• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Iterative filtered ghost imaging

    2022-02-24 08:59:36ShaoYingMeng孟少英MeiYiChen陳美伊JieJi季杰WeiWeiShi史偉偉QiangFu付強QianQianBao鮑倩倩XiHaoChen陳希浩andLingAnWu吳令安
    Chinese Physics B 2022年2期

    Shao-Ying Meng(孟少英) Mei-Yi Chen(陳美伊) Jie Ji(季杰) Wei-Wei Shi(史偉偉)Qiang Fu(付強) Qian-Qian Bao(鮑倩倩) Xi-Hao Chen(陳希浩) and Ling-An Wu(吳令安)

    1Key Laboratory of Optoelectronic Devices and Detection Technology,School of Physics,Liaoning University,Shenyang 110036,China

    2Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    It is generally believed that,in ghost imaging,there has to be a compromise between resolution and visibility. Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image of a grayscale object is achieved, while at the same time the signal-to-noise ratio (SNR) and visibility are greatly improved, without adding complexity. The dependence of the SNR,visibility,and resolution on the number of iterations is also investigated and discussed. Moreover,with the use of compressed sensing the sampling number can be reduced to less than 1%of the Nyquist limit, while maintaining image quality with a resolution that can exceed the Rayleigh diffraction bound by more than a factor of 10.

    Keywords: ghost imaging,bandpass filtering,compressed sensing,iteration

    1. Introduction

    Ghost imaging(GI)[1–8]is a recent newly-developed technique which can recover the spatial information of an object via the correlation measurement of two beams, neither of which can image the object independently. This powerful technology enables a high-quality image to be obtained even in a harsh environment such as a scattering medium[9]and turbulent atmosphere;[10]it has many promising applications in microscopy,[11]remote sensing,[12]optical encryption,[13]and various other fields. Although thermal GI had some drawbacks of low visibility, low signal-to-noise ratio (SNR) and long acquisition time in the original approach, after almost twenty years of development these problems may now be resolved through various methods, such as high-order GI,[14]differential GI,[15]computational GI,[16,17]correspondence imaging,[18]and compressed GI.[19]Meanwhile,its ability to reconstruct a high resolution image exceeding the Rayleigh diffraction limit has been verified by many groups.[20–27]

    Resolution,visibility and SNR are the three most important parameters that characterize the quality of an image. In particular,much research has concentrated on how to increase the SNR.In 2014,an iterative GI scheme[28]was demonstrated that can greatly enhance both SNR and resolution based on computational GI. Shortly thereafter Yaoet al. presented a new technique to denoise the traditional ghost image by iterative GI algorithms.[29]A few years later, motivated by the first application of deep learning in optical imaging,[30]a novel deep learning method was introduced to improve the image quality in GI,with an extremely low sampling rate.[31,32]Recently, another new approach for recovering super-resolution ghost images of objects in a lensless filtered GI(FGI)system was demonstrated,[26,27,33]where the spatial resolution can greatly exceed the Rayleigh diffraction bound by more than a factor of 10.[33]However, the latter papers mainly focused on the improvement of imaging resolution and left the issues of SNR and visibility untouched,so these require further consideration. Previously, the general view was that one had to compromise between resolution and visibility,[4]but with our scheme we can overcome this difficulty.

    2. Theory and method

    In this letter,we propose an iterative FGI method to realize a ghost image of a grayscale object,performed by iteration of the filtered intensities of different thresholds and their correlations in the FGI equation for a given sample number(see Eqs. (3) and (4) below). The imaging quality is then evaluated through inspection of the three most important parameters mentioned above. It is somewhat surprising that high resolution can be achieved,while the SNR and visibility are greatly improved. In particular,under certain conditions the visibility can be almost as high as 100%,which is much better than the visibility limit of 1/3 in traditional GI.[34]The dependence of the SNR,visibility,and resolution on the number of iterations is also analyzed.

    The experimental scheme is depicted in Fig.1. Here,for convenience and without loss of generality, in the following theoretical introduction we only consider the intensity along the horizontal direction. To begin with,if both the spatial filtersBFi(i=1,2) and the object are removed, the setup will become a traditional Hanbury Brown and Twiss (HBT) system. When the data are recorded in a discrete form in time by charge-coupled devices(CCDs),the normalized second-orderintensity correlation function for HBT can be written in the form of a summation instead of an integration as

    whereIn(xi) (i=1,2) are then-th intensity distributions at distancesxi(i=1,2) on theX1andX2planes, respectively,and the distancesz1andz2from the light source to the CCD planesX1andX2are equal;Nrepresents the total sampling number. If only two filters are removed and the object is still left in front of CCD1, which we take to be the bucket detector, the corresponding ghost image in a traditional GI system is given by

    whereSn=∑x1In(x1)T(x1) is the total intensity of then-th measurement collected by CCD1 andT(x1) is the transmission function of the object.

