• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor

    2022-02-24 08:59:20ZhaoWang王昭ShuXingFan范樹興andWeiTang唐偉
    Chinese Physics B 2022年2期

    Zhao Wang(王昭), Shu-Xing Fan(范樹興), and Wei Tang(唐偉)

    School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    SnO2/Co3O4 nanofibers (NFs) are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields. The morphology and structure of SnO2/Co3O4 hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO2/Co3O4 NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,SnO2 has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with SnO2,the optimal operating temperature of SnO2/Co3O4 NFs is reduced from 350 °C to 250 °C,which may be related to the catalysis of Co3O4. The response of SnO2/Co3O4 to 100-ppm ethanol at 250 °C is 50.9, 9 times higher than that of pure SnO2,which may be attributed to the p—n heterojunction between the n-type SnO2 crystalline grain and the p-type Co3O4 crystalline grain. The nanoscale p—n heterojunction promotes the electron migration and forms an interface barrier. The synergy effects between SnO2 and Co3O4,the crystalline grain p—n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.

    Keywords: SnO2/Co3O4 nanofibers(NFs),homopolar double jets electrospinning,gas sensors,nanoscale p—n heterojunction

    1. Introduction

    Volatile organic compounds (VOCs) are important precursors for the formation of secondary pollutants such as fine particulate matter 2.5(PM2.5)and ozone(O3),which lead to atmospheric environmental problems such as haze and photochemical smog. It does great harm to the natural environment and human health. Therefore,it is necessary to develop a generalized gas sensor for VOCs, in order to carry out comprehensive prevention and control of VOCs pollution.

    Chemical resistance gas sensor based on metal oxide semiconductors (MOSs)[1,2]has been widely studied in the detection of toxic and explosive gases because of its simple operation, low cost and high sensitivity. So far, a large number of MOSs have been studied,such as SnO2,[3—6]ZnO,[7—10]In2O3,[11]and CuO.[12]Tin oxide(SnO2)based on the change of resistance to detect VOCs has attracted special attention due to its high sensitivity and good stability.[13,14]However, the pure SnO2gas sensor has some disadvantages, such as poor selectivity, high operating temperature, long recovery time,etc.[15,16]Therefore, the doping and compounding of SnO2gas sensor,such as noble metal elements or other metal oxide semiconductors, organic compounds,etc., make SnO2-based gas sensor show better gas sensing characteristics than pure SnO2gas sensor.[17—21]

    After mixing the n-type SnO2with other metal—oxide semiconductors, the formation of heterojunction can adjust the barrier height, expand the electron depletion layer, and produce a synergistic effect on the interface, to improve the gas sensing characteristics of SnO2-based gas sensors.[22—26]By compounding with different metal—oxide semiconductors,gas sensing materials with different gas sensing characteristics may be obtained. The Co3O4is a p-type semiconductor. Owing to the large energy gap between Co3O4band gap(1.63 eV)[27]and SnO2band gap(3.8 eV),[28,29]the p—n heterojunction is formed after SnO2and Co3O4have been combined, which leads the carriers to migrate between SnO2and Co3O4, thus forming the depletion layer and the high barrier layer.[30,31]This makes the target gas produce more hot spots when it contacts the gas sensing material. The p—n heterojunction is formed by the combination of MOSs with different conductive types. The p—n heterojunction can regulate the band gap of semiconductor,thereby forming the impurity energy levels, which can change the electrical properties of the material surface.

    The formation of nanoscale p—n heterojunction promotes the additional oxygen to adsorb on the surface,and Co3O4also has a catalytic activity, which may improve the gas sensing characteristics at low temