• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of series SQUID array with on-chip filter for TES detector

    2022-02-24 08:59:32WentaoWu伍文濤ZhirongLin林志榮ZhiNi倪志PeizhanLi李佩展TiantianLiang梁恬恬GuofengZhang張國峰YongliangWang王永良LiliangYing應(yīng)利良WeiPeng彭煒WenZhang張文ShengcaiShi史生才LixingYou尤立星andZhenWang王鎮(zhèn)
    Chinese Physics B 2022年2期

    Wentao Wu(伍文濤) Zhirong Lin(林志榮) Zhi Ni(倪志) Peizhan Li(李佩展)Tiantian Liang(梁恬恬) Guofeng Zhang(張國峰) Yongliang Wang(王永良) Liliang Ying(應(yīng)利良)Wei Peng(彭煒) Wen Zhang(張文) Shengcai Shi(史生才) Lixing You(尤立星) and Zhen Wang(王鎮(zhèn))

    1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology(SIMIT),Chinese Academy of Sciences(CAS),Shanghai 200050,China

    2CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023,China

    5University of Science and Technology of China,Hefei 230026,China

    A cold preamplifier based on superconducting quantum interference devices (SQUIDs) is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit. In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers, and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation. The measured results show smooth V–Φ characteristics and a swing voltage that increases linearly with increasing SQUID cell number N. A white flux noise level as low as 0.28μΦ0/Hz1/2 is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz1/2. We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.

    Keywords: SSA amplifier,TES detectors,on-chip low pass filter(LPF),noise contribution

    1. Introduction

    Over the last 20 years, superconducting transition-edge sensor (TES) detectors have been implemented in a variety of microcalorimeters and bolometers operating at millimeter and sub-millimeter wavelengths,as well as the optical,x-ray,and gamma-ray bands.[1–3]Superconducting quantum interference devices(SQUIDs)are the ideal cold preamplifiers for TES detectors due to their low noise, low impedance, and low power dissipation characteristics. As the preferred readout preamplifiers,SQUIDs play an important role in TES detector systems. Because the SQUID amplifier operates as the low temperature preamplifier for the TES system, the SQUID amplifier noise can affect the overall signal-to-noise ratio of the TES detector configuration significantly and limit the detection sensitivity.[4–6]The noise in an SQUID amplifier consists of the intrinsic SQUID noise, the noise from the room temperature readout electronics,and any environmental noise; among which the room temperature electronics noise is dominant, particularly in mK-scale ultra-low temperature environments.[7–12]In order to reduce the noise contribution from the room temperature readout electronics and to match the SQUID amplifier to the most appropriate room temperature readout electronics,two types of SQUID amplifiers have been developed to date. One design is based on a doubletransformer scheme to realize both high input inductance and a high signal coupling capability, thus allowing low current noise to be obtained easily.[13]The double-transformer design can reduce the SQUID current noise seen from the input coil port, but cannot improve the SQUID flux noise performance. This design also increases the coupling between the SQUID amplifier and the TES detector strongly, which may produce potential operation instability.[14]Another type of SQUID design is the series SQUID array(SSA).The SSA design enhances the flux voltage transfer constantVΦsignificantly to reduce the noise contribution from the room temperature readout electronics. In addition, in an SSA composed ofNSQUID cells, the intrinsic flux noise should also scale as 1/N1/2, and this also reduces the SSA intrinsic flux noise to a certain extent,[8,15]although the SSA is slightly more complex to operate when compared with a single dc-SQUID.In order to achieve a linear increase in the swing voltage in tandem with the increasing numberNof SQUID cells in the array and achieve coherent flux, the SSA not only requires the SQUID cells to be sufficiently identical in termsof their critical currentIc, loop inductanceLs,cell, and mutual inductanceM, but also works to suppress the Josephson oscillation interference between the SQUID cells to avoidV–Φcharacteristics distortions.[16–18]This allows the excess noise caused byV–Φcharacteristics distortions to be effectively avoided,particularly in ultra-low-temperature(mK)TES readout amplifiers.[19–22]In this work,we develop an on-chip low pass filter (LPF) to suppress the Josephson oscillation interference between the individual SQUID cells. In addition, a highly symmetrical SSA amplifier layout is designed carefully to ensure that each SQUID cell senses same environmental electromagnetic field,thus improving the coherent flux further.[8,15,17]The measured results show smoothV–Φcharacteristics and an ultra-low white flux noise level at 0.1 K.Finally,we have successfully implemented the proposed SSA amplifier in a TES readout system.