    Fig. 1. Schematic diagram of experimental setup. G: ground-glass plate;BS:beam splitter;CCD1 and CCD2: spatially resolving cameras;BF1 and BF2: spatial bandpass filters.

    However, if two spatial filters BF1 and BF2 are inserted behind the spatially resolving detectors CCD1 and CCD2,respectively before connection to the coincidence circuit,the instantaneous intensity distributions that are actually measured after filtering are modified as, whereFdenotes the lower and upper boundsFBLandFUL, respectively,of a bandpass filter of bandwidthB, andBis defined asB=FBU?FBL+1. Then the normalized second-order intensity correlation function after bandpass filtering becomes[26,27]

    Obviously, this method is also suitable for the highpass and lowpass filters whenFjust needs to be defined as the threshold. When CCD1 together with bandpass filter BF1 play the usual role of a GI bucket detector, and the object is inserted in front, then the total transmitted intensity is, and the ghost image reconstructed withfrom the normalized second-order intensity correlation function can be expressed as

    We can see that these equations have the same form as the traditional GI equations when the filtered intensities are replaced by thermal intensities.

    The principle of iterative FGI is simple in that its formula has the same form as that in GI and FGI. Suppose thatMis the number of different lower boundsFk(k=1,2,...,M) ofB,so the effective sampling number actually becomesN×Mif all the filtered intensities are used to reconstruct the image of an object in the framework of GI.It seems that all the filtered intensities in the two beams and their correlations are added according to the differentFk(k=1,2,...,M), so we call the method iterative FGI. Accordingly, the normalized intensity correlation functions of the iterative filtered HBT and GI can be respectively written as

    To characterize the image quality quantitatively,the visibility and SNR[35]can be defined,respectively,as

    whereT0(i,j) is the transmission matrix of the object mask of sizeH×K,is the retrieved image, andT0=is the average gray-scale value of all the pixels ofT0.

    3. Experiments and results

    Figure 1 shows the experimental setup,which is a generic FGI system using thermal light. Pseudothermal light is generated by illuminating a rotating ground-glass plate G with a laser beam of wavelengthλ=532 nm and beam diameterD=3 mm. The pseudothermal beam is divided by a 50:50 nonpolarizing beam splitter(BS)into two spatially correlated beams;one beam is transmitted into the reference arm and the other is reflected into the test arm, to be detected by cameras CCD2 and CCD1 (Imaging Source DMK 42BU02), respectively. The data from each detector is fed into an electronic filter and then saved to a computer. However, for simplicity the data from each detector are actually saved to a computer first,and then the procedure of filtering the intensity distributions is performed by means of data processing through matrix manipulation.[26,27,33]The actual operations are as follows: first, we choose two different numbersFBLandFBUas the lower bound and upper bound, respectively. Their difference plus 1,i.e.,FBU?FBL+1, is the bandwidthB. Second,each instantaneous intensity value of thermal light is compared with a given lower and upper bound;if this value is lower than the lower bound or larger than the upper bound, it will be set to 0;if it is smaller than or equals the upper bound and larger than or equals the lower bound, it will not be changed. Finally, the filtered data are used to calculate the second-order correlation functions,as in traditional GI.

