• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of structural vacancies on lattice vibration,mechanical,electronic,and thermodynamic properties of Cr5BSi3

    2022-02-24 08:58:56TianHuiDong董天慧XuDongZhang張旭東LinMeiYang楊林梅andFengWang王峰
    Chinese Physics B 2022年2期
    關(guān)鍵詞:王峰

    Tian-Hui Dong(董天慧) Xu-Dong Zhang(張旭東) Lin-Mei Yang(楊林梅) and Feng Wang(王峰)

    1School of Science,Shenyang University of Technology,Shenyang 110870,China2School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China

    In recent years,transition metal silicides have become the potential high temperature materials. The ternary silicide has attracted the attention of scientists and researchers. But their inherent brittle behaviors hinder their wide applications.In this work, we use the first-principles method to design four vacancy defects and discuss the effects of vacancy defects on the structural stability,mechanical properties,electronic and thermodynamic properties of hexagonal Cr5BSi3 silicide.The data of lattice vibration and thermodynamic parameters indicate that the Cr5BSi3 with different atomic vacancies can possess the structural stabilities.The different atomic vacancies change the mechanical properties and induce the Cr5BSi3 to implement the brittle-to-ductile transition. The shear deformation resistance and volume deformation resistance of Cr5BSi3 are weakened by different vacancy defects. But the brittleness behavior is remarkably improved. The structural stability and brittle-to-ductile transition of Cr5BSi3 with different vacancies are explored by the electronic structures. Moreover,the thermal parameters indicate that the Cr5BSi3 with vacancies exhibit different thermodynamic properties with temperature rising.

    Keywords: vacancies in Cr5BSi3,brittle-to-ductile transition,electronic properties,thermodynamic properties

    1. Introduction

    With the development of science and technology, many researchers have discovered that the transition metal silicides can be used as the sharp leading edges materials and high temperature reusable surface materials of hypersonic vehicles and surface coatings, and so on.[1—4]They have the excellent chemical and physical properties, such as high oxidation resistance, high creep resistance, high strength and high melting point.[5—10]Some ternary metal silicides were found and their physical properties were widely investigated.[11—15]Among these ternary silicides,Nowotnyet al.synthesized the Cr5BSi3experimentally and found that it possesses the hexagonal structure withP63/mcmgroup.[15]Zhouet al.predicted the anisotropic properties and band structure of Cr5BSi3by using the first-principles calculations.[16]The theoretical results indicated that the Cr5BSi3silicide shows the brittle behavior.Generally speaking, vacancy defects, doping elements, dislocation slip,etc. can improve the brittle behavior for solid materials.[17—19]For the heat activation effect in high temperature environment, the vacancy has a significant effect on the mechanical properties of high temperature materials. It is necessary to explore the effects of vacancies on the physical properties for Cr5BSi3. In the present work, we design four vacancy models and investigated the influences of these vacancies on the physical properties for Cr5BSi3. The structural stabilities, mechanical properties, electronic structures and thermodynamic properties of Cr5BSi3with various vacancies are comparatively studied by using the first-principles calculations.

    2. Theoretical methods

    The parent Cr5Si3B and the Cr5Si3B with various vacancies were all investigated by using the CASTEP code.[20]The electron—ion interaction was described by the ultrasoft pseudopotential.[21,22]The Perdew-Burke—Ernzerhof (PBE) functional under the generalized gradient approximation (GGA)approximation was used to treat the exchange—correlation functional.[23]The electronic configurations of Cr,B,Si atoms are 3p63d54s2, 2s22p1, and 3s23p2, respectively. The cutoff energy of 560 eV was set such that the convergence for each of the present models was ensured. The Brillouin-zone was sampled by using an 8×8×10k-points for integrations in reciprocal space. The Broyden—Fletcher—Goldfarb—Shanno (BFGS)minimization scheme,ionic Hellmann—Feynman force,maximum ionic displacement and stress were used for optimizing the structure.[24—26]The tolerance for geometry optimization is different: within?5×10?3eV/atom for the total energy,within 0.04 eV/for maximum ionic Hellmann—Feynman force,within 6×10?3for maximum ionic displacement,and within 0.05 GPa for maximum stress. The current settings ensured that the total energy converged to 1 meV/atom. Convergence tests indicated that the cutoff energy andkmesh in the present work were sufficient to guarantee the convergence of total energy and provide a proper prediction of the latticeparameters. The unit cell sizes and atomic positions were allowed to be fully relaxed without any constraints during geometry optimization.

    According to the available literature,[15,16]the Cr5BSi3crystallizes into a hexagonal Cr5CuSn3-type structure withP63/mcmspace group.[27]In the crystal structures of Cr5BSi3,Cr1, Cr2, B, and Si atoms occupy the locations at the Wyckoff sites 6g(0.27, 0, 0.25), 4d(0.33, 0.67, 0), 2b(0, 0, 0),and 6g(0.62,0,0.25),respectively. There are 18 atoms inside the unit cell. According to the four different atomic positions,we designed four vacancy models: Cr?Va1,Cr?Va2,B?Va,and Si?Va. And the four different structural models of Cr5BSi3are shown in Fig. 1. The structural stability depends on the thermodynamical and dynamical condition.Thus,the vacancy formation energy (Ef) for each of the four models was calculated to estimate the thermodynamical stability in Cr5BSi3with the following expression:[28,29]

