• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-level LCC resonant DC-DC converter with high-gain modular

    2022-02-25 03:24:24WUJiahuiLIUDongWANGYanboCHENZhe

    WU Jiahui, LIU Dong, WANG Yanbo, CHEN Zhe

    Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark

    [Abstract]In this article, four types of resonant converters were introduced firstly, which are series resonant converter, parallel resonant converter, series-parallel resonant converter and multi-component resonant converter.Then their merits and demerits were discussed briefly.In the meantime, the recent research status was outlined through many related papers.On this basis, a three-level (TL) series-parallel resonant converter with a structure reconfigurable control was proposed for medium voltage application with high-gain modular.Compared with the traditional resonant converter, the proposed converter has two operation configurations, which can not only satisfy the wide output range, but also shrink the switching frequency range close to the resonant frequency.And the voltage stress of primary side switch can be reduced by half thanks to the TL structure, which is beneficial to reduce the cost.Consequently, theefficiency over the wide output range can be improved.The operation principle, characteristics, and performances of the proposed converter were analyzed.Finally, the simulation results were presented to verify the effectiveness of the proposed converter.

    [Key words] three-level (TL) series-parallel resonant converter; structure-reconfigurable control; high-gain modular

    1 Introduction

    Resonant DC/DC converters with high switching frequency have been widely applied for renewable energy systems (e.g.photovoltaic generation, electric vehicles, and energy storage system) because of its merits including galvanic isolation, wide range of zero-voltage switching (ZVS), high efficiency[1-3].In terms of the topology type of the resonant tank, the resonant converter can be classified into series resonant converter, parallel resonant converter, series-parallel resonant converter and multi-component resonant converter[4-6].Series resonant converter has fewer resonant component and simple structure, the resonant current is reduced with respect to load.However, the unified voltage gain is less than 1, which is not satisfied with the application of wide range of output voltage[7,8].Compared with the series resonant converter, parallel resonant converter overcomes the issue of voltage gain, but the efficiency is much lower thanks to larger circulation of reactive power under rated mission profile.Series-parallel resonant converter combines the advantages of previous two converters.Besides, it has fewer resonant components than multi-component resonant converter and more conducive to realize high power density.

    In general, the pulse frequency modulation (PFM) control is utilized for series-parallel resonant converter to adjust the voltage gain.Renewable energy source such as photovoltaic generation and energy storage system feature a wide range of input or output voltage.Thus, wide range of switch frequency is required for these application and leads to increased switching power losses.

    In order to shrink the range of switching frequency as much as possible while meeting the requirement of voltage gain.Many approaches based on new control strategies and reconfigurable structure have been proposed to solve this challenge[9-15].Ref.[9] proposes pulse width modulation (PWM) control for a series-parallel resonant converter, in which the switching frequency is fixed at the resonant frequency.In ref.[10-12], phase shift control e.g.single phase control, extended phase shift control and triple phase shift control were proposed to obtain high-gain modular.However, the wide range of ZVS characteristics of resonant converter with fixed switching frequency control would be easily lost, resulting in further decrease of efficiency and EMI problems.To reduce the power loss caused by high switching frequency, some hybrid control strategies are proposed to obtain wide voltage range with a small variation of switching frequency.In ref.[13], PWM-PFM hybrid controlled LLC resonant converter is proposed for wide range of ZVS and input voltage, PFM and PWM control are utilized for high voltage gain and low voltage gain respectively, the maximum switching frequency of the converter would be restricted as the boundary of mode transition, thus the switching frequency would not be reached so high at the lowest voltage gain.In ref.[14], an improved PWM-PFM hybrid control strategy is adopted for resonant LCC converter with double closed control-loop, the voltage outer loop is utilized to adjust the switching frequency, and the inner loop based on the calculation of the switching frequency and voltage gain is used to adjust the conduction angle simultaneously.Ref.[15] proposes a self-sustained phase-shift modulation LCC resonant converter, the resonant current is detected for achieving the inner loop control of conduction angle.However, additional control loop is needed for these hybrid control strategies, and the parameter design is complicated.

    As for the reconfigurable structures to achieve wide range of voltage within small variation of switching frequency, they can be further divided into two types that are reconfigurable resonant tank and reconfigurable bridge.In order to meet the requirements of wide output range for PV system, a series resonant converter with dual-mode rectifier is proposed in ref.[16].In ref.[17], a semi-active reconfigurable rectifier is proposed, in which the proposed rectifier has the voltage-double and voltage-quadruple configuration.Similarly, a reconfigurable bridge structure with three operation configuration is proposed in ref.[18].Ref.[19] proposes a LLC resonant converter with the variable resonant frequency by utilizing two resonant tank with different resonant parameters.In ref.[20], an improved LLC converter is proposed, in which four different operation configurations can be realized by adjusting the turns ratio of the transformer.However, this kind of topology has less cost.