    2. Design and fabrication

    We developed SSA amplifier designs based on an on-chip LPF, and a design schematic is shown in Fig. 1(a). An onchip LPF is series-connected on the bias line placed between the SQUID cells. The aim of this design is to suppress the Josephson junction (JJ) oscillation crosstalk between the individual SQUID cells and thus improve the isolation of each SQUID cell. This is intended to avoid the distortion of theV–Φcurve caused by crosstalk from adjacent cells and thus ensure the correct swing voltage for each SQUID cell linear superposition. The proposed SSA amplifier has been designed and fabricated. An optical microscope image of four SQUID cells from our proposed SSA amplifier withN=16 SQUID cells is presented in Fig.1(b). Each SQUID cell is a first-order series thin-film gradiometer that is composed of two square washers with a linewidth of 5 μm and a washer hole size of 22 μm. The two washers are both electrically insulated by an SiO2dielectric layer deposited on the top of them. Both the input and feedback planar coils over the SiO2dielectric layer are deposited with a figure-eight shaped profile. The coils are formed using 1-μm wide Nb lines with 1-μm wide gaps. A damping resistive elementRdis shunted at the terminals to the input and feedback coils. One of the SQUID cell loop terminals is interrupted by two square JJs with a junction area of 3 μm×3 μm. For a critical current density ofjc=100 A/cm2at a temperature of 4 K,thus the critical currentI0of the Josephson junctions is 9μA.To avoid hysteretic behavior, each junction is shunted using a 4-μm wide and 8-μm long shunt resistorRsthat is connected to a cooling fin to minimize the hot electron effect. In terms of a sheet resistance of 2 Ω/□,this leads to a shunted resistance ofRs=4 Ω for each junction. When the specific capacitance of our JJs is taken into account, the hysteresis parameterβcthen has a value ofβc=0.25. We have selectedβc<1 to ensure stable SQUID operation at mK-scale temperatures because of the parasitic capacitance. To ensure a consistent embedded electromagnetic environment and obtain coherent flux for the SSA amplifier, a highly symmetrical SSA amplifier layout is considered here. As a result, the other terminal of the individual SQUID cell loop is also interrupted by two damping resistances and a cooling fin. In addition to the design symmetry,the damping resistances can also be used as damping elements for the individual SQUID cell washers. The on-chip LPF consists of an inductance and a resistance. The inductance has a value of approximately 0.5 nH and is fabricated by a planar spiral inductance element, and the parallel resistance component has a value of approximately 6 Ω. The parallel resistance can not only increase the isolation levels and reduce crosstalk,but also can eliminate potential high frequency resonance due to its low power dissipation.[21,22]Several detailed design parameters of the proposed SSA amplifier are summarized in Table 1. Additionally,based on the design parameters presented above, we have also fabricated an SSA amplifier without the LPF as a comparison device. The proposed SSA amplifier was fabricated with high-quality Nb/Al–AlOx/Nb trilayer JJs fabricated in a standard fabrication process at the Superconducting Electronics Facility (SELF), of the Shanghai Institute of Microsystem and Information Technology. The detailed process steps have been reported previously in Ref.[23]and the most important steps are summarized here. The fabrication process begins with deposition of the TiPd shunt resistance element on the thermally oxidized silicon substrate. A TiPd layer is patterned using either lift-off or an ion beam etching (IBE)technique. The thickness and sheet resistance of this layer are 40 nm and 2 Ω/□, respectively. Next, an SiO2layer is deposited over the TiPd layer via plasma-enhanced chemical vapor deposition(PECVD),and contact holes are then created using reactive ion etching(RIE).Then,an Nb/Al-AlOx/Nb trilayer is depositedin situusing magnetron sputtering.A 10-nm aluminum(Al)film is deposited to create a barrier layer, and then subsequently oxidized in a static O2atmosphere in the load lock of the sputtering system. The trilayer is patterned in three steps. First, the Nb counter electrode is patterned to the junction size using an i-line stepper and etched using RIE.Subsequently, the Al–AlOxlayer is etched using either IBE or a wet developer. The bottom Nb layer is then patterned to form an SQUID washer and is electrically connected to both the TiPd layer and SQUID interconnections. An SiO2layer is then deposited over the trilayer by PECVD and etched using RIE to create contact holes. In the next step, an Nb film wiring layer is deposited and patterned to form the input and feedback coils and the JJ lead. Finally, a TiAu bias resistor for the cryogenic detectors is deposited and patterned using the lift-off technique. During fabrication, all metal layers including the Nb/Al–AlOx/Nb trilayers are deposited using a dc magnetron sputter; after each RIE and IBE process, organic cleaning is performed to remove the photoresist.

    Fig.1. (a)Schematic and(b)optical microscope images of the SSA amplifier with an on-chip LPF between the adjacent SQUID cells.

    Table 1. Design parameters of the SSA amplifier.