    To test our method, a digital grayscale object[36]was used to simulate traditional GI, lowpass, highpass and bandpass FGI in an autocorrelation scheme according to Eq.(4).[26]The object was a simulated grayscale butterfly transmission mask of size 101×101 pixels,as shown in Fig.2(a). The reconstructed images after averaging overN=5×104exposure frames for GI,lowpass,highpass and bandpass FGI are shown in Figs.2(b)–2(e),where the SNR values are 2.67,1.95,2.58,and 1.82,respectively.The thresholds of the lowpass,highpass and bandpass filters were set toFL=5,FH=100,andFBL=20 at a bandwidthBof 1, respectively. Although it seemsthat the SNRs decrease a little bit after filtering,the recovered images are still much clearer compared with GI,especially after bandpass filtering, mainly because FGI has much better resolution. Furthermore, FGI also gives much better visibility than GI;in Figs.2(b)–2(e)the visibilities are 2.8%,10.6%,20.4%,and 5.4%,respectively. The retrieved images shown in Figs. 2(f)–2(i) were obtained from Eq. (6), and have an SNR of 1.82,2.07,4.02,and 8.14 after 15,5,11 and 21 iterations,with a visibility of 5.4%,5.5%,5.3%,and 8.0%,respectively.It is evident that the image quality gradually becomes better and better as the number of iterations increases; in particular Fig. 2(i) is almost as good as the original object. Figure 2(f)was recovered according to Eq.(6)after 15 iterations using a fixed lower and upper bound of 20 and 22, respectively, at a bandwidth of 1. It appears to be exactly the same as Fig.2(e),which can also be inferred from Eq.(6).Therefore,none of the quality parameters(SNR,visibility and resolution)can be improved by iterations for an unchanged lower bound at a fixed bandwidth. This is also true for traditional GI.However,both the SNR and visibility of the images in Figs. 2(g)–2(i), reconstructed by iterative FGI with different lower bounds at a fixed bandwidth of 1 are greatly enhanced. This fully proves the effectiveness of our iterative method in improving image quality. It should be noted that the lower bound is changed in step lengths of 5, though of course any other step length can also be used. To further verify how iterative FGI can enhance image quality,the dependence of the SNR on the lower bandpass bound and the number of iterations were measured. As illustrated in Fig. 3, the black solid line and diamonds represent the SNR of GI;the red dots,blue stars and green triangles represent the SNR of FGI with bandwidthsBof 5,10,and 15,respectively. It can be seen from Fig. 3(a) that, as the lower bound increases, the SNR of the FGI images fluctuates and decreases somewhat compared to GI in most cases. It seems that the SNR increases with the increase of bandwidth but not so significantly. However, iterative FGI can greatly improve the SNR as shown in Fig.3(b),in which as the number of iterations increases the SNR stays below that of GI and does not increase obviously at the beginning,but later increases rapidly to a maximum and then gradually deceases. Here,the increase is largely due to the increase of the effective sampling number.However,a thermal field has a negative exponential statistical probability for its intensity,so as the lower bound is raised and the bandwidth decreased the amount of signal data collected is reduced,resulting in a lower SNR.

    Fig.2. (a)Digital greyscale object; reconstructed image(s)with SNR(s)of(b)2.67 by traditional GI;(c)1.95 by lowpass FGI(FL =5); (d)2.58 by highpass FGI (FH =100); (e) 1.82 by bandpass FGI (FBL =20 at a bandwidth B of 1); (f) 1.82 by iterative bandpass FGI with 15 iterations with no change of thresholds; (g), (h), and (i) 2.07, 4.02, and 8.14 by iterative bandpass FGI using 5, 11, and 21 iterations with different thresholds,respectively.

    Fig.3. (a)Relationship between SNR and lower bounds of bandpass bandwidth. (b)Relationship between SNR and number of iterations.

    Fig.4. Relationships between(a)visibility,(b)resolution and iterations.

    The dependence of visibility and resolution on the number of iterations is shown in Figs. 4(a) and 4(b), where the red dots, blue stars and green triangles represent the visibility and resolution of the FGI for bandwidths of 1, 3, and 5,respectively. It can be seen from Fig. 4(a) that the visibility initially increases rapidly then levels off gradually as the number of iterations increases. It is significant that the visibility can greatly surpass the theoretical limit of 1/3 for thermal GI, and can almost reach 100% when the bandwidthB=1.The calculated/measured relationship between the resolution and number of iterations is shown in Fig. 4(b), which is obtained by calculating the full width at half maximum of the2nd-order autocorrelation functions of the intensity distribution from Eq. (5). The resolution initially decreases sharply and then levels off to a stable value with increase of the number of iterations. On the other hand, it can be improved by decreasing the bandwidth. It is worthy to note that the best resolution can be as fine as one pixel of a CCD device.[33]The light field after filtering does not obey the Bose–Einstein statistics of thermal light anymore,so the visibility limit of thermal light GI is no longer valid and may be exceeded. However,the reason for the improvement of visibility in FGI and iterative FGI is as yet not very clear, and awaits a more precise analytical investigation.