    In the above structure-configurable resonant converters[16-20],the primary-side power devices need to withstand the whole input voltage, which makes them not suitable for the high input voltage applications.Accordingly, a three-level (TL) LCC resonant converter with the structure-configurable control is proposed in this paper for the high input voltage and wide range of output applications.There are two operation configurations in the proposed converter, which can thus not only extend the adjustable output voltage range, but also shrink the switching frequency close to the resonant frequency.Accordingly, the efficiency over the wide output range can be improved.The operation principle, performances, and the effectiveness of the proposed converter with the structure-configurable control is verified by the simulation results.

    2 Circuit topology and operation priciple

    2.1 Circuit topology

    The circuit topology of the proposed TL LCC resonant converter is shown as Fig.1.In Fig.1, two input capacitorsCi1andCi2are in series to split the input voltageVininto two voltagesV1andV2;S1/D1~S8/D8are primary-side power devices;Cs1andCs2are two clamping capacitors;D9~D12are four clamping diodes;C1~C8are parasitic capacitors ofS1/D1~S8/D8;Lr,CpandCrare resonant inductor and capacitors,Lris composed of an external independent inductor plus transformer leakage inductance.In order to make full use of transformer leakage inductance,Cpis connected in parallel with the secondary side of the transformer;Dr1~Dr4are secondary-side rectifier diodes;Cois the output filter capacitor.Besides,Vabis the voltage between pointaandb;ipis the primary current throughLr;iCp,vCpis the current throughCpand the voltage onCprespectively;vCris the voltage onCr;io1andioare the output current beforeCoand afterCorespectively.

    Fig.1 The circuit Topology

    2.2 Operation principle

    In order to simplify the following analysis, some assumptions are made below:

    1) Input capacitorsCi1,Ci2and clamping capacitorsCs1,Cs2are large enough to be considered as the voltage sources with the value ofVin/2;

    2) The output filer capacitorCois large enough to be considered as the voltage source;

    3) The parasitic capacitorsC1~C8have the same value namedCeq;

    4) The short period of the primary voltageVabwith the high voltageVincan be neglected in the configuration Ⅱ.

    There are two working configurations of the proposed TL LCC DC/DC converter to satisfy the wide output range.Fig.2(a) and 2(b) show the operation principle of the configuration Ⅰ and Ⅱ respectively.In Fig.2,drv1~drv8are the driving signals for the power devicesS1/D1~S8/D8;Tsis the switching period; and (drv1,drv4), (drv2,drv3), (drv5,drv8), (drv6,drv7) are complementary.The output voltageVois adjusted by changing the switching frequencyfs.In the configuration I,drv1~drv8are all 0.5*Tsif neglecting the dead time, the primary voltage of the transformerVabisVinand -Vin.In the configuration Ⅱ,drv1,drv4are 0, which means the switches ofS1andS4are turned off during the entire switching cycle,anddrv2drv3,drv5,drv6,drv7,drv8are all 0.5*Tsif neglecting the dead time, the primary voltage of the transformerVabisVin/2 and -Vin/2.Therefore, the voltage gain in the configuration I is twice of that in the configuration Ⅱ under the same operation conditions.

    Fig.2 The operation principle

    Fig.3 shows the equivalent circuits in the configuration Ⅰ when the switching frequencyfsequals to the resonant frequencyfrif neglecting the dead time.The resonant frequencyfrcan be obtained by (1):

    Fig.3 The equivalent circuits in the configuration Ⅰ

    (1)

    The analysis of other operation conditions (fs>frandfs

    Stage 0 [beforet0]:the switchesS3,S4,S5, andS6are all in on-state.The primary currentipis negative.During this stage, the voltage on the paralleled capacitorCpis -Vo, so the current of secondary sideisdecrease linearly.The primary voltageVabis -Vin.The output rectifier diodesDr2andDr3conduct to transfer the power to the load.

    Stage 1 [t0~t1]:Att0, the switchesS1,S2,S7andS8turn on with zero voltage state because their body diodes are all in on-state beforet0, and the switchesS3,S4,S5,S6are turned off.The primary voltageVabchanges toVin.The output rectifier diodesDr2,Dr3turn off andDr1,Dr4turn on.During this stage,vCpisVo, so the current of secondary sideisincreases linearly.isincreases to 0A att1.