    3. Measurement and discussion

    The measurements of the fabricated SSA amplifier were performed at 4.2 K and 100 mK. A low noise SQUID electronic system XXF-1 with direct SQUID readouts was used for the SSA amplifier tuning and flux locked loop mode.[24]The basicV–Φcharacteristics of the SSA amplifier were measured at 4.2 K by immersing the amplifier into liquid helium. Each amplifier was glued to a customized printed circuit board and mounted on a liquid helium dip probe that was equipped with a superconducting Nb can as a shield from stray magnetic fields.The mK-scale ultra-low temperature measurements were performed in an adiabatic demagnetization refrigerator (ADR)with an operating temperature of approximately 100 mK.The SSA amplifier was glued to a Cu block that was thermally anchored to a base cold plate and surrounded by a superconducting Al shield cover.The TES detector was also installed on the same Cu block along with the SSA amplifiers and connected via wire-bonding line. We compared theV–Φcharacteristics of the SSA amplifier measured at various bias currents with and without the on-chip LPF, and the results measured at a temperature of 4.2 K are presented in Fig.2(a)and Fig.2(b).TheV–Φcharacteristic of the SSA amplifier shows basically sinusoidal and represents an almost single-junction likeV–Φcharacteristic. We can clearly see that when the on-chip LPF is presented,theV–Φcharacteristics are much smoother without any distortions,and the swing voltage is much larger at the same bias current. These results demonstrate that use of the on-chip LPF improves the SQUID cell isolation and ensures linear superposition of the swing voltage for a single SQUID cell.

    Fig. 2. Measured results of the fabricated SSA amplifier at a temperature of 4.2 K. The V–Φ characteristics are shown at various values of applied bias current. The measured results(a)with and(b)without the on-chip LPF component, and the maximum swing voltages are approximately 300 μV and 260μV,respectively.

    The measured noise performances at 3.0 K and 0.1 K are presented in Fig. 3. A white flux noise level as low as 0.52 μΦ0/Hz1/2was achieved at 3.0 K, corresponding to a current noise level of 13 pA/Hz1/2; and the flux noise levelas low as 0.28μΦ0/Hz1/2was achieved at 0.1 K,corresponding to an ultra-low current noise level of 7 pA/Hz1/2. For a further noise characterization of the SSA amplifier and the SSA intrinsic noise in particular, we have performed a simple decomposition of the measured noise. The measured noise of the SSA amplifier is mainly determined by the SSA intrinsic noiseSΦ,ssa,and the voltage noiseSV,electronicsand current noiseSI,electronicsof the room temperature readout electronics,and the measured noise level is thus given by

    where

    HereSΦ,V,electronicsandSΦ,I,electronicsdenote the equivalent flux noise components at the input termination when converted from the voltage noise and current noise of the room temperature readout electronics, respectively. TheSΦ,V,electronicsis inversely correlated with the flux conversion coefficientVΦand is strongly dependent on the working point,[25]and the noise componentSΦ,I,electronicsis positively correlated with the corresponding current sensitivityMdynand is weakly dependent on the working point. Roughly speaking,Mdynscales in tandem with the SQUID inductanceLsand has a value in the range betweenLsand 2Lsfor low-critical-temperature (low-Tc) SQUIDs.[25]In order to evaluate the SSA intrinsic noise accurately, we perform the following approximation. When the temperature is reduced from 3 K to 0.1 K,the SSA intrinsic noise will be reduced by approximately 10 times,[25]and the noise componentSΦ,V,electronicsfrom the room temperature readout electronics will be reduced slightly with the increase of the flux conversion coefficientVΦ, with this reduction assumed to be approximately 0.8 times. The contribution of the other noiseSΦ,I,electronicsis assumed to be reduced by 0.9 times because of the weak scale of its relationship with the operating point.[25]In addition,it is assumed that the ratio coefficient of the noise componentSΦ,V,electronicsto both the SSA amplifier intrinsic noiseSΦ,ssaand the noise componentSΦ,I,electronicsisλ. It should been seen from Fig.3(a)that the measured noise of the SSA amplifier at 3 K does not vary significantly with the bias voltageVb. The main reason for this behavior is that the measured noise is mainly determined by the SSA amplifier intrinsic noise and the room temperature readout electronics flux noise componentSΦ,I,electronics, while the other noiseSΦ,V,electronicsfrom the room temperature readout electronics makes only a small contribution. Therefore, the ratio coefficientλis a small quantity and has a value of much less than 1. We thus obtain the following equations:

    Thus the three noise contributions as a function of the ratio coefficientλcan be given as follows:

    Thus using the equations above and a small value ofλ,it is obvious that both the SSA intrinsic flux noiseSΦ,ssaand the room temperature readout electronics noise componentSΦ,I,electronicsare weakly dependent on the ratio coefficientλ. When the temperature is 3.0 K, the flux noise mainly comes from the SSA intrinsic noise of approximately 0.45 μΦ0/Hz1/2. But when the temperature is reduced to 0.1 K,the main noise contributions comes from both the room temperature readout electronics noise componentSΦ,I,electronicsand the SSA intrinsic noiseSΦ,ssa,in which the SSA intrinsic flux noiseSΦ,ssais approximately 0.15μΦ0/Hz1/2,and the room temperature readout electronics noise componentSΦ,I,electronicsis approach to 0.2μΦ0/Hz1/2. Regardless of the operating temperature, the other noise componentSΦ,V,electronicsfrom the room temperature readout electronics makes the lowest contribution to the measured noise. We can therefore conclude that it is necessary to reduce both the SSA intrinsic noiseSΦ,ssaand the room temperature readout electronics noise componentSΦ,I,electronicscontinuously to enable further reduction of the measured noise of the SSA amplification system,particularly at mK-scale operating temperatures.

    It can be seen from Fig. 3 that the noise performance of the SSA amplifier is strongly dependent on the bias current and voltage, particularly at mK-scale temperatures. In order to achieve an optimal noise performance, we optimize both the bias current and the bias voltage of the SSA amplifier,with optimization results as presented in Fig.4. These results obviously illustrate that the optimal bias point voltage of the SSA amplifier is approaching 30% below the center, and the optimal bias current is about 18 μA, corresponding to approxi-mately 10%below the critical current of 20μA.Based on the proposed SSA amplifier and the optimal noise bias conditions,we have successfully used the SSA amplifier as a preamp in the readout circuit of the TES detector reported in Ref. [26].Figure 5 presents the current noise spectra measured at different TES bias resistances. The optimized SSA operating point is shown in the inset of Fig. 5. The noise level of the TES detection system is strongly dependent on the operating resistance of the TES. When the TES is biased at a normalized resistance, the noise level approaches to the lowest level, because the current noise of the resistance is inversely correlated with the resistance value.

    Fig.4. The current noise spectra of the SSA amplifier at mK-scale temperatures as a function of the relative bias voltage percentage for various values of the bias current Ib. The voltage Vo is half of the maximum swing voltage at a specific bias current,and Vb is a bias voltage.

    Fig. 5. The current noise spectra of the TES detection system based on the SSA amplifier operating at mK-scale temperatures,where the optimized SSA amplifier operation point is presented in the inset.

    In order to improve the sensitivity of the TES detection system, it is well known that considerable efforts should be made to reduce the noise level of the SQUID readout circuit. As mentioned above, the dominant noise sources of the SQUID readout circuit in the mK-scale temperature range are the SSA amplifier intrinsic noiseSΦ,ssaand the room temperature readout electronics noise componentSΦ,I,electronics. The noise componentSΦ,I,electronicsis significantly determined by the equivalent current noise properties of the room temperature amplifier, and the SSA amplifier intrinsic noiseSΦ,ssamainly comes from the shunted resistance thermal noise,which is inversely related to the resistance value.[25]Unfortunately, the hysteresis parameterβcis proportional to the shunted resistanceRs. Therefore,in the future SSA amplifier design,it will be necessary to optimize the appropriate shunted resistance for the noise performance and the hysteresis parameterβcin the mK-scale temperature conditions.

    4. Conclusions

    We have designed and fabricated a proposed SSA amplifier based on an on-chip LPF component and a highly symmetrical layout design. The measure results demonstrate that the proposed SSA amplifier shows smoothV–Φcharacteristics and achieves coherent flux operation. Meanwhile, a measured white flux noise level as low as 0.28μΦ0/Hz1/2is achieved at 0.1 K, corresponding to a low current noise level of 7 pA/Hz1/2. We analyzed the measured noise contributions at mK-scale temperatures and confirmed that the noise significantly comes from the SSA amplifier intrinsic noise and the current noise of the room temperature readout electronics. In addition,an optimal noise performance is obtained by performing bias current and voltage optimization at mK-scale temperatures. Based on the optimal noise operation point,the proposed SSA amplifier as a cold preamplifier has been applied successfully to a TES readout circuit.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304003).

    The devices were fabricated at the Superconducting ELectronics Facility(SELF),of the Shanghai Institute of Microsystem and Information Technology.