    whererepresents the total energy of perfect Cr5BSi3anddenotes the total energy of Cr5BSi3with vacancy defects, andμX(X= Cr, B and Si) is the chemical potential of each species. For the niobium-rich region,μCr=ECr(bulk),μB=EB(bulk), while for the silicon-rich region,μSi=ESi(bulk). Note thatECr(bulk),EB(bulk),andESi(bulk)are the total energy of a Cr atom,a B atom,and an Si atom in a bulk Cr, B, and Si system, respectively.[30—35]Futhermore,the thermodynamic stability for each of the four models was determined by the value of formationenthalpy. The formation enthalpy of perfect Cr5BSi3was calculated from Eq. (2) and the values of formation enthalpy of four vacancy models were calculated from Eq.(3):[35,36]

    where ΔHis the formation enthalpy,represents the total energy of perfect Cr5BSi3,denotes the total energy of Cr5BSi3with vacancy defects,andEtotal(Cr),Etotal(B),Etotal(Si) refer to the total energy of the crystal of Cr, B, and Si elements, respectively. Moreover, the structural stability is also determined by the dynamical condition. The dynamical stability depends on the phonon frequency. If the solid material possesses the positive phonon frequency,it will possess the dynamical stability. In this work, the phonon dispersions were investigated using the finite displacement method with Phonon code.Moreover,some phonon-related thermodynamic properties were calculated in a quasi-harmonic approximation within the Phonon code.[37—41]The mechanical properties were determined by the elastic constants(Cij),and elastic moduli.[42—44]The strain—stress method and Voigt—Reuss—Hill(VRH)method were used to calculate the elastic constants and elastic moduli.[45,46]According to the Hill’s bulk modulusBHand shear modulusGH,we calculated the elastic hardness(HV),Poisson’s ratio(v),and Young’s modulusE.[47,48]

    Fig.1. Crystal structures of Cr5BSi3 with different vacancies.

    3. Results and discussion

    4. Structural stability of vacancy models

    Table 1 shows the lattice parameters and thermodynamic parameters of four vacancy models and perfect Cr5BSi3crystal. It is found that lattice constants of Cr5BSi3approach to the experimental values,[15]which indicates that our computational method is reliable and feasible. As is well known,the positive vacancy formation energy (Ef) suggests that the vacancy model is thermodynamically stable.[35]As shown in Table 1, the values of vacancy formation energyEffor four vacancy models are all positive, indicating that the Cr5BSi3with four vacancies are thermodynamically stable. In Table 1,the values of formation enthalpy ΔHof perfect Cr5BSi3and Cr5BSi3with four vacancies are both negative,confirming that the Cr5BSi3with various vacancies are thermodynamically stable.The Cr?Va1vacancy has the best thermodynamic stability in these vacancies due to the most negative values of formationenthalpy. Furthermore,figure 2 displays the lattice vibration curves of parent Cr5BSi3and four vacancy models. The parent Cr5BSi3and Cr5BSi3with various vacancies exhibit the dynamical stabilities because the parent Cr5BSi3and Cr5BSi3with various vacancies have no imaginary phonon frequencies in the whole regions.[49]It can be found from Table 1 that lattice constants of Cr5BSi3with vacancies are smaller than those of the perfect Cr5BSi3compound. In Fig. 1, each B atom is surrounded by six Cr1 atoms. And Cr2 atom occupies the center formed by three adjacent BCr16octahedra. Additionally, the coplanar BCr16octahedra are interleaved by Si layers along thecaxis. The structural stability of Cr5BSi3stems from the bond state formed by the hybridization among Cr,B,and Si atoms within the stacked layered structure. The removal of Cr, B, and Si atoms can cause lattice to shrink,which indicates that the removal of atoms enhances the atomic interaction among the nearby atoms.

    Table 1. Calculated values of lattice parameters a, b, and c (in unit ), vacancy formation energy Ef (in unit eV), and formation enthalpy ΔH (in unit eV)of Cr5BSi3 with four different vacancies.

    Table 1. Calculated values of lattice parameters a, b, and c (in unit ), vacancy formation energy Ef (in unit eV), and formation enthalpy ΔH (in unit eV)of Cr5BSi3 with four different vacancies.

    aRef.[15], bRef.[16].

    Compound Method a(images/BZ_589_1417_292_1450_340.png) b(images/BZ_589_1417_292_1450_340.png) c(images/BZ_589_1417_292_1450_340.png) Ef (eV) ΔH (eV)Cr5Si3B GGA 7.034 7.034 4.740 0.902 Exp.a 7.060 7.060 4.730 Theor.b 7.0306 7.0306 4.7326 Cr?Va1 GGA 6.966 6.967 4.688 0.779 0.894 Cr?Va2 GGA 6.934 6.933 4.732 0.761 0.889 B?Va GGA 6.981 6.981 4.717 0.736 0.878 Si?Va GGA 7.020 7.022 4.679 0.741 0.881

    Fig.2. Phonon dispersion curves of(a)parent Cr5BSi3 and Cr5BSi3 with different vacancies: (b)Cr?Va1,(c)Cr?Va2,(d)B?Va,and(e)Si?Va.