    Stage 2 [t1~t2]:Att1, all of the rectifier diodes of secondary side turn off, the paralleled capacitorCpis charged by the resonant currentiCpfrom the primary side.The voltage onCpincreases from -Voand reachesVoatt2.And the current through theCpincreases and reaches the peak current att2.During this stage, the output voltage is supported by the output capacitorCo.

    Stage 3 [t2~t3]:Att2, the voltage on the paralleled capacitorCpis equal to the output voltage, the rectifier diodesDr1andDr4turn on.The current of primary sideipis positive and decreases to 0A att3.During this stage, the energy is transformed from primary side to secondary side

    Att3, the next switching period starts.The related analysis is the same as that of [t0~t3], which is not repeated here.

    Fig.4 shows the equivalent circuits in the configuration Ⅱ when the switching frequencyfsequals to the resonant frequencyfr.The analysis of other operation conditions (fs>frandfs

    Fig.4 The equivalent circuits in the configuration Ⅱ

    Stage 0 [beforet0]:the switchesS3,S5, andS6are all in on-state.The primary currentipis negative.During this stage, the voltage on the paralleled capacitorCpis -Vo, so the current of secondary sideisdecreases linearly.The primary voltageVabis -Vin/2.The output rectifier diodesDr2andDr3conduct to transfer the power to the load.

    Stage 1 [t0~t1]:Att0, the switchesS2,S7andS8turn on with zero voltage state because their body diodes are all in on-state beforet0, and the switchesS1,S3,S4,S5,S6are turned off.The primary voltageVabchanges toVin/2.The output rectifier diodesDr2,Dr3turn off andDr1,Dr4turn on.During this stage,vCpisVo, so the current of secondary sideisincreases linearly.isincreases to 0A att1.

    Stage 2 [t1~t2]:Att1, all of the rectifier diodes of secondary side turn off, the paralleled capacitorCpis charged by the resonant currentiCpfrom the primary side.The voltage onCpincreases from -Voand reachesVoatt2.And the current through theCpincreases and reaches the peak current att2.During this stage, the output voltage is supported by the output capacitorCo.

    Stage 3 [t2~t3]:Att2, the voltage on the paralleled capacitorCpis equal to the output voltage, the rectifier diodesDr1andDr4turn on.The current of primary sideipis positive and decreases to 0A att3.During this stage, the energy is transformed from primary side to secondary side

    Att3, the next switching period starts.The related analysis is the same as that of [t0~t3], which is not repeated here.

    3 Characteristics and performance

    3.1 Voltage gain

    Before analyzing the voltage gain, the following parameters are defined in the equations(2), (3), and(4):

    (2)

    (3)

    (4)

    (5)

    In (2)~(4),Rois the load resistance,Reis the reflected load resistance,Qis the quality factor, andmis the capacitance ratio.

    When the converter operates in the configuration I, the primary voltageVabisVinand -Vin, so the normalized voltage gain namedG_Ican be obtained by (6) according to the first harmonic approximation (FHA) method:

    (6)

    When the converter operates in the configuration Ⅱ, the primary voltageVabisVin/2 and -Vin/2, so the normalized voltage gain namedG_Ⅱcan be obtained by (7) according to the FHA method:

    (7)

    Fig.5 shows the normalized voltage gain curves of the two operation configurations when having the constant output resistance.

    From Fig.5, the following points can be observed:

    Fig.5 The normalized voltage gain curves under two configurations and operation range

    1) The voltage gain range can be extended by changing the two operation configurations;

    2) A wider output voltage range can be achieved within a narrow switching frequency that is close to the resonant frequency.

    It needs to be mentioned that the minimum voltage gain of the configuration I should be equal to or smaller than the maximum voltage gain of the configuration Ⅱ to ensure the output voltage changing smoothly.

    3.2 Mode transition and control

    The operation range with the switching frequency range are marked by the red color line in Fig.5.

    Under the configuration I, the range of the normalized voltage gain is fromGI_maxtoGI_ minand the range of the normalized switching frequency is fromfsI_mintofsI_max.The configuration I is used for the highly required output voltage.The output voltage can be reduced by increasing the switching frequency.

    The configuration Ⅱ starts to be utilized to further reduce the output voltage when the voltage gain declines toGI_min.Under the configuration Ⅱ, the range of the normalized voltage gain is fromGⅡ_ maxtoGⅡ_ minand the normalized switching frequency is fromfsⅡ_ mintofsⅡ_ max.