    欧美在线黄色| 两性夫妻黄色片| 国产成人一区二区三区免费视频网站| 最近最新中文字幕大全电影3 | av有码第一页| 制服诱惑二区| 国产单亲对白刺激| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 一级a爱片免费观看的视频| 精品久久久久久久毛片微露脸| 欧美日韩成人在线一区二区| 久久久久精品国产欧美久久久| 超碰成人久久| 国产野战对白在线观看| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 黑人欧美特级aaaaaa片| 欧美成人午夜精品| 80岁老熟妇乱子伦牲交| 69av精品久久久久久| 中文字幕色久视频| 午夜福利影视在线免费观看| 国产男靠女视频免费网站| 日韩三级视频一区二区三区| 青草久久国产| av天堂久久9| 亚洲欧美精品综合一区二区三区| 午夜福利乱码中文字幕| 亚洲av欧美aⅴ国产| 中出人妻视频一区二区| 欧美性长视频在线观看| 在线观看一区二区三区激情| 男女之事视频高清在线观看| 少妇的丰满在线观看| 王馨瑶露胸无遮挡在线观看| 99久久人妻综合| 美女高潮到喷水免费观看| 久9热在线精品视频| 精品久久久久久久久久免费视频 | 亚洲全国av大片| 99在线人妻在线中文字幕 | 国产男靠女视频免费网站| 国产成人精品在线电影| 国产国语露脸激情在线看| 国产99久久九九免费精品| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院| 69av精品久久久久久| 精品欧美一区二区三区在线| 欧美国产精品va在线观看不卡| 精品亚洲成国产av| 亚洲欧美一区二区三区黑人| 亚洲综合色网址| 超碰成人久久| 亚洲国产看品久久| 夜夜爽天天搞| 国内久久婷婷六月综合欲色啪| 欧美精品亚洲一区二区| 美女午夜性视频免费| 一夜夜www| 亚洲精品乱久久久久久| 亚洲国产精品合色在线| 欧美黑人精品巨大| 十八禁人妻一区二区| 高清在线国产一区| 亚洲三区欧美一区| 一二三四社区在线视频社区8| 后天国语完整版免费观看| 黄片播放在线免费| 女人被躁到高潮嗷嗷叫费观| 国产精品九九99| 女警被强在线播放| 亚洲av片天天在线观看| 亚洲国产精品sss在线观看 | 国产区一区二久久| 国产免费男女视频| 久久精品熟女亚洲av麻豆精品| 久久99一区二区三区| 老司机福利观看| 欧美人与性动交α欧美软件| 午夜福利欧美成人| 亚洲一区二区三区欧美精品| 久久久久久久久免费视频了| 国产精品综合久久久久久久免费 | 丰满饥渴人妻一区二区三| 精品乱码久久久久久99久播| 欧美人与性动交α欧美精品济南到| 久久青草综合色| 中文字幕制服av| 天堂√8在线中文| 黄色片一级片一级黄色片| 亚洲中文日韩欧美视频| 黄色 视频免费看| 一本一本久久a久久精品综合妖精| 两性夫妻黄色片| 窝窝影院91人妻| 韩国精品一区二区三区| 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| 久久国产精品影院| 亚洲久久久国产精品| 欧美日韩一级在线毛片| 9191精品国产免费久久| 国产一区有黄有色的免费视频| 国产成人精品无人区| svipshipincom国产片| 一级黄色大片毛片| 中文字幕人妻丝袜一区二区| x7x7x7水蜜桃| www日本在线高清视频| 精品一品国产午夜福利视频| 18禁裸乳无遮挡免费网站照片 | 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 制服人妻中文乱码| 12—13女人毛片做爰片一| 久久久久久久午夜电影| xxxwww97欧美| 亚洲色图av天堂| 午夜免费观看网址| 国产欧美日韩一区二区精品| netflix在线观看网站| 少妇人妻一区二区三区视频| 99久久无色码亚洲精品果冻| 国产 一区 欧美 日韩| 小说图片视频综合网站| 久久香蕉国产精品| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片| 国产成年人精品一区二区| 国产美女午夜福利| 成人高潮视频无遮挡免费网站| 国产一区在线观看成人免费| a在线观看视频网站| 国内精品久久久久精免费| 波多野结衣高清无吗| 免费观看人在逋| 国产久久久一区二区三区| 亚洲电影在线观看av| 久久久久久久午夜电影| 色av中文字幕| 欧美日韩黄片免| 噜噜噜噜噜久久久久久91| 日本黄色片子视频| 又紧又爽又黄一区二区| 国产成人福利小说| 国产v大片淫在线免费观看| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 两人在一起打扑克的视频| 99久久九九国产精品国产免费| 亚洲,欧美精品.