    4.1. Mechanical properties

    Table 2 presents the elastic constantsCi js, elastic moduli and the related mechanical quantities of four models, together with the corresponding parameters of perfect Cr5BSi3.In Table 2, the calculated results are close to the available results.[16]The calculated elastic constants of Cr5BSi3with various vacancies satisfy the Born criteria, indicating that they are mechanicallystable.[50,51]The deformation resistance along theaaxis and thecaxis are determined by the elastic constantsC11andC33, respectively. A larger elastic constantC11orC33corresponds to a better deformation resistance. In the present work,the elastic constantC11of the parent Cr5BSi3is larger than the values of corresponding elastic constantC11of two Cr?Vavacancies and Si?Vavacancy,confirming that the removal of these atoms can weaken the deformation resistance along theaaxis. Meanwhile, elastic constantC33of Cr?Va2vacancy is smaller than that of the parent Cr5BSi3, illustrating that the presence of Cr?Va2vacancy can enhance the deformation resistance along thecaxis of parent Cr5BSi3. Furthermore, a larger elastic constantC44implies a higher shear resistance.[52]As listed in Table 2, the elastic constantC44of Si?Vamodel is 100.7 GPa, which is smaller than those of parent Cr5BSi3and Cr5BSi3with other vacancies. Namely, the removal of Si atom makes the shear resistance of Cr5BSi3lower than those of the parent Cr5BSi3and Cr5BSi3with other vacancies models. Therefore,the removal of atoms can weaken the charge interaction and the local hybridization among atoms in the ground state.

    From Table 2 it follows that the bulk modulusBand shear modulusGof the perfect Cr5BSi3are 197.9 GPa and 128.1 GPa, respectively. The values ofBandGof Cr?Vamodel and B?Vamodel are smaller than those of the parent Cr5BSi3,indicating that the presence of Cr?Vamodel and B?Vamodel can weaken the compression resistance and deformation resistance of Cr5BSi3. In addition,when Si atom is removed,the values ofBandGfor Si?Vamodel are larger than those of the parent Cr5BSi3,confirming that the Cr5BSi3with Si?Vavacancy possesses the better volume deformation. The shear modulus of B?Vamodel is 86.9 GPa and it is smaller than those of other vacancy models, illustrating that B?Vamodel has a weaker deformation resistance than other vacancy models. Generally speaking, the smaller Young’s modulus means the lower elastic stiffness. In Table 2, the Young’s moduliof Cr5BSi3and Cr5BSi3with four various models follow the order: Si?Va>Cr5BSi3>Cr?Va2>Cr?Va1>B?Va, which indicates that the Si?Vamodel possesses the best elastic stiffness in the four vacancy models. Additionally,it can be concluded that the presence of Cr atom and B atom vacancies can weaken the elastic stiffness of the parent Cr5BSi3.

    Table 2. Values of elastic constants Cij (in unit GPa),bulk modulus B(in unit GPa),shear modulus G(in unit GPa),Young’s modulus E (in unit GPa),B/G ratio,Poisson’s ratio v,and Vickers hardness HV (in unit GPa)of Cr5BSi3 with four different vacancies.

    Fig. 3. Curves of B/G ratio of parent Cr5BSi3 and Cr5BSi3 with different vacancies.

    The values of hardnessHVof Cr5BSi3and Cr5BSi3with different vacancies are listed in Table 2. The intrinsic hardness of the parent Cr5BSi3is 17.6 GPa. The hardnessHVof the Cr?Vamodel and Si?Vamodel are slightly different from that of Cr5BSi3. The hardnessHVof B?Vamodel is obviously smaller than that of Cr5BSi3. This result suggests that the removal of B atom strongly reduces the hardness of Cr5BSi3.The brittle/ductile behavior is a significant parameter of solid material. TheB/Gratio and Poisson’s ratiovcan be used to assess the brittle or ductile behavior according to the Pugh rule.[53,54]The critical value ofB/Gand Poisson’s ratiovare 1.75 and 0.26,respectively. If the values are less than 1.75 and 0.26, the solid material will be a brittle material. It is obviously found thatB/Gratio of the parent Cr5BSi3is less than 1.75 in Fig.3, indicating that the parent Cr5BSi3exhibits the brittle behavior.[16]The Cr?Vamodel and Si?Vamodel exhibit a slightly largerB/Gratio than the parent Cr5BSi3. However,theB/Gratio of B?Vamodel is larger than 1.75. Namely,the Cr5BSi3with B?Vais a ductile material and the other vacancies improve the brittleness of Cr5BSi3,the variation of which is the same tendency as the variation of hardness. In Table 2,the Poisson’s ratiovof the parent Cr5BSi3is 0.234 GPa,which is less than 0.26,indicating that the Cr5BSi3is a brittle material. Obviously, the Cr5BSi3with B?Vavacancy is ductile,and the Cr?Vamodel and Si?Vamodel are less brittle than the Cr5BSi3, which corresponds to the same variation withB/Gratio. The results indicate that the vacancy models improve the brittle behaviors of Cr5BSi3and the B?Vavacancy gives rise to the brittle-to-ductile behavior transition.

    4.2. Electronic properties

    To further investigate the mechanism of electronic properties, the total and partial density of states for the Cr5BSi3with various vacancies are shown in Fig. 4. The black vertical dotted lines in the graphs denote the Fermi levelEF.It is found that there are no energy gaps appearing near the Fermi levelEF, which indicates that the Cr5BSi3exhibits the metallic behavior. As shown in Fig.4(a),the density of states(DOS)of Cr5BSi3is mainly composed of the Cr-3d,B-2s,2p,and Si-3s, 3p orbital states. For the different contributions of Cr,B,and Si electronic states,the localized hybridization between electronic states forms the Cr—B bond,Cr—Si bond,and B—Si bond. The B-2p state penetrates into the B-2s state at?6.35 eV, implying that the electrons transfer from B-2s to B-2p state. The Cr-3d state and Cr-4s state cross the Cr-3p for?8.59 eV and?6.38 eV,respectively,which indicates that the electrons transfer between Cr-3d,Cr-4s,and Cr-3p states.The Si-3p state passes through the Si-3s state at?6.82 eV,which means the formation of Si—Si bonds. It can be seen from the figure,the localized hybridization between the Cr-3d state and the B-2p state in Cr5BSi3is strong, which results in the strong electronic interaction between Cr and B atoms.The density of states (DOS) for Cr5BSi3with various vacancies is slightly different from that of the parent Cr5BSi3. The structural stability can be exhibited by the number of bonding electrons at Fermi level, the smaller the value of the number,the more stable the structure is.[55,56]TheN(EF)values of the Cr5BSi3with four vacancies and the parent Cr5BSi3follow the order: Cr?Va2