    Based on the above analysis, it can be concluded that the proposed structure-reconfigurable control can not only extend the total range of the normalized voltage to [GⅡ_ mintoGI_ max], but also squeeze the total range of switching frequency which is near the resonant switching frequency.

    3.3 Soft-switching performance

    The soft-switching performance of the proposed converter is the same as that of the conventional LCC resonant converter.The primary-side power switches can achieve the ZVS in the entire operation range in the proposed converter.The secondary-side rectifier diodes can achieve the ZCS when the switching frequency is the same as and smaller than the resonant frequency.

    3.4 Mode transition design

    Firstly, the required peak voltage gain should be included in the designed operation range of voltage gain, which means that the following equation (8) should be also fulfilled:

    (8)

    Based on (8), the actual range of switch frequency [fsI_min,fsⅡ_max] can be obtained.

    Then, the switching frequency at the mode transition point namelyfs_twill be selected belowfⅡ_max.In order to ensure the transition between the configuration I and Ⅱ smoothly, the equation (9) should be fulfilled:

    G_I(m,fs_t,Q)=G_Ⅱ(m,fs_t,Q)

    (9)

    Besides, the voltage gain at the mode transition can be obtained based on (9).

    4 Simulation verification

    In order to verify the proposed converter with the structure-reconfigurable control, a simulation model is established in PLECS, whose circuit parameters are shown in Appendix.

    Fig.6 presents the simulation results in two configurations.From Fig.6, it can be observed that:

    Fig.6 The simulation results in two configurations

    1) the output voltageVocan be adjusted to be 200V and 400V as shown in Figs.6(a) and 6(d), which means that the voltage gain would be 2 and 0.4;

    2) the output voltageVocan be adjusted to be both 60V in the configuration Ⅰ (fsis 106kHz) and configuration Ⅱ (fs= 97kHz) as shown in Figs.6(b) and 9(c), which means the transition between two configurations would be seamless.

    It needs to be mentioned that there exists an error in the switching frequency corresponding to the voltage gain when comparing the simulation results with theoretical calculations, especially under the operating condition that the switching frequency is far from the resonance frequency.The reason of causing this error is that the current distortion affects the accuracy of FHA.

    5 Conclusion

    This paper proposes a TL series-paralleled LCC resonant DC/DC converter with the structure-reconfigurable control for the wide output range and high input voltage applications.There are two operation configurations in the proposed converter.By utilizing these two configurations, the wider output voltage range can be realized under the squeezed switching frequency range near the resonant frequency in comparison with the conventional resonant converter with only PFM control.Consequently, the efficiency over the wide output range can be improved.Finally, the simulation results are demonstrated to verify the effectiveness of the proposed converter with the structure-reconfigurable control.

    Table 1 shows the circuits parameters of the established simulation model.