    Though iterative FGI has advantages in many aspects as discussed above,it still has the traditional GI drawback of long integration times. It is known that compressed sensing (CS)can greatly reduce the number of exposures required in GI,so an interesting question is whether it is also effective for iterative FGI. We therefore performed a simulation experiment to image the butterfly under the same conditions as above but using a CS algorithm. The results are shown in Fig.5,where the first row shows images retrieved with a sampling number of 1000, which is about 10% of the Nyquist limit. It is evident that the details of the butterfly cannot be distinguished by CS applied to traditional GI (Fig. 5(a)), while they become quite clear in FGI with CS (Fig. 5(b)), and in iterative FGI with 5 iterations plus CS (Fig. 5(c)). The images in Figs. 5(d)–5(f) are reconstructed with CS by 30, 50, and 100 iterations for a sampling number of only 100, which is less than 1%of the Nyquist limit. We can see that the quality becomes better and better with the increasing number of iterations,which again verifies the effectiveness of iterative FGI.As mentioned above, this is because the effective sampling number is increased through iteration,though the actual sampling number is still small. Since the detection matrix that is built in the CS programming of GI can be as large as or even much larger than in the case of the Nyquist limit,we can make a trade-off between the number of exposures and iterations,choosing the optimum values for a particular need.

    Fig.5. First row: images retrieved by(a)CS,(b)FGI with CS,and(c)iterative FGI with CS with 5 iterations for a sampling number of 1000.Second row: images retrieved by(d)30 iterations,(e)50 iterations,and(f)100 iterations for a sampling number of 100.

    4. Conclusions

    In conclusion, we have demonstrated an iterative bandpass filtered GI method that can retrieve a super-resolution image of a grayscale object, without detriment to the SNR and visibility. The scheme can be easily implemented without adding any complex equipment, and although more computational time is required this should not be a major problem since computer processing speeds are always rapidly increasing. Furthermore, by combining iterative FGI with CS,the sampling number can be reduced to less than 1% of the Nyquist limit so the computational time is also greatly reduced; together this could overcome all of the main bottlenecks in real applications of GI.We expect that iterative FGI will be applicable not only to lensless GI of any wavelength but also to all fields of optical imaging where high quality is necessary.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504302),the National Natural Science Foundation of China (Grant No.61975229),and Civil Space Project(Grant No.D040301).