| 亚洲成人久久爱视频| 搞女人的毛片| 黄片小视频在线播放| 久99久视频精品免费| 一本综合久久免费| 国产伦精品一区二区三区视频9 | 757午夜福利合集在线观看| 亚洲激情在线av| 在线观看免费午夜福利视频| 在线十欧美十亚洲十日本专区| 香蕉av资源在线| 女警被强在线播放| 精品福利观看| 欧美一区二区国产精品久久精品| 久久草成人影院| 亚洲成人免费电影在线观看| 叶爱在线成人免费视频播放| 国产综合懂色| 国产三级在线视频| 亚洲五月婷婷丁香| 亚洲无线观看免费| 色吧在线观看| x7x7x7水蜜桃| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 在线播放国产精品三级| 日韩精品青青久久久久久| 18禁美女被吸乳视频| 尤物成人国产欧美一区二区三区| 亚洲精品在线观看二区| 天天躁日日操中文字幕| 午夜日韩欧美国产| 麻豆国产97在线/欧美| 国产精品 国内视频| 亚洲人成网站高清观看| 人人妻人人澡欧美一区二区| 国产成人影院久久av| 看片在线看免费视频| 色噜噜av男人的天堂激情| 欧美乱妇无乱码| 91九色精品人成在线观看| 欧美午夜高清在线| 两人在一起打扑克的视频| 麻豆成人av在线观看| 国产一区二区在线av高清观看| 亚洲第一欧美日韩一区二区三区| 一区二区三区高清视频在线| 少妇的逼好多水| 色视频www国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久久成人亚洲精品观看| 日韩欧美国产在线观看| 久久婷婷人人爽人人干人人爱| 最好的美女福利视频网| 搡老岳熟女国产| 日韩欧美一区二区三区在线观看| 国产欧美日韩一区二区三| 长腿黑丝高跟| 免费人成视频x8x8入口观看| 麻豆成人午夜福利视频| 少妇的丰满在线观看| 国产精品电影一区二区三区| 99视频精品全部免费 在线| 嫩草影视91久久| 免费av毛片视频| 欧美zozozo另类| 最新在线观看一区二区三区| 真人做人爱边吃奶动态| 少妇丰满av| 久久午夜亚洲精品久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一及| 性欧美人与动物交配| 一级黄色大片毛片| 99国产综合亚洲精品| 亚洲一区高清亚洲精品| 国产精品野战在线观看| 999久久久精品免费观看国产| 我的老师免费观看完整版| 国产伦精品一区二区三区视频9 | 国产成人福利小说| 国产成人影院久久av| 精品久久久久久成人av| 麻豆一二三区av精品| 欧美日韩瑟瑟在线播放| 成人国产一区最新在线观看| 精品乱码久久久久久99久播| 欧美xxxx黑人xx丫x性爽| 色视频www国产| 中文字幕高清在线视频| 成人特级黄色片久久久久久久| avwww免费| 成人午夜高清在线视频| 性欧美人与动物交配| 久久精品国产综合久久久| 一区二区三区高清视频在线| 叶爱在线成人免费视频播放| 午夜精品一区二区三区免费看| 丁香欧美五月| 午夜激情欧美在线| 国产精品久久久久久久电影 | 黄色日韩在线| 偷拍熟女少妇极品色| 午夜久久久久精精品| 亚洲乱码一区二区免费版| 高清毛片免费观看视频网站| 午夜日韩欧美国产| 国产精品一区二区三区四区久久| 99热这里只有精品一区| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添小说| 日韩精品中文字幕看吧| 中文字幕人成人乱码亚洲影| 18禁国产床啪视频网站| 超碰av人人做人人爽久久 | 国产探花极品一区二区| 久久欧美精品欧美久久欧美| 叶爱在线成人免费视频播放| 国产美女午夜福利| 天堂av国产一区二区熟女人妻| 国产野战对白在线观看| 国产伦人伦偷精品视频| 欧美黄色淫秽网站| 日本熟妇午夜| 97人妻精品一区二区三区麻豆| 午夜亚洲福利在线播放| 美女被艹到高潮喷水动态| 激情在线观看视频在线高清| 国产不卡一卡二| 一个人观看的视频www高清免费观看| 校园春色视频在线观看| 久久精品国产亚洲av涩爱 | 老熟妇乱子伦视频在线观看| 我的老师免费观看完整版| 757午夜福利合集在线观看| 国产一区在线观看成人免费| 欧美成人一区二区免费高清观看| 中文在线观看免费www的网站| 黄色日韩在线| 亚洲av成人av| 国产麻豆成人av免费视频| 国产熟女xx| 91av网一区二区| 免费人成视频x8x8入口观看| 一本精品99久久精品77| 波野结衣二区三区在线 | 99国产极品粉嫩在线观看| 国产一区二区在线av高清观看| 美女cb高潮喷水在线观看| 高清在线国产一区| 国产精品综合久久久久久久免费| 偷拍熟女少妇极品色| 99久国产av精品| 伊人久久精品亚洲午夜| 一a级毛片在线观看| 