    Table 1 The circuit parameters of the established simulation model

    超碰97精品在线观看| 高清视频免费观看一区二区| 在线播放无遮挡| 亚洲色图av天堂| av网站免费在线观看视频| 国产黄色免费在线视频| 夫妻午夜视频| 最近2019中文字幕mv第一页| 最近最新中文字幕大全电影3| 麻豆成人av视频| 日韩人妻高清精品专区| 国产精品国产三级国产av玫瑰| 色播亚洲综合网| 成人鲁丝片一二三区免费| 成人午夜精彩视频在线观看| 久久久亚洲精品成人影院| 久久99热这里只有精品18| 国产综合精华液| 国产精品久久久久久精品电影小说 | 国产亚洲91精品色在线| 欧美日韩国产mv在线观看视频 | 搞女人的毛片| 久久精品人妻少妇| 日韩大片免费观看网站| 美女cb高潮喷水在线观看| 99久久人妻综合| 99久久九九国产精品国产免费| 亚洲精品日韩av片在线观看| 国精品久久久久久国模美| 啦啦啦啦在线视频资源| 欧美人与善性xxx| 午夜福利在线在线| 欧美性感艳星| 国产精品久久久久久久久免| 五月开心婷婷网| 欧美日韩在线观看h| 我要看日韩黄色一级片| 韩国av在线不卡| 99久久精品一区二区三区| av在线蜜桃| 一本色道久久久久久精品综合| 国产免费一区二区三区四区乱码| av在线app专区| 国产精品.久久久| 国产一区二区在线观看日韩| 我要看日韩黄色一级片| 婷婷色综合www| 亚洲人与动物交配视频| 韩国高清视频一区二区三区| 久久精品国产亚洲av天美| 赤兔流量卡办理| 大香蕉久久网| 内射极品少妇av片p| 美女脱内裤让男人舔精品视频| 亚洲精品自拍成人| 少妇人妻 视频| 国产男女内射视频| 久久久精品欧美日韩精品| 亚洲色图综合在线观看| 综合色丁香网| 美女内射精品一级片tv| 五月天丁香电影| 免费在线观看成人毛片| 啦啦啦啦在线视频资源| 中文字幕人妻熟人妻熟丝袜美| 欧美变态另类bdsm刘玥| 国产成人精品福利久久| 精品人妻偷拍中文字幕| 日韩精品有码人妻一区| 国产精品三级大全| 天天躁日日操中文字幕| 白带黄色成豆腐渣| 在线天堂最新版资源| 美女脱内裤让男人舔精品视频| 亚洲av国产av综合av卡| 亚洲av成人精品一二三区| 国产成人精品婷婷| 午夜亚洲福利在线播放| 免费观看的影片在线观看| 人妻系列 视频| 亚洲精品一区蜜桃| 赤兔流量卡办理| 欧美日韩综合久久久久久| 亚洲av国产av综合av卡| 免费电影在线观看免费观看| 欧美一区二区亚洲| 亚洲四区av| 成人亚洲精品av一区二区| 国产一区二区三区综合在线观看 | 欧美另类一区| 成人二区视频| 最近中文字幕2019免费版| 久久久久久久久大av| 丰满少妇做爰视频| 中文字幕久久专区| 亚洲精品自拍成人| 亚洲,一卡二卡三卡| 亚洲精品国产av蜜桃| 少妇高潮的动态图| 国产欧美另类精品又又久久亚洲欧美| 国产人妻一区二区三区在| 赤兔流量卡办理| 国产精品偷伦视频观看了| 偷拍熟女少妇极品色| 欧美成人精品欧美一级黄| 白带黄色成豆腐渣| 爱豆传媒免费全集在线观看| 少妇熟女欧美另类| 国产白丝娇喘喷水9色精品| 免费av毛片视频| 亚洲va在线va天堂va国产| 一级爰片在线观看| 亚洲av中文av极速乱| 少妇裸体淫交视频免费看高清| 国产精品蜜桃在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品乱久久久久久| 99热6这里只有精品| 精品少妇黑人巨大在线播放| 国产伦精品一区二区三区视频9| 欧美xxxx黑人xx丫x性爽| tube8黄色片| 国产精品一区二区性色av| 久久久精品94久久精品| 久久久久久久大尺度免费视频| 女人久久www免费人成看片| 免费av毛片视频| 亚洲精品日本国产第一区| a级一级毛片免费在线观看| 国产精品国产三级专区第一集| 午夜免费鲁丝| 国产成人精品一,二区| 在线观看av片永久免费下载| 久久精品久久精品一区二区三区| 别揉我奶头 嗯啊视频| 你懂的网址亚洲精品在线观看| 国产一区亚洲一区在线观看| 99久国产av精品国产电影| 又爽又黄无遮挡网站| 九草在线视频观看| 亚洲精品,欧美精品| 国产视频首页在线观看| 亚洲国产成人一精品久久久| 寂寞人妻少妇视频99o| av一本久久久久| 亚洲精品456在线播放app| 网址你懂的国产日韩在线| 亚洲av.av天堂| 丝袜脚勾引网站| 欧美人与善性xxx| 亚洲av成人精品一二三区| 久久午夜福利片| 成人美女网站在线观看视频| 久久国产乱子免费精品| 久久久久九九精品影院| 免费看不卡的av| 婷婷色综合大香蕉| 亚洲四区av| 