    Fig.4. Total and partial DOSs of(a)parent Cr5BSi3 and Cr5BSi3 with different vacancies: (b)Cr?Va1,(c)Cr?Va2,(d)B?Va,and(e)Si?Va.

    Fig. 5. Plots of electron density difference for (a) parent Cr5BSi3 and Cr5BSi3 with different vacancies: (b)Cr?Va1, (c)Cr?Va2, (d)B?Va, and(e)Si?Va.

    The differences in electron density between the parent Cr5BSi3and the Cr5BSi3with four vacancies on (001) plane are plotted in Fig. 5. In eachpanel, the difference in electron density is in a range from?0.02 e/3to 0.07 e/3. And the blue color and the red color denote the maximum and minimum accumulation of electrons, respectively. The light blue regions refer to the neutral regions and there is no charge transfer in these regions. Comparing with the color bar, it can be found from Fig. 5(a) that there are many electrons accumulating between nearby Cr1 and B atoms,illustrating that there exist the Cr1—B—Cr1 bond chains in the parent Cr5BSi3.There is no electron accumulation between Cr1 atom and Si atom appearing in Fig. 5(a), indicating that the electrons are delocalized between Cr atom and Si atom. However, there is no obvious transformation between the inter-layer B atoms,indicating that the weak B—B interaction appears. Furthermore, the electrons between the neighboring Cr2 atoms are delocalized,and so are the nearby Si atoms,which indicates that Cr2—Cr2 bonds and Si—Si bonds are both metallic bonds. The presence of vacancies can influence the electron accumulation, which changes the state of bond and mechanical properties of the parent Cr5BSi3. From Fig. 5(b), the Cr?Va1vacancy reduces the strength of Cr1—B bond and Cr1—Si bond, which reduces the resistance of deformation on the(001)plane. The Cr?Va2vacancy reduces the localized hybridization between nearby Cr2 atoms. Particularly,when B atoms are removed,the electrons between Cr1 atom and B atom become more delocalized, meanwhile the hybridization between Cr1 atom and Si atom becomes stronger. The weak localized hybridization im-proves the brittle behavior of the parent Cr5BSi3. The Cr1—Si bonds are clear away in Fig.5(e),indicating that the presence of Si?Vavacancy reduces the localized hybridization between Cr1 atoms and Si atoms.

    4.3. Thermodynamic properties

    As is well known, the thermal response of material can be estimated by the thermodynamic properties. To estimate the thermodynamic properties of the Cr5BSi3with four vacancies,we use the Phonon code to explore their thermodynamic properties. Figures 6 and 7 show the thermodynamic parameters of Cr5BSi3with four vacancies at different temperatures.Figure 6 shows the curves of calculated values of heat capacity at constant volumeCVversus temperature for Cr5BSi3with four vacancies and the parent Cr5BSi3. It is found that the values of heat capacityCVof Cr5BSi3with four vacancies and the parent Cr5BSi3follow the DebyeT3law in low temperature area and are close to the Dulong—Petit limit in high temperature area.[58,59]The values ofCVfor Cr5BSi3with various vacancies are smaller than the value ofCVof parent Cr5BSi3,which indicates that the removal of Cr,B,and Si atoms reduce the value ofCVof the parent Cr5BSi3.

    Fig.6. Temperature-dependent heat capacity(CV)curves of parent Cr5BSi3 and Cr5BSi3 with different vacancies.

    Fig. 7. Curves of Debye temperature (ΘD) versus temperature of parent Cr5BSi3 and Cr5BSi3 with different vacancies.

    Figure 7 shows the curves of Debye temperatureversustemperatue of Cr5BSi3with various vacancies. It is obvious that Debye temperatures of Cr5BSi3with various vacancies and the parent Cr5BSi3increase rapidly in low temperature area and are close to the fixed values in high temperature area.The Debye temperatures of Cr5BSi3with various vacancies in high temperature area are much larger than the Debye temperature of the parent Cr5BSi3, indicating that the existence of these vacancies increases the thermal stability of the parent Cr5BSi3. The Debye temperature of the Cr5BSi3with Cr?Va1vacancy is much bigger than those of other compounds,which illustrates that the Cr5BSi3with Cr?Va1vacancy shows the better thermal stability than other compounds in the elevated temperature region.

    5. Conclusions

    We use the first-principles calculations to explore the effects of vacancies on the structural stability,electronic and mechanical properties of Cr5BSi3. The conclusions are as follows.

    (i) Theremoval of Cr, B, and Si atoms result in lattice shrinkage. Their vacancy formation enthalpy values are all smaller than zero,indicating that these vacancy structures are thermodynamically stable. The Cr?Va1model is more stable than other vacancy models. The lattice vibration indicates that the Cr5BSi3with various vacancies are dynamically stable.

    (ii)The elastic modulus of Cr5BSi3with Cr?Vavacancies and B?Vavacancies are smaller than that of Cr5BSi3,demonstrating that these vacancies weaken the hardness and deformation resistance of Cr5BSi3. The Poisson’s ratiovandB/Gindicate that Cr5BSi3with B?Vavacancy induces the brittleto-ductile behavior transition.

    (iii) The electronic properties explain the mechanism of an effect of structural vacancies on the physical properties of Cr5BSi3.

    (iv) The values of thermal parameters indicate that the Cr5BSi3with four vacancies present different thermodynamic properties with the increase of temperature.

    Acknowledgement

    Project supported by the Natural Science Foundation of Liaoning Province,China(Grant No.2019JH/30100019).

    猜你喜歡
    王峰
    速度之王
    故事會(huì)(2022年2期)2022-01-19 01:23:38
    賓語(yǔ)從句用法精練
    想坐警車(chē)的男孩
    為癌癥患者打造心靈驛站:想讓大家有尊嚴(yán)地活
    為癌癥患者打造心靈驛站:想讓大家有尊嚴(yán)地活
    冬天在北戴河
    Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
    在對(duì)舊時(shí)光的回眸里發(fā)掘生命的內(nèi)蘊(yùn)——王峰《舊時(shí)光里的小團(tuán)圓》讀札
    岳母刺字
    4 Disease Caused by Chemical and Physical Agents
    美女国产视频在线观看| 日本-黄色视频高清免费观看| 亚洲 欧美一区二区三区| 搡女人真爽免费视频火全软件| 在线天堂最新版资源| 两个人免费观看高清视频| 久久久精品区二区三区| 亚洲精品久久午夜乱码| av网站免费在线观看视频| 午夜福利,免费看| 亚洲精品国产av蜜桃| 精品第一国产精品| 精品国产乱码久久久久久小说| 色网站视频免费| 免费人成在线观看视频色| 婷婷成人精品国产| √禁漫天堂资源中文www| 中文字幕人妻丝袜制服| 亚洲,欧美,日韩| 一边摸一边做爽爽视频免费| 日本av手机在线免费观看| 2022亚洲国产成人精品| 免费观看av网站的网址| 成人亚洲精品一区在线观看| 国产日韩欧美在线精品| 丰满饥渴人妻一区二区三| 亚洲av免费高清在线观看| 啦啦啦在线观看免费高清www| h视频一区二区三区| 精品少妇久久久久久888优播| 亚洲精品自拍成人| 肉色欧美久久久久久久蜜桃| 欧美激情国产日韩精品一区| 久久精品久久精品一区二区三区| 人人妻人人澡人人看| 蜜臀久久99精品久久宅男| 99国产精品免费福利视频| 亚洲丝袜综合中文字幕| 欧美变态另类bdsm刘玥| 高清在线视频一区二区三区| 久久久精品区二区三区| 成年人午夜在线观看视频| 久久热在线av| 亚洲国产精品一区二区三区在线| 日本免费在线观看一区| 黄色一级大片看看| 欧美丝袜亚洲另类| 丰满乱子伦码专区| 只有这里有精品99| 午夜日本视频在线| 国产免费现黄频在线看| 国产在线一区二区三区精| 精品福利观看| 91精品国产国语对白视频| 成人18禁高潮啪啪吃奶动态图| 久99久视频精品免费| 久久天躁狠狠躁夜夜2o2o| 欧美日韩中文字幕国产精品一区二区三区 | 欧美精品人与动牲交sv欧美| 国产精品免费一区二区三区在线 | 高清视频免费观看一区二区| 亚洲少妇的诱惑av| 亚洲精品国产精品久久久不卡| 丁香欧美五月| 欧美亚洲日本最大视频资源| 高清欧美精品videossex| 国产成人av激情在线播放| 最近最新中文字幕大全电影3 | 国产在线观看jvid| 欧美亚洲日本最大视频资源| 欧美性长视频在线观看| 三级毛片av免费| 亚洲性夜色夜夜综合| 亚洲国产看品久久| 国产在线观看jvid| 免费少妇av软件| 久久婷婷成人综合色麻豆| 黄色成人免费大全| 欧美日韩精品网址| 又黄又爽又免费观看的视频| 亚洲avbb在线观看| 在线观看午夜福利视频| 99在线人妻在线中文字幕 | 视频区图区小说| 一进一出抽搐动态| 亚洲人成电影观看| 久久精品人人爽人人爽视色| 久久中文看片网| 亚洲男人天堂网一区| avwww免费| 精品国产美女av久久久久小说| 国产一卡二卡三卡精品| 人妻一区二区av| 精品亚洲成国产av| 婷婷精品国产亚洲av在线 | 18禁国产床啪视频网站| 美女午夜性视频免费| 久热这里只有精品99| 午夜福利,免费看| 婷婷精品国产亚洲av在线 | 精品久久久久久,| av天堂在线播放| 亚洲成人免费av在线播放| 嫩草影视91久久| 一边摸一边做爽爽视频免费| 无限看片的www在线观看| 亚洲中文日韩欧美视频| 中文字幕av电影在线播放| 午夜免费鲁丝| xxx96com| 国产aⅴ精品一区二区三区波| 欧美一级毛片孕妇| 久久久久久亚洲精品国产蜜桃av| 久久久久久久久久久久大奶| 国产精品一区二区在线观看99| 亚洲男人天堂网一区| 一进一出好大好爽视频| 国产不卡一卡二| 亚洲精品国产区一区二| 国产无遮挡羞羞视频在线观看| 久久婷婷成人综合色麻豆| 精品国产亚洲在线| 久久精品国产综合久久久| 亚洲欧洲精品一区二区精品久久久| 免费观看精品视频网站| 丁香六月欧美| 757午夜福利合集在线观看| 国产成人精品久久二区二区免费| 黄片播放在线免费| 中文字幕av电影在线播放| 精品久久久精品久久久| 亚洲中文日韩欧美视频| 50天的宝宝边吃奶边哭怎么回事| 久久香蕉激情| 久久精品国产亚洲av高清一级| 亚洲视频免费观看视频| 亚洲片人在线观看| 久久久久久久国产电影| 美国免费a级毛片| 色播在线永久视频| 日日摸夜夜添夜夜添小说| 人人妻人人添人人爽欧美一区卜| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看日本一区| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品合色在线| 啦啦啦在线免费观看视频4| 国产成人精品久久二区二区免费| 亚洲成人手机| 99精品在免费线老司机午夜| 精品久久久精品久久久| 精品福利观看| 久久香蕉精品热| 黄色怎么调成土黄色| 久久青草综合色| 好看av亚洲va欧美ⅴa在| 欧美性长视频在线观看| 女性被躁到高潮视频| 亚洲va日本ⅴa欧美va伊人久久| 好看av亚洲va欧美ⅴa在| 中文字幕精品免费在线观看视频| 成年人午夜在线观看视频| 精品电影一区二区在线| 一进一出好大好爽视频| 日韩视频一区二区在线观看| 亚洲av日韩精品久久久久久密| 黄色视频,在线免费观看| 成人亚洲精品一区在线观看| 国产精品.久久久| a在线观看视频网站| 欧美日韩福利视频一区二区| 国产极品粉嫩免费观看在线| 国产麻豆69| 日本wwww免费看| 亚洲免费av在线视频| 久久久久视频综合| 欧美一级毛片孕妇| 大片电影免费在线观看免费| av网站在线播放免费| 亚洲精品国产一区二区精华液| 亚洲国产中文字幕在线视频| av一本久久久久| 夜夜躁狠狠躁天天躁| 国产99久久九九免费精品| 少妇猛男粗大的猛烈进出视频| 在线观看免费高清a一片| 亚洲中文日韩欧美视频| 91在线观看av| 天天躁日日躁夜夜躁夜夜| 老司机亚洲免费影院| 黄色成人免费大全| 国产视频一区二区在线看| 欧美日韩亚洲高清精品| 久久精品国产a三级三级三级| av视频免费观看在线观看| 亚洲精品美女久久久久99蜜臀| 黑丝袜美女国产一区| 亚洲七黄色美女视频| 免费人成视频x8x8入口观看| 男人的好看免费观看在线视频 | 成年版毛片免费区| 国产亚洲一区二区精品| 国产又爽黄色视频| 91成年电影在线观看| a级毛片在线看网站| 两人在一起打扑克的视频| av一本久久久久| 丰满迷人的少妇在线观看| 正在播放国产对白刺激| 免费在线观看日本一区| 水蜜桃什么品种好| 久久久国产欧美日韩av| 五月开心婷婷网| 国产精品久久久久久人妻精品电影| 精品人妻熟女毛片av久久网站| 国产成人精品在线电影| 1024视频免费在线观看| 黄色片一级片一级黄色片| 久久草成人影院| 男男h啪啪无遮挡| 国产无遮挡羞羞视频在线观看| 国产真人三级小视频在线观看| 一二三四社区在线视频社区8| 国产伦人伦偷精品视频| 大香蕉久久成人网| 久久精品国产99精品国产亚洲性色 | av网站免费在线观看视频| bbb黄色大片| 欧美成人免费av一区二区三区 | 91麻豆av在线| 精品少妇久久久久久888优播| a级毛片黄视频| 涩涩av久久男人的天堂| 午夜福利欧美成人| 一a级毛片在线观看| 欧美精品高潮呻吟av久久| 人人妻,人人澡人人爽秒播| 久久精品国产a三级三级三级| 日韩欧美一区二区三区在线观看 | 男人的好看免费观看在线视频 | 国产蜜桃级精品一区二区三区 | 欧美精品av麻豆av| 日日摸夜夜添夜夜添小说| 在线十欧美十亚洲十日本专区| 黄网站色视频无遮挡免费观看| 18禁观看日本| 精品一品国产午夜福利视频| 欧美日本中文国产一区发布| 久久久久久久久久久久大奶| 露出奶头的视频| 久久久久国内视频| 国产成人免费观看mmmm| 一级毛片女人18水好多| 水蜜桃什么品种好| 精品久久久久久,| 亚洲人成77777在线视频| tocl精华| 首页视频小说图片口味搜索| 最近最新中文字幕大全电影3 | 国产成人欧美在线观看 | 欧美午夜高清在线| 免费女性裸体啪啪无遮挡网站| 日本wwww免费看| 国产精品 欧美亚洲| 中文字幕高清在线视频| 12—13女人毛片做爰片一| 精品乱码久久久久久99久播| 日韩人妻精品一区2区三区| 久99久视频精品免费| 丰满人妻熟妇乱又伦精品不卡| 国产99久久九九免费精品| 国产精品乱码一区二三区的特点 | 丝袜人妻中文字幕| 成年女人毛片免费观看观看9 | 亚洲一区二区三区不卡视频| 身体一侧抽搐| 久久精品国产清高在天天线| 久久中文字幕一级| 女警被强在线播放| 欧美日韩亚洲国产一区二区在线观看 | 伦理电影免费视频| 欧美精品亚洲一区二区| 嫩草影视91久久| 宅男免费午夜| 久久天躁狠狠躁夜夜2o2o| 亚洲一区高清亚洲精品| 啦啦啦在线免费观看视频4| 999精品在线视频| 在线免费观看的www视频| 69av精品久久久久久| 日本vs欧美在线观看视频| 久久人妻av系列| 精品久久久久久久久久免费视频 | 亚洲精品乱久久久久久| 国产在视频线精品| 欧美日韩亚洲高清精品| 欧美午夜高清在线| 18禁美女被吸乳视频| 在线观看免费午夜福利视频| av天堂久久9| 成年人午夜在线观看视频| av中文乱码字幕在线| 99在线人妻在线中文字幕 | 91九色精品人成在线观看| 丝袜在线中文字幕| 久热这里只有精品99| 久久久久久久久久久久大奶| 人妻久久中文字幕网| 久久青草综合色| 变态另类成人亚洲欧美熟女 | 久99久视频精品免费| 中文字幕最新亚洲高清| 久久精品亚洲熟妇少妇任你| 嫩草影视91久久| 亚洲熟妇中文字幕五十中出 | 最近最新中文字幕大全免费视频| 国产国语露脸激情在线看| 9色porny在线观看| 欧美日韩精品网址| 日韩成人在线观看一区二区三区| 国产三级黄色录像| 久久九九热精品免费| svipshipincom国产片| 黑人操中国人逼视频| 午夜视频精品福利| 欧美黄色片欧美黄色片| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区| 中文字幕高清在线视频| 悠悠久久av| 精品乱码久久久久久99久播| 久久亚洲真实| 久久精品国产99精品国产亚洲性色 | 黑人猛操日本美女一级片| 久热爱精品视频在线9| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲av一区麻豆| 亚洲欧美一区二区三区久久| 国产欧美日韩一区二区三区在线| 国产一区二区激情短视频| aaaaa片日本免费| 欧美人与性动交α欧美软件| 久久亚洲精品不卡| 国产亚洲精品久久久久5区| 成年女人毛片免费观看观看9 | 国产精品综合久久久久久久免费 | 久久人妻熟女aⅴ| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲情色 制服丝袜| 侵犯人妻中文字幕一二三四区| 正在播放国产对白刺激| 看片在线看免费视频| 99国产极品粉嫩在线观看| 亚洲性夜色夜夜综合| 极品人妻少妇av视频| 热re99久久国产66热| 午夜免费成人在线视频| 亚洲性夜色夜夜综合| 国产精品久久电影中文字幕 | 黄色 视频免费看| 成人亚洲精品一区在线观看| 女人被狂操c到高潮| 亚洲午夜精品一区,二区,三区| 国产精品久久久人人做人人爽| 国产熟女午夜一区二区三区| 搡老熟女国产l中国老女人| 宅男免费午夜| 两人在一起打扑克的视频| 又紧又爽又黄一区二区| 国产精品一区二区精品视频观看| 午夜福利乱码中文字幕| 在线观看免费午夜福利视频| 一级毛片高清免费大全| 精品国产乱子伦一区二区三区| 久久香蕉精品热| 99热只有精品国产| 国产麻豆69| 757午夜福利合集在线观看| 欧美激情 高清一区二区三区| 成年人黄色毛片网站| 一级毛片女人18水好多| av天堂在线播放| 人成视频在线观看免费观看| 91老司机精品| 国产精品影院久久| 欧美精品人与动牲交sv欧美| 两个人看的免费小视频| 大型黄色视频在线免费观看| 国产伦人伦偷精品视频| 夫妻午夜视频| 777久久人妻少妇嫩草av网站| 男女床上黄色一级片免费看| 色婷婷av一区二区三区视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美午夜高清在线| 午夜精品久久久久久毛片777| 淫妇啪啪啪对白视频| 亚洲 国产 在线| 99国产综合亚洲精品| 成熟少妇高潮喷水视频| 国产视频一区二区在线看| 亚洲av成人av| 日韩一卡2卡3卡4卡2021年| 岛国在线观看网站| 免费在线观看完整版高清| 69精品国产乱码久久久| netflix在线观看网站| 精品一区二区三卡| 日韩一卡2卡3卡4卡2021年| 不卡一级毛片| 男女下面插进去视频免费观看| 91九色精品人成在线观看| 亚洲男人天堂网一区| 午夜老司机福利片| 美女国产高潮福利片在线看| 国产欧美日韩精品亚洲av| 国产精品亚洲av一区麻豆| av免费在线观看网站| 亚洲av成人av| 性少妇av在线| 久久久久国产精品人妻aⅴ院 | 一级,二级,三级黄色视频| 淫妇啪啪啪对白视频| 国产深夜福利视频在线观看| 免费观看人在逋| 午夜成年电影在线免费观看| 成人特级黄色片久久久久久久| 久久久久久久午夜电影 | 很黄的视频免费| av免费在线观看网站| 色94色欧美一区二区| 欧美中文综合在线视频| 欧美 日韩 精品 国产| 精品国产乱码久久久久久男人| 一级片'在线观看视频| 国产精品亚洲一级av第二区| 国产精品.