    国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 国产精品国产高清国产av| 999久久久精品免费观看国产| 男女午夜视频在线观看| 国产精品久久久久久精品电影 | 一进一出抽搐动态| 9色porny在线观看| 中文亚洲av片在线观看爽| 亚洲国产精品999在线| 成人亚洲精品一区在线观看| 亚洲欧美激情综合另类| netflix在线观看网站| 不卡一级毛片| 日本精品一区二区三区蜜桃| 成人手机av| 亚洲第一电影网av| 国产亚洲av高清不卡| 久久久国产欧美日韩av| а√天堂www在线а√下载| 极品人妻少妇av视频| 日日夜夜操网爽| 亚洲 欧美 日韩 在线 免费| 免费av毛片视频| 国产成人精品久久二区二区91| 99精品久久久久人妻精品| 国产高清有码在线观看视频 | 黄片小视频在线播放| 日韩免费av在线播放| 婷婷精品国产亚洲av在线| 美女免费视频网站| 日本 av在线| 岛国视频午夜一区免费看| 欧美日本中文国产一区发布| 丝袜美腿诱惑在线| 午夜福利在线观看吧| 中文字幕人妻熟女乱码| 久久久国产成人精品二区| 日韩欧美在线二视频| 怎么达到女性高潮| 香蕉久久夜色| 黄网站色视频无遮挡免费观看| 国产av在哪里看| 一进一出好大好爽视频| 亚洲欧美激情在线| 亚洲成人国产一区在线观看| 91精品三级在线观看| 亚洲av成人av| 男女做爰动态图高潮gif福利片 | 老熟妇仑乱视频hdxx| 韩国精品一区二区三区| 无遮挡黄片免费观看| 欧美激情 高清一区二区三区| 午夜福利,免费看| 精品久久久久久久毛片微露脸| 一级,二级,三级黄色视频| 男人操女人黄网站| 首页视频小说图片口味搜索| 国产av一区在线观看免费| 精品久久久久久久人妻蜜臀av | 国产高清激情床上av| 在线免费观看的www视频| 国产成人精品在线电影| 男女下面插进去视频免费观看| 国产色视频综合| 国产精品亚洲av一区麻豆| 91老司机精品| 咕卡用的链子| 免费看a级黄色片| 天天添夜夜摸| 99香蕉大伊视频| 国产精品电影一区二区三区| 亚洲精品一区av在线观看| 亚洲无线在线观看| 中出人妻视频一区二区| 中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| 99香蕉大伊视频| 成人精品一区二区免费| 久久国产乱子伦精品免费另类| 黄色视频,在线免费观看| 在线av久久热| 久久精品国产综合久久久| 午夜免费成人在线视频| av有码第一页| 午夜老司机福利片| 欧美精品啪啪一区二区三区| 亚洲自拍偷在线| 日本免费a在线| 老司机午夜十八禁免费视频| 欧美 亚洲 国产 日韩一| 97人妻精品一区二区三区麻豆 | 亚洲国产欧美一区二区综合| 久久午夜综合久久蜜桃| 成人特级黄色片久久久久久久| 欧美激情 高清一区二区三区| 黄片大片在线免费观看| 久久国产精品人妻蜜桃| www.自偷自拍.com| 亚洲av熟女| 国产激情久久老熟女| 九色亚洲精品在线播放| 国产黄a三级三级三级人| 久9热在线精品视频| 精品国产乱子伦一区二区三区| 午夜视频精品福利| 午夜福利,免费看| 亚洲人成电影免费在线| 精品久久久精品久久久| 欧美在线黄色| 91国产中文字幕| 中文字幕久久专区| 国产野战对白在线观看| a级毛片在线看网站| 午夜久久久久精精品| 亚洲人成网站在线播放欧美日韩| 国产精品九九99| 欧美日韩福利视频一区二区| 久久精品亚洲熟妇少妇任你| 精品乱码久久久久久99久播| e午夜精品久久久久久久| 不卡av一区二区三区| 久久亚洲精品不卡| 久9热在线精品视频| 久久人妻av系列| 欧美久久黑人一区二区| 亚洲第一青青草原| 日韩 欧美 亚洲 中文字幕| 日本五十路高清| 少妇被粗大的猛进出69影院| 大陆偷拍与自拍| 一区在线观看完整版| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本视频| 国产成人欧美| 午夜免费观看网址| 18禁美女被吸乳视频| 亚洲色图 男人天堂 中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一青青草原| 嫩草影院精品99| 免费看十八禁软件| 97碰自拍视频| 亚洲电影在线观看av| 久久精品亚洲精品国产色婷小说| 97人妻天天添夜夜摸| 夜夜看夜夜爽夜夜摸| 日韩精品青青久久久久久| 黄片小视频在线播放| 69av精品久久久久久| 日韩一卡2卡3卡4卡2021年| 级片在线观看| 97人妻天天添夜夜摸| 中文字幕人成人乱码亚洲影| 精品久久久久久久毛片微露脸| 如日韩欧美国产精品一区二区三区| 久久久久国产一级毛片高清牌| 