在线| 国产精品一区二区三区四区免费观看 | 久久午夜亚洲精品久久| 精品人妻偷拍中文字幕| 国产69精品久久久久777片| 精华霜和精华液先用哪个| 九九爱精品视频在线观看| 香蕉av资源在线| 国产综合懂色| 女生性感内裤真人,穿戴方法视频| 人人妻人人看人人澡| 亚洲av一区综合| 日韩精品中文字幕看吧| 午夜免费激情av| 12—13女人毛片做爰片一| 午夜激情福利司机影院| 搡老岳熟女国产| 亚洲图色成人| АⅤ资源中文在线天堂| 国产精品不卡视频一区二区| 欧美在线一区亚洲| 九九在线视频观看精品| 乱系列少妇在线播放| 男人舔奶头视频| 一级av片app| 国产精品av视频在线免费观看| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区久久| 亚洲午夜理论影院| 亚洲七黄色美女视频| 波野结衣二区三区在线| 99在线视频只有这里精品首页| 男人舔奶头视频| 91精品国产九色| 国产蜜桃级精品一区二区三区| 国产综合懂色| 亚洲无线在线观看| 黄色配什么色好看| 午夜免费激情av| 久久久久久九九精品二区国产| 欧美色欧美亚洲另类二区| 亚洲成人中文字幕在线播放| 欧美激情在线99| 日韩国内少妇激情av| 免费搜索国产男女视频| av在线蜜桃| 在线免费观看不下载黄p国产 | 男女那种视频在线观看| 成年女人永久免费观看视频| 亚洲最大成人中文| 99久久精品国产国产毛片| 亚洲 国产 在线| 国产精品伦人一区二区| 99热网站在线观看| 真人做人爱边吃奶动态| 91在线精品国自产拍蜜月| 女同久久另类99精品国产91| 久99久视频精品免费| 日韩欧美精品v在线| 直男gayav资源| 哪里可以看免费的av片| 91狼人影院| 日本 欧美在线| 1000部很黄的大片| 男人狂女人下面高潮的视频| 免费电影在线观看免费观看| 日韩欧美在线乱码| 一个人观看的视频www高清免费观看| 成年女人看的毛片在线观看| xxxwww97欧美| 色综合亚洲欧美另类图片| 成人一区二区视频在线观看| 最近中文字幕高清免费大全6 | 亚洲aⅴ乱码一区二区在线播放| 夜夜看夜夜爽夜夜摸| 少妇人妻精品综合一区二区 | 伦理电影大哥的女人| 久久国内精品自在自线图片| 久久精品人妻少妇| 国产精品久久电影中文字幕| 九色成人免费人妻av| 搞女人的毛片| 国产成人影院久久av| 又粗又爽又猛毛片免费看| 人妻久久中文字幕网| 国产精品人妻久久久影院| 午夜日韩欧美国产| 日本 欧美在线| 99久久久亚洲精品蜜臀av| 男人狂女人下面高潮的视频| 亚洲av免费在线观看| 韩国av一区二区三区四区| 中亚洲国语对白在线视频| 国产高清视频在线播放一区| 欧美成人免费av一区二区三区| 日本精品一区二区三区蜜桃| 搞女人的毛片| 国内精品宾馆在线| 国产精品无大码| 最近最新中文字幕大全电影3| 国产一区二区亚洲精品在线观看| 日韩国内少妇激情av| 给我免费播放毛片高清在线观看| 国产精品综合久久久久久久免费| 欧美日韩亚洲国产一区二区在线观看| 男女视频在线观看网站免费| 老熟妇仑乱视频hdxx| 干丝袜人妻中文字幕| 久久中文看片网| 亚洲国产日韩欧美精品在线观看| 一个人观看的视频www高清免费观看| 网址你懂的国产日韩在线| 久久天躁狠狠躁夜夜2o2o| 一进一出抽搐gif免费好疼| 国产精品久久久久久久久免| 日韩精品有码人妻一区| 天堂影院成人在线观看| 九色成人免费人妻av| 黄色配什么色好看| 麻豆国产av国片精品| 97人妻精品一区二区三区麻豆| 乱码一卡2卡4卡精品| 最近视频中文字幕2019在线8| 日本成人三级电影网站| 麻豆精品久久久久久蜜桃| 国产精品久久久久久精品电影| 久久久久久久久中文| 午夜福利在线观看吧| 波多野结衣高清无吗| 尤物成人国产欧美一区二区三区| 最近视频中文字幕2019在线8| 国产精品亚洲一级av第二区| 一级黄片播放器| 他把我摸到了高潮在线观看| 中国美白少妇内射xxxbb| a在线观看视频网站| 人人妻人人澡欧美一区二区| av在线老鸭窝| 日本爱情动作片www.在线观看 | 麻豆国产97在线/欧美| 白带黄色成豆腐渣| 能在线免费观看的黄片| 久久婷婷人人爽人人干人人爱| 色综合婷婷激情| www.www免费av| 国产精品福利在线免费观看| 精品一区二区三区av网在线观看| 91在线精品国自产拍蜜月| 亚洲成人久久性| 亚洲人成网站在线播| 久久久久久国产a免费观看| 国产乱人伦免费视频| 午夜激情欧美在线| 国产私拍福利视频在线观看| 内射极品少妇av片p| 麻豆国产av国片精品| 在线观看一区二区三区| 看片在线看免费视频| 欧美成人一区二区免费高清观看| 2021天堂中文幕一二区在线观| 99热这里只有是精品50| 两个人视频免费观看高清| 午夜福利高清视频| 尤物成人国产欧美一区二区三区| 国产精品女同一区二区软件 | 久久精品国产99精品国产亚洲性色| 国产高清视频在线观看网站| 伦理电影大哥的女人| 在线免费观看不下载黄p国产 | 国产亚洲精品av在线| 99久久精品国产国产毛片| www日本黄色视频网| 精品久久久久久久人妻蜜臀av| 日韩欧美精品免费久久| 国产真实伦视频高清在线观看 | 狠狠狠狠99中文字幕| 国产精品综合久久久久久久免费| 亚洲第一电影网av| 免费观看人在逋| 成人毛片a级毛片在线播放| 国内久久婷婷六月综合欲色啪| 美女xxoo啪啪120秒动态图| 身体一侧抽搐| 国产久久久一区二区三区| 欧美性猛交╳xxx乱大交人| 三级男女做爰猛烈吃奶摸视频| 啦啦啦啦在线视频资源| 少妇的逼好多水| 欧美最新免费一区二区三区| 欧美丝袜亚洲另类 | 欧美绝顶高潮抽搐喷水| 久99久视频精品免费| 日日撸夜夜添| 欧美激情国产日韩精品一区| 能在线免费观看的黄片| 我的女老师完整版在线观看| 看免费成人av毛片| 很黄的视频免费| 天堂动漫精品| 免费av不卡在线播放| 国产精品伦人一区二区| 色综合站精品国产| 成年女人看的毛片在线观看| 国产精品久久电影中文字幕| 99九九线精品视频在线观看视频| 欧美日韩黄片免|