亚洲人成网站在线观看播放| 久久久久久久久久人人人人人人| 婷婷色麻豆天堂久久| 国产精品99久久久久久久久| 亚洲激情五月婷婷啪啪| 一级二级三级毛片免费看| 亚洲成人一二三区av| 99re6热这里在线精品视频| 哪个播放器可以免费观看大片| 91久久精品国产一区二区成人| 超碰97精品在线观看| 内射极品少妇av片p| 国产精品偷伦视频观看了| 99久久中文字幕三级久久日本| 在现免费观看毛片| 男人添女人高潮全过程视频| 神马国产精品三级电影在线观看| 丰满乱子伦码专区| 色视频www国产| 久久久久久久久久成人| 视频区图区小说| 国产免费一区二区三区四区乱码| 高清在线视频一区二区三区| 高清午夜精品一区二区三区| 日韩精品有码人妻一区| 一级毛片久久久久久久久女| 久久国内精品自在自线图片| 97在线人人人人妻| .国产精品久久| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 国产69精品久久久久777片| 久久亚洲国产成人精品v| 精品人妻偷拍中文字幕| 七月丁香在线播放| 久久午夜福利片| 高清毛片免费看| 少妇高潮的动态图| 久久精品国产自在天天线| 欧美激情在线99| 亚洲精品456在线播放app| 99re6热这里在线精品视频| 国产精品无大码| 18禁在线播放成人免费| 婷婷色麻豆天堂久久| 亚洲av男天堂| 成人无遮挡网站| av黄色大香蕉| 欧美xxⅹ黑人| 国产亚洲午夜精品一区二区久久 | 日韩欧美一区视频在线观看 | 国产成人a区在线观看| av卡一久久| 国产黄色视频一区二区在线观看| 国产精品国产三级国产专区5o| 国产淫语在线视频| 两个人的视频大全免费| 自拍欧美九色日韩亚洲蝌蚪91 | 夜夜看夜夜爽夜夜摸| 一级毛片 在线播放| 国产在视频线精品| 老女人水多毛片| 国产av码专区亚洲av| 亚洲一级一片aⅴ在线观看| 最近手机中文字幕大全| 伊人久久国产一区二区| 亚洲国产高清在线一区二区三| 啦啦啦在线观看免费高清www| 禁无遮挡网站| 天天一区二区日本电影三级| 久久久精品欧美日韩精品| 国产日韩欧美亚洲二区| 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说| 在线天堂最新版资源| 超碰av人人做人人爽久久| av在线app专区| 日产精品乱码卡一卡2卡三| 国产在视频线精品| 成人免费观看视频高清| 天美传媒精品一区二区| 久久久欧美国产精品| 亚洲av男天堂| 亚洲美女搞黄在线观看| 婷婷色麻豆天堂久久| 亚洲va在线va天堂va国产| 国产伦在线观看视频一区| 亚洲精品色激情综合| 晚上一个人看的免费电影| 人妻夜夜爽99麻豆av| 午夜福利视频精品| 十八禁网站网址无遮挡 | 99热网站在线观看| 国产亚洲一区二区精品| 久久精品人妻少妇| 毛片女人毛片| 国产精品一区二区在线观看99| 亚洲精品国产色婷婷电影| 国产 一区 欧美 日韩| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人久久小说| av.在线天堂| 久久久久久久精品精品| 人人妻人人看人人澡| 国产精品国产三级国产av玫瑰| 成人二区视频| 国产精品成人在线| 狂野欧美激情性bbbbbb| 边亲边吃奶的免费视频| 日本欧美国产在线视频| 老司机影院毛片| 成人漫画全彩无遮挡| 男人添女人高潮全过程视频| 日韩三级伦理在线观看| 极品少妇高潮喷水抽搐| 亚洲自拍偷在线| 国产精品嫩草影院av在线观看| 国产探花在线观看一区二区| 精品国产三级普通话版| 干丝袜人妻中文字幕| 国产成人freesex在线| 亚洲国产精品专区欧美| 亚洲精品乱码久久久v下载方式| 一区二区三区精品91| 一本一本综合久久| 国产熟女欧美一区二区| 大片免费播放器 马上看| 国产伦理片在线播放av一区| 91久久精品国产一区二区三区| 男女那种视频在线观看| 99久久中文字幕三级久久日本| 欧美 日韩 精品 国产| 久久久亚洲精品成人影院| 国内精品宾馆在线| 国产熟女欧美一区二区| 性色avwww在线观看| 成人高潮视频无遮挡免费网站| 又粗又硬又长又爽又黄的视频| 国产久久久一区二区三区| 免费看a级黄色片| 亚洲,一卡二卡三卡| 如何舔出高潮| 国产 一区 欧美 日韩| 亚洲欧美一区二区三区黑人 | 久久久久网色| 久久久a久久爽久久v久久| 国产男女超爽视频在线观看| av免费观看日本| 午夜老司机福利剧场| 亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 丰满少妇做爰视频| 精品一区二区三卡| av在线观看视频网站免费| 