久久久| av片东京热男人的天堂| 亚洲精品成人av观看孕妇| 黄色视频,在线免费观看| 国产蜜桃级精品一区二区三区 | 欧美大码av| 午夜免费成人在线视频| 午夜福利在线观看吧| 亚洲av片天天在线观看| 一本一本久久a久久精品综合妖精| 亚洲免费av在线视频| 在线观看www视频免费| 亚洲欧美一区二区三区黑人| 看免费av毛片| 久久久精品免费免费高清| 国产麻豆69| 黑人巨大精品欧美一区二区mp4| 免费高清在线观看日韩| 最新美女视频免费是黄的| 久久精品国产a三级三级三级| 成人免费观看视频高清| 成人国语在线视频| 欧美日韩瑟瑟在线播放| 美女午夜性视频免费| 国产欧美日韩一区二区精品| 精品福利观看| 俄罗斯特黄特色一大片| 黄片播放在线免费| 久久亚洲精品不卡| 精品无人区乱码1区二区| 国产亚洲av高清不卡| 亚洲av日韩精品久久久久久密| 国产成人一区二区三区免费视频网站| 手机成人av网站| 国产午夜精品久久久久久| 伦理电影免费视频| 日韩成人在线观看一区二区三区| 免费在线观看黄色视频的| 欧美日韩精品网址| 90打野战视频偷拍视频| 国产有黄有色有爽视频| 中文字幕最新亚洲高清| 国产在线一区二区三区精| 久久精品成人免费网站| 99久久99久久久精品蜜桃| 久久天堂一区二区三区四区| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽 | 精品一区二区三区av网在线观看| 在线视频色国产色| 久9热在线精品视频| 在线观看66精品国产| 狠狠婷婷综合久久久久久88av| 久久 成人 亚洲| av视频免费观看在线观看| 国产单亲对白刺激| 老熟妇仑乱视频hdxx| 久久九九热精品免费| 激情在线观看视频在线高清 | 国产精品欧美亚洲77777| 亚洲专区中文字幕在线| 电影成人av| 9191精品国产免费久久| 国产精品免费一区二区三区在线 | 真人做人爱边吃奶动态| 另类亚洲欧美激情| 在线av久久热| 午夜视频精品福利| 久久精品成人免费网站| 成人永久免费在线观看视频| 亚洲成av片中文字幕在线观看| 成人三级做爰电影| av线在线观看网站| 在线观看免费日韩欧美大片| 久久精品亚洲熟妇少妇任你| 日韩熟女老妇一区二区性免费视频| 黄色丝袜av网址大全| 亚洲成人免费av在线播放| 成人黄色视频免费在线看| 水蜜桃什么品种好| 欧美激情高清一区二区三区| 久久青草综合色| 另类亚洲欧美激情| 成年女人毛片免费观看观看9 | 深夜精品福利| 国产精品 欧美亚洲| 国产成人系列免费观看| 久久这里只有精品19| 亚洲中文字幕日韩| 麻豆av在线久日| 一边摸一边抽搐一进一出视频| 狠狠婷婷综合久久久久久88av| 免费一级毛片在线播放高清视频 | 国产区一区二久久| 一级黄色大片毛片| 99国产精品一区二区蜜桃av | 大陆偷拍与自拍| 日日摸夜夜添夜夜添小说| 亚洲精品粉嫩美女一区| 怎么达到女性高潮| 久久天堂一区二区三区四区| 亚洲成国产人片在线观看| 午夜免费成人在线视频| 99久久国产精品久久久| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 妹子高潮喷水视频| 国产精品成人在线| 亚洲三区欧美一区| 亚洲五月天丁香| 久久精品亚洲熟妇少妇任你| 欧美日本中文国产一区发布| 老司机午夜福利在线观看视频| 久久人人97超碰香蕉20202| 欧美亚洲 丝袜 人妻 在线| 一本大道久久a久久精品| 久久中文字幕人妻熟女| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| 看片在线看免费视频| 日韩熟女老妇一区二区性免费视频| 99精品在免费线老司机午夜| 国产精品免费一区二区三区在线 | 咕卡用的链子| 成在线人永久免费视频| 天天躁日日躁夜夜躁夜夜| 露出奶头的视频| 精品久久久精品久久久| 亚洲性夜色夜夜综合| av电影中文网址| 久久人妻福利社区极品人妻图片| 亚洲午夜理论影院| 99精国产麻豆久久婷婷| 在线观看舔阴道视频| 叶爱在线成人免费视频播放| 欧美乱码精品一区二区三区| 俄罗斯特黄特色一大片| 国产成人精品久久二区二区免费| 女人久久www免费人成看片| 国产激情欧美一区二区| 久久香蕉国产精品| 亚洲色图综合在线观看| 99在线人妻在线中文字幕 | 成年动漫av网址| 欧美中文综合在线视频| 午夜福利一区二区在线看| 午夜久久久在线观看| 国产精品久久久人人做人人爽| 高清在线国产一区| 欧美午夜高清在线| 精品第一国产精品| 日本精品一区二区三区蜜桃| av天堂久久9| 久久精品aⅴ一区二区三区四区| 多毛熟女@视频| 在线永久观看黄色视频| 91大片在线观看| 天堂动漫精品| 国产1区2区3区精品| 人人妻人人澡人人爽人人夜夜| 欧美乱码精品一区二区三区| 老司机影院毛片| 黑人操中国人逼视频| 91av网站免费观看| 欧美激情久久久久久爽电影 | 超碰成人久久| 亚洲av欧美aⅴ国产| 久久国产精品影院| 国产色视频综合| 精品电影一区二区在线| 国产精品秋霞免费鲁丝片| 99国产极品粉嫩在线观看| 国产成人免费观看mmmm| 波多野结衣av一区二区av| 高清av免费在线| 欧美午夜高清在线| 人妻丰满熟妇av一区二区三区 | 一区二区三区精品91|