黄色a级毛片大全视频| 久久热在线av| 不卡av一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲美女黄片视频| 香蕉丝袜av| 极品人妻少妇av视频| 亚洲午夜理论影院| 波多野结衣高清无吗| 欧美激情 高清一区二区三区| 最近最新免费中文字幕在线| 国产亚洲av嫩草精品影院| 天天一区二区日本电影三级 | 精品欧美一区二区三区在线| 亚洲精品国产精品久久久不卡| 久久中文字幕一级| 激情视频va一区二区三区| 韩国精品一区二区三区| 丁香欧美五月| 黑人巨大精品欧美一区二区mp4| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品sss在线观看| 人人妻人人爽人人添夜夜欢视频| or卡值多少钱| 如日韩欧美国产精品一区二区三区| 国产激情久久老熟女| 欧美乱码精品一区二区三区| 国产精品98久久久久久宅男小说| av中文乱码字幕在线| 亚洲熟妇熟女久久| 久久亚洲真实| 老司机午夜十八禁免费视频| 日日夜夜操网爽| 侵犯人妻中文字幕一二三四区| 午夜福利高清视频| 在线观看免费视频网站a站| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人澡人人看| 淫妇啪啪啪对白视频| 国产亚洲精品av在线| 色老头精品视频在线观看| 午夜福利18| 琪琪午夜伦伦电影理论片6080| 91国产中文字幕| 正在播放国产对白刺激| 激情在线观看视频在线高清| 日本五十路高清| 国产精品九九99| 99在线视频只有这里精品首页| 精品久久久久久久久久免费视频| 一级a爱视频在线免费观看| 国产xxxxx性猛交| 亚洲九九香蕉| 亚洲成a人片在线一区二区| 中文字幕高清在线视频| 少妇粗大呻吟视频| 黄色视频不卡| 国产av又大| 国内精品久久久久精免费| 精品一区二区三区视频在线观看免费| 久久精品国产亚洲av香蕉五月| 国产高清有码在线观看视频 | 在线观看www视频免费| 久久精品aⅴ一区二区三区四区| 精品免费久久久久久久清纯| 日韩一卡2卡3卡4卡2021年| 看黄色毛片网站| 日本免费一区二区三区高清不卡 | 精品国产乱子伦一区二区三区| 中文亚洲av片在线观看爽| 国产欧美日韩一区二区三| 日日干狠狠操夜夜爽| 精品久久蜜臀av无| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 久久精品人人爽人人爽视色| 欧美色视频一区免费| 欧美一级a爱片免费观看看 | 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| 久久天堂一区二区三区四区| 中国美女看黄片| 国产精品一区二区在线不卡| 激情在线观看视频在线高清| 亚洲片人在线观看| 日韩av在线大香蕉| 国产精品 欧美亚洲| 国产精品1区2区在线观看.| 日韩欧美一区视频在线观看| 免费搜索国产男女视频| 国产精品永久免费网站| 国产精品98久久久久久宅男小说| 色综合亚洲欧美另类图片| 国产精品久久视频播放| 国内久久婷婷六月综合欲色啪| 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 十八禁人妻一区二区| av天堂久久9| 日韩中文字幕欧美一区二区| 久久中文看片网| 成人手机av| 免费观看精品视频网站| 免费在线观看影片大全网站| 亚洲av成人av| 国产极品粉嫩免费观看在线| 波多野结衣巨乳人妻| 亚洲伊人色综图| 日韩欧美免费精品| 99久久综合精品五月天人人| 成人国产综合亚洲| 久热这里只有精品99| 两性夫妻黄色片| 人妻丰满熟妇av一区二区三区| 老熟妇仑乱视频hdxx| 亚洲精品美女久久久久99蜜臀| 欧美日韩一级在线毛片| 丁香六月欧美| 日韩精品青青久久久久久| 黑丝袜美女国产一区| 精品久久蜜臀av无| 亚洲色图av天堂| 在线永久观看黄色视频| 禁无遮挡网站| 欧美最黄视频在线播放免费| 日韩精品青青久久久久久| 国产精品日韩av在线免费观看 | 最好的美女福利视频网| 性色av乱码一区二区三区2| 精品日产1卡2卡| 国产精品99久久99久久久不卡| 国产蜜桃级精品一区二区三区| 大香蕉久久成人网| 免费观看精品视频网站| 波多野结衣高清无吗| 少妇裸体淫交视频免费看高清 | 久热这里只有精品99| 成年人黄色毛片网站| 精品久久久久久久人妻蜜臀av | 免费搜索国产男女视频| 人人澡人人妻人| 天天躁夜夜躁狠狠躁躁| 成在线人永久免费视频| 大码成人一级视频| 亚洲欧美精品综合一区二区三区| 国产私拍福利视频在线观看| 国产精华一区二区三区| 精品久久久久久久人妻蜜臀av | 