免费搜索国产男女视频| 亚洲精品乱码久久久v下载方式 | 免费人成视频x8x8入口观看| 国产精品永久免费网站| 亚洲电影在线观看av| 九色成人免费人妻av| 操出白浆在线播放| 欧美日韩国产亚洲二区| 国产真人三级小视频在线观看| 最后的刺客免费高清国语| 久久精品国产综合久久久| 久久久成人免费电影| 日日干狠狠操夜夜爽| 91麻豆av在线| 国产精品99久久99久久久不卡| 午夜福利18| 两个人视频免费观看高清| 国产精品嫩草影院av在线观看 | 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 久久久久亚洲av毛片大全| 在线观看免费午夜福利视频| 一区二区三区高清视频在线| 国产淫片久久久久久久久 | 亚洲精品在线观看二区| 三级毛片av免费| 亚洲中文字幕一区二区三区有码在线看| 老鸭窝网址在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品女同一区二区软件 | 天堂影院成人在线观看| 欧美又色又爽又黄视频| 99国产综合亚洲精品| 日本与韩国留学比较| 欧美bdsm另类| 成人特级av手机在线观看| 一进一出抽搐动态| 看片在线看免费视频| 亚洲成人中文字幕在线播放| 亚洲五月婷婷丁香| 一区二区三区国产精品乱码| 亚洲精品成人久久久久久| 午夜精品在线福利| 久久精品国产亚洲av涩爱 | 黄色日韩在线| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 女同久久另类99精品国产91| 舔av片在线| 亚洲av成人精品一区久久| 成人三级黄色视频| 亚洲欧美日韩高清专用| 亚洲国产精品合色在线| 波多野结衣高清作品| 国产69精品久久久久777片| 99视频精品全部免费 在线| 九九热线精品视视频播放| 高潮久久久久久久久久久不卡| 国产精品久久久人人做人人爽| 女人被狂操c到高潮| 日本免费一区二区三区高清不卡| 精品一区二区三区视频在线 | 少妇的丰满在线观看| 日本与韩国留学比较| 国产69精品久久久久777片| 精品久久久久久,| 亚洲一区高清亚洲精品| 欧美bdsm另类| 99久久成人亚洲精品观看| 香蕉av资源在线| 天堂影院成人在线观看| 亚洲国产欧洲综合997久久,| 日日摸夜夜添夜夜添小说| 亚洲精品国产精品久久久不卡| 欧美最黄视频在线播放免费| 色综合站精品国产| 欧美日本视频| 69人妻影院| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 欧美日韩精品网址| 18禁裸乳无遮挡免费网站照片| 亚洲中文字幕日韩| 麻豆国产av国片精品| 日韩免费av在线播放| 日韩有码中文字幕| 精品人妻1区二区| 免费在线观看亚洲国产| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 色噜噜av男人的天堂激情| 中出人妻视频一区二区| 国内揄拍国产精品人妻在线| 99久久成人亚洲精品观看| 在线免费观看的www视频| 中文字幕久久专区| 亚洲精品国产精品久久久不卡| 午夜免费男女啪啪视频观看 | 小说图片视频综合网站| 青草久久国产| 久久精品人妻少妇| 欧美黄色淫秽网站| 亚洲美女视频黄频| 久久久精品大字幕| 亚洲无线在线观看| 国产探花极品一区二区| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产色片| 午夜免费成人在线视频| 欧美极品一区二区三区四区| 热99在线观看视频| 国产成人a区在线观看| 亚洲精品国产精品久久久不卡| 免费av观看视频| 超碰av人人做人人爽久久 | 国产精品精品国产色婷婷| 久久久久免费精品人妻一区二区| 女人十人毛片免费观看3o分钟| 亚洲色图av天堂| 俺也久久电影网| 悠悠久久av| 在线免费观看不下载黄p国产 | 国产色婷婷99| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 五月伊人婷婷丁香| 老汉色∧v一级毛片| 久久久久久大精品| 亚洲avbb在线观看| 日本免费一区二区三区高清不卡| 午夜亚洲福利在线播放| 欧美乱码精品一区二区三区| 在线观看一区二区三区| 久久精品国产亚洲av香蕉五月| av在线天堂中文字幕| 国产欧美日韩精品一区二区| 国产精品香港三级国产av潘金莲| 亚洲av免费高清在线观看| 老司机深夜福利视频在线观看| 90打野战视频偷拍视频| 天堂影院成人在线观看| 18禁黄网站禁片免费观看直播| 99热6这里只有精品| 亚洲精品在线美女| 欧美成人a在线观看| 无限看片的www在线观看| 色综合站精品国产| 丁香六月欧美| 国产精品久久久久久精品电影| 日韩亚洲欧美综合| 