少妇猛男粗大的猛烈进出视频 | 日本wwww免费看| 久久久久九九精品影院| 一级毛片aaaaaa免费看小| 久久国产乱子免费精品| 亚洲综合精品二区| 久久久欧美国产精品| 精品国产三级普通话版| av女优亚洲男人天堂| 内射极品少妇av片p| 国产精品人妻久久久影院| 建设人人有责人人尽责人人享有的 | 能在线免费看毛片的网站| 久久久精品免费免费高清| 欧美日韩精品成人综合77777| 国产午夜精品久久久久久一区二区三区| 欧美极品一区二区三区四区| 久久影院123| 欧美成人a在线观看| 亚洲精品中文字幕在线视频 | 日韩成人av中文字幕在线观看| 搡老乐熟女国产| 亚洲不卡免费看| 亚洲成人av在线免费| 国产黄a三级三级三级人| 免费黄色在线免费观看| 亚洲无线观看免费| 亚洲综合色惰| 成人亚洲精品一区在线观看 | h日本视频在线播放| 国产成人福利小说| 亚洲图色成人| av网站免费在线观看视频| 午夜福利视频精品| 人妻一区二区av| 亚洲精品乱久久久久久| 性色av一级| 搞女人的毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美国产精品一级二级三级 | 免费观看性生交大片5| 国产亚洲av片在线观看秒播厂| 成人毛片60女人毛片免费| 国产精品精品国产色婷婷| 国产亚洲av片在线观看秒播厂| 男女下面进入的视频免费午夜| 能在线免费看毛片的网站| 九草在线视频观看| 久久久精品欧美日韩精品| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 欧美成人a在线观看| 亚洲国产精品999| 各种免费的搞黄视频| 日本黄色片子视频| 精品国产露脸久久av麻豆| 亚洲精品国产成人久久av| 内地一区二区视频在线| 欧美精品人与动牲交sv欧美| 日韩成人av中文字幕在线观看| 一级爰片在线观看| 国产真实伦视频高清在线观看| 亚洲综合精品二区| 不卡视频在线观看欧美| 国产av不卡久久| 中文字幕免费在线视频6| 国产永久视频网站| 日韩欧美精品免费久久| 91狼人影院| 国产成人精品婷婷| 欧美高清性xxxxhd video| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av成人精品| 在线精品无人区一区二区三 | 性色av一级| 国产亚洲5aaaaa淫片| 色视频www国产| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 3wmmmm亚洲av在线观看| 亚洲av在线观看美女高潮| 日韩制服骚丝袜av| 在线观看人妻少妇| 少妇的逼好多水| 国产色爽女视频免费观看| 哪个播放器可以免费观看大片| 欧美zozozo另类| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av一本久久久久| 伊人久久国产一区二区| 黄片无遮挡物在线观看| 久久久久网色| 波野结衣二区三区在线| 偷拍熟女少妇极品色| 欧美97在线视频| 在线观看一区二区三区| 免费黄色在线免费观看| 全区人妻精品视频| 免费观看性生交大片5| 波多野结衣巨乳人妻| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦理片在线播放av一区| 中文精品一卡2卡3卡4更新| 欧美极品一区二区三区四区| av在线观看视频网站免费| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 精品99又大又爽又粗少妇毛片| 日韩不卡一区二区三区视频在线| videos熟女内射| 免费av毛片视频| 在线观看一区二区三区激情| 男女边吃奶边做爰视频| 伦精品一区二区三区| 女人十人毛片免费观看3o分钟| av天堂中文字幕网| 男人和女人高潮做爰伦理| 纵有疾风起免费观看全集完整版| 国产视频内射| 3wmmmm亚洲av在线观看| 老师上课跳d突然被开到最大视频| 一本色道久久久久久精品综合| 日韩电影二区| 美女xxoo啪啪120秒动态图| 人妻制服诱惑在线中文字幕| 国模一区二区三区四区视频| 我的老师免费观看完整版| 精品人妻熟女av久视频| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 在线观看一区二区三区| 99热这里只有是精品50| 嫩草影院精品99| 亚洲最大成人中文| 国产在视频线精品| 亚洲精品乱码久久久久久按摩| 久久久久性生活片| 日韩精品有码人妻一区| 欧美一级a爱片免费观看看| 男女国产视频网站| 岛国毛片在线播放| 日本欧美国产在线视频| 国产亚洲5aaaaa淫片| 人妻夜夜爽99麻豆av| 亚洲欧美中文字幕日韩二区| 免费高清在线观看视频在线观看| 国产欧美日韩一区二区三区在线 | 少妇的逼水好多| 黄色怎么调成土黄色| .