亚洲五月婷婷丁香| 一级毛片女人18水好多| 久久人人97超碰香蕉20202| 男女之事视频高清在线观看| 在线播放国产精品三级| 999精品在线视频| 亚洲av日韩精品久久久久久密| 大码成人一级视频| 香蕉久久夜色| 久久精品aⅴ一区二区三区四区| 免费人成视频x8x8入口观看| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av高清一级| 老司机午夜福利在线观看视频| 亚洲色图av天堂| 亚洲第一青青草原| 久久国产乱子伦精品免费另类| 叶爱在线成人免费视频播放| 精品午夜福利视频在线观看一区| 九色亚洲精品在线播放| 精品一品国产午夜福利视频| 欧美成人一区二区免费高清观看 | 精品福利观看| 久久精品aⅴ一区二区三区四区| 欧美成人一区二区免费高清观看 | 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 女人精品久久久久毛片| 亚洲 欧美一区二区三区| 成人三级黄色视频| 麻豆av在线久日| 亚洲欧美日韩高清在线视频| 国产三级在线视频| 啪啪无遮挡十八禁网站| 精品一区二区三区av网在线观看| 身体一侧抽搐| 国产精品九九99| 少妇的丰满在线观看| 一级黄色大片毛片| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 亚洲精品国产区一区二| 国产午夜精品久久久久久| 亚洲一区高清亚洲精品| 国产精品98久久久久久宅男小说| 黄色视频不卡| 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品久久男人天堂| 麻豆久久精品国产亚洲av| 男女之事视频高清在线观看| 亚洲欧美日韩高清在线视频| 国产一区在线观看成人免费| 在线观看免费午夜福利视频| 美女国产高潮福利片在线看| 亚洲成av片中文字幕在线观看| 国产精品美女特级片免费视频播放器 | 天天一区二区日本电影三级 | 黑人欧美特级aaaaaa片| 午夜影院日韩av| 亚洲色图 男人天堂 中文字幕| 又黄又粗又硬又大视频| 免费在线观看完整版高清| 一进一出抽搐动态| 亚洲av五月六月丁香网| 国产精品日韩av在线免费观看 | 99re在线观看精品视频| 99香蕉大伊视频| 无限看片的www在线观看| 国产精品一区二区三区四区久久 | 亚洲成av人片免费观看| 美国免费a级毛片| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 麻豆一二三区av精品| 在线观看免费视频网站a站| 久久久国产成人免费| 激情在线观看视频在线高清| 国产精品爽爽va在线观看网站 | 黄频高清免费视频| 最新美女视频免费是黄的| 国产三级在线视频| 香蕉国产在线看| 久久精品亚洲熟妇少妇任你| 神马国产精品三级电影在线观看 | 男女午夜视频在线观看| 一区二区三区精品91| 香蕉久久夜色| 美女高潮喷水抽搐中文字幕| 女警被强在线播放| 欧美成人午夜精品| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| 波多野结衣av一区二区av| 麻豆国产av国片精品| 亚洲一区中文字幕在线| 黄色视频不卡| 国产aⅴ精品一区二区三区波| 在线视频色国产色| 波多野结衣一区麻豆| 精品久久久精品久久久| 99热只有精品国产| 国产亚洲欧美98| 精品一区二区三区视频在线观看免费| 免费人成视频x8x8入口观看| 怎么达到女性高潮| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 午夜视频精品福利| 久久精品国产亚洲av高清一级| 国产高清videossex| 精品一区二区三区视频在线观看免费| 国产精品久久久久久人妻精品电影| 国产1区2区3区精品| 18禁国产床啪视频网站| 欧美色欧美亚洲另类二区 | 国产亚洲av嫩草精品影院| 9热在线视频观看99| 欧美日韩亚洲综合一区二区三区_| 午夜免费鲁丝| av欧美777| 99久久综合精品五月天人人| av中文乱码字幕在线| tocl精华| 少妇 在线观看| 国产伦人伦偷精品视频| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 欧美丝袜亚洲另类 | 亚洲一区二区三区不卡视频| 久久香蕉国产精品| 人人澡人人妻人| 国产精品久久久久久精品电影 | 桃红色精品国产亚洲av| 麻豆一二三区av精品| 99热只有精品国产| 亚洲男人的天堂狠狠| 男人舔女人的私密视频| 国产色视频综合| 变态另类成人亚洲欧美熟女 | 搞女人的毛片| 国产一区二区在线av高清观看| 午夜久久久久精精品| 久久国产乱子伦精品免费另类| 真人一进一出gif抽搐免费| 国产精品1区2区在线观看.