国产av麻豆久久久久久久| 亚洲av美国av| 制服人妻中文乱码| 一区福利在线观看| 亚洲欧美精品综合久久99| 亚洲乱码一区二区免费版| 亚洲国产色片| 午夜两性在线视频| av视频在线观看入口| 欧美+日韩+精品| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久免费视频| 久久精品夜夜夜夜夜久久蜜豆| 最新在线观看一区二区三区| av中文乱码字幕在线| 可以在线观看的亚洲视频| 人妻夜夜爽99麻豆av| 国模一区二区三区四区视频| 国产亚洲精品av在线| 国产成+人综合+亚洲专区| 黄色女人牲交| 特大巨黑吊av在线直播| 午夜福利在线在线| 给我免费播放毛片高清在线观看| 欧美日韩精品网址| 91久久精品国产一区二区成人 | 国产黄片美女视频| 欧美zozozo另类| 欧美激情久久久久久爽电影| 制服丝袜大香蕉在线| 丁香六月欧美| 哪里可以看免费的av片| 亚洲不卡免费看| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 国产真实伦视频高清在线观看 | 少妇的逼好多水| 国产成人a区在线观看| 18禁国产床啪视频网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产极品精品免费视频能看的| 国产精品久久久久久人妻精品电影| 伊人久久精品亚洲午夜| 91在线精品国自产拍蜜月 | 99国产精品一区二区蜜桃av| 欧美日韩瑟瑟在线播放| 亚洲欧美一区二区三区黑人| 熟妇人妻久久中文字幕3abv| a级毛片a级免费在线| 国产亚洲精品综合一区在线观看| 乱人视频在线观看| 国产亚洲精品一区二区www| 村上凉子中文字幕在线| 欧美成人性av电影在线观看| 亚洲精品456在线播放app | 99久久精品一区二区三区| 国产黄a三级三级三级人| 中文字幕久久专区| 嫩草影院精品99| 国产熟女xx| 精品免费久久久久久久清纯| 天天一区二区日本电影三级| 丝袜美腿在线中文| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 欧美zozozo另类| 亚洲精品一卡2卡三卡4卡5卡| 久久6这里有精品| 欧美日韩瑟瑟在线播放| 国产一区二区三区在线臀色熟女| 18+在线观看网站| a级毛片a级免费在线| 欧美乱码精品一区二区三区| 免费看美女性在线毛片视频| 国产伦一二天堂av在线观看| 亚洲av第一区精品v没综合| www日本在线高清视频| 一个人观看的视频www高清免费观看| 激情在线观看视频在线高清| 中亚洲国语对白在线视频| 在线观看66精品国产| 久久久久国内视频| 中文亚洲av片在线观看爽| 一本一本综合久久| 两个人的视频大全免费| 51国产日韩欧美| 亚洲真实伦在线观看| 国产亚洲欧美98| 18禁国产床啪视频网站| 久久精品亚洲精品国产色婷小说| 久久午夜亚洲精品久久| 国产不卡一卡二| 亚洲av中文字字幕乱码综合| 中国美女看黄片| 免费看a级黄色片| 久久国产精品人妻蜜桃| 日本免费a在线| 国产一区二区三区视频了| 成年女人毛片免费观看观看9| 中文字幕人妻丝袜一区二区| 亚洲最大成人中文| 99精品久久久久人妻精品| 国产主播在线观看一区二区| 亚洲午夜理论影院| 午夜免费激情av| 欧美av亚洲av综合av国产av| 制服人妻中文乱码| 天美传媒精品一区二区| 一区二区三区高清视频在线| 国产精品永久免费网站| 偷拍熟女少妇极品色| 国产视频一区二区在线看| 可以在线观看的亚洲视频| 国产真实伦视频高清在线观看 | 九色国产91popny在线| 五月伊人婷婷丁香| 亚洲精品456在线播放app | 国产成人欧美在线观看| 国产av在哪里看| 狂野欧美激情性xxxx| 国产真实伦视频高清在线观看 | 成人三级黄色视频| 久久99热这里只有精品18| 中出人妻视频一区二区| 国产伦精品一区二区三区视频9 | 亚洲一区二区三区不卡视频| 日本a在线网址| 窝窝影院91人妻| 亚洲av成人av| 成人一区二区视频在线观看| 噜噜噜噜噜久久久久久91| 亚洲国产日韩欧美精品在线观看 | 观看免费一级毛片| 国产私拍福利视频在线观看| 一本精品99久久精品77| 99热只有精品国产| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女| 国产免费男女视频| 欧美xxxx黑人xx丫x性爽| 老汉色∧v一级毛片| x7x7x7水蜜桃| 亚洲成人中文字幕在线播放| 黄色丝袜av网址大全| 亚洲熟妇熟女久久| 老司机深夜福利视频在线观看| 国模一区二区三区四区视频| 国内少妇人妻偷人精品xxx网站| 97超级碰碰碰精品色视频在线观看| avwww免费| 久久久精品大字幕|