国产精品久久| 在线 av 中文字幕| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影 | 九九爱精品视频在线观看| 黑人高潮一二区| 小蜜桃在线观看免费完整版高清| 啦啦啦中文免费视频观看日本| 国产老妇女一区| 好男人在线观看高清免费视频| 国产极品天堂在线| 丝瓜视频免费看黄片| av又黄又爽大尺度在线免费看| 少妇的逼水好多| 亚洲,一卡二卡三卡| 日本免费在线观看一区| 人妻系列 视频| 日韩不卡一区二区三区视频在线| 夜夜爽夜夜爽视频| 高清av免费在线| 久久精品国产亚洲av天美| 亚洲怡红院男人天堂| 国产探花在线观看一区二区| 亚洲av一区综合| av天堂中文字幕网| 国产黄色视频一区二区在线观看| 久久久久久九九精品二区国产| 在线 av 中文字幕| 国产精品一区二区在线观看99| 黄色怎么调成土黄色| 黄色欧美视频在线观看| 男女下面进入的视频免费午夜| 18禁动态无遮挡网站| 日韩中字成人| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 精品一区二区三区视频在线| 国产有黄有色有爽视频| 精品久久久久久久末码| 人人妻人人澡人人爽人人夜夜| 69av精品久久久久久| 精品少妇黑人巨大在线播放| 日韩强制内射视频| 久久这里有精品视频免费| 亚洲欧洲日产国产| 日韩成人伦理影院| 亚洲国产最新在线播放| 午夜福利在线在线| 国产乱人偷精品视频| 色哟哟·www| 免费大片黄手机在线观看| 热99国产精品久久久久久7| av播播在线观看一区| 国产日韩欧美亚洲二区| 在线观看国产h片| 波野结衣二区三区在线| 最近的中文字幕免费完整| 美女主播在线视频| 成人综合一区亚洲| 国产高清有码在线观看视频| 夜夜看夜夜爽夜夜摸| 国产视频内射| 最近最新中文字幕免费大全7| 国产成人午夜福利电影在线观看| 久久午夜福利片| 亚洲精品亚洲一区二区| 久久久久久久久久久丰满| 久久久精品94久久精品| av福利片在线观看| 少妇熟女欧美另类| 国产成人免费观看mmmm| 日韩成人伦理影院| 国产在视频线精品| 亚洲自拍偷在线| 亚洲人成网站高清观看| 欧美一区二区亚洲| 精品熟女少妇av免费看| 国产精品久久久久久精品古装| 日韩三级伦理在线观看| 不卡视频在线观看欧美| 精品一区二区三区视频在线| 久久精品国产自在天天线| 成年女人在线观看亚洲视频 | 女人久久www免费人成看片| 下体分泌物呈黄色| 日韩不卡一区二区三区视频在线| 国产在线男女| 欧美xxxx黑人xx丫x性爽| 日日啪夜夜撸| 国产大屁股一区二区在线视频| 18禁在线播放成人免费| 国产午夜福利久久久久久| 亚洲精品456在线播放app| 欧美精品国产亚洲| 亚洲欧美日韩东京热| 久久久久精品性色| 亚洲av成人精品一二三区| 国产午夜精品一二区理论片| 国产av国产精品国产| 久久久久久久久久人人人人人人| 国产亚洲av嫩草精品影院| 日本免费在线观看一区| av女优亚洲男人天堂| 99热国产这里只有精品6| av专区在线播放| 性插视频无遮挡在线免费观看| 久久热精品热| 又爽又黄a免费视频| 国产精品女同一区二区软件| 亚洲国产高清在线一区二区三| 国产精品伦人一区二区| 久久久国产一区二区| 国产精品.久久久| 在线免费观看不下载黄p国产| 精品久久久久久电影网| 尾随美女入室| 一本一本综合久久| 免费播放大片免费观看视频在线观看| 亚洲成人av在线免费| 三级国产精品片| 国产精品人妻久久久影院| 免费大片黄手机在线观看| 亚洲人与动物交配视频| 我的女老师完整版在线观看| 国产精品99久久久久久久久| 好男人在线观看高清免费视频| 欧美bdsm另类| 亚洲av中文字字幕乱码综合| 一区二区三区免费毛片| av在线观看视频网站免费| 男女那种视频在线观看| 久久6这里有精品| 日韩欧美 国产精品| 久久久久久久久久久丰满| 一级毛片久久久久久久久女| 两个人的视频大全免费| 亚洲成人一二三区av| 日本wwww免费看| 天堂网av新在线| 男女边吃奶边做爰视频| 欧美人与善性xxx| 国产精品久久久久久av不卡| 成年女人看的毛片在线观看| 三级国产精品片| 婷婷色综合大香蕉| 日日啪夜夜爽| 大片电影免费在线观看免费| 伊人久久精品亚洲午夜| 国产黄色视频一区二区在线观看| 一级毛片 在线播放| 亚洲最大成人中文| 99热6这里只有精品| 亚洲自偷自拍三级| 国产精品一区二区三区四区免费观看|