| 18禁美女被吸乳视频| av电影中文网址| 久久中文字幕人妻熟女| 91老司机精品| 日韩 欧美 亚洲 中文字幕| 亚洲一区高清亚洲精品| 久久久久亚洲av毛片大全| 波多野结衣一区麻豆| 妹子高潮喷水视频| 又大又爽又粗| 国产精品免费视频内射| 两个人视频免费观看高清| 好看av亚洲va欧美ⅴa在| 免费高清在线观看日韩| 窝窝影院91人妻| 日韩三级视频一区二区三区| 日韩欧美国产在线观看| 色综合亚洲欧美另类图片| 欧美中文综合在线视频| 欧美av亚洲av综合av国产av| x7x7x7水蜜桃| 亚洲精品中文字幕在线视频| 视频在线观看一区二区三区| 成年版毛片免费区| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 在线天堂中文资源库| 黄片播放在线免费| 男人舔女人下体高潮全视频| 亚洲欧美精品综合久久99| 色在线成人网| 人人妻人人澡人人看| 亚洲全国av大片| 久久九九热精品免费| 亚洲电影在线观看av| 免费看十八禁软件| 成人国产综合亚洲| 欧美成人性av电影在线观看| 国产熟女xx| 精品久久久久久久毛片微露脸| 黑人操中国人逼视频| 日韩视频一区二区在线观看| 日日摸夜夜添夜夜添小说| 岛国视频午夜一区免费看| 丰满人妻熟妇乱又伦精品不卡| 在线视频色国产色| 性欧美人与动物交配| 在线视频色国产色| 欧美丝袜亚洲另类 | 午夜福利欧美成人| 亚洲av电影不卡..在线观看| 亚洲国产看品久久| 国产激情久久老熟女| 男女午夜视频在线观看| 女人被狂操c到高潮| 国产在线观看jvid| 婷婷丁香在线五月| 国产精品影院久久| 亚洲一区高清亚洲精品| 亚洲自拍偷在线| 精品欧美一区二区三区在线| 日韩 欧美 亚洲 中文字幕| 欧美中文日本在线观看视频| 成人三级黄色视频| 成人三级做爰电影| 国产精品久久久av美女十八| 婷婷丁香在线五月| 一区二区日韩欧美中文字幕| √禁漫天堂资源中文www| 久热这里只有精品99| 亚洲avbb在线观看| 国产高清激情床上av| 高清在线国产一区| 岛国视频午夜一区免费看| 看免费av毛片| 亚洲无线在线观看| 国内精品久久久久精免费| 午夜a级毛片| 制服人妻中文乱码| 中文字幕人妻丝袜一区二区| 亚洲精品av麻豆狂野| 欧美黄色片欧美黄色片| 脱女人内裤的视频| 国产午夜精品久久久久久| 免费观看精品视频网站| 91成年电影在线观看| 色播在线永久视频| 国产一区二区激情短视频| 国产成人免费无遮挡视频| 成人免费观看视频高清| 久久精品亚洲精品国产色婷小说| 精品免费久久久久久久清纯| 一二三四在线观看免费中文在| 男人的好看免费观看在线视频 | 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品电影 | 一本大道久久a久久精品| 国产亚洲精品久久久久5区| 女性被躁到高潮视频| www.www免费av| 亚洲成人久久性| 久久久久久亚洲精品国产蜜桃av| 日韩 欧美 亚洲 中文字幕| 亚洲天堂国产精品一区在线| 久久精品人人爽人人爽视色| 又黄又爽又免费观看的视频| 日本 欧美在线| 身体一侧抽搐| 热99re8久久精品国产| 黑人巨大精品欧美一区二区蜜桃| 美女 人体艺术 gogo| 日本五十路高清| av福利片在线| 一进一出抽搐gif免费好疼| av网站免费在线观看视频| 又黄又粗又硬又大视频| av在线天堂中文字幕| 日日夜夜操网爽| 午夜亚洲福利在线播放| 亚洲欧美精品综合一区二区三区| 真人一进一出gif抽搐免费| 国产av在哪里看| 精品久久久久久成人av| 国语自产精品视频在线第100页| 免费观看人在逋| 成年版毛片免费区| 成人手机av| 此物有八面人人有两片| 非洲黑人性xxxx精品又粗又长| 成人av一区二区三区在线看| 免费不卡黄色视频| 国产99白浆流出| 无人区码免费观看不卡| 巨乳人妻的诱惑在线观看| 欧美国产日韩亚洲一区| 久久精品影院6| 韩国av一区二区三区四区| av在线天堂中文字幕| 亚洲专区字幕在线| 国内毛片毛片毛片毛片毛片| 少妇熟女aⅴ在线视频| 国产av又大| 亚洲国产精品sss在线观看| av天堂久久9| 国产三级黄色录像| 国产精品亚洲美女久久久| 国产三级黄色录像| 欧美激情久久久久久爽电影 | 欧美日韩精品网址| 后天国语完整版免费观看| 午夜视频精品福利| www国产在线视频色| 亚洲视频免费观看视频| 亚洲精品av麻豆狂野| 亚洲一码二码三码区别大吗| 国产精品乱码一区二三区的特点 | 亚洲av成人一区二区三| 免费搜索国产男女视频| 久久久久久人人人人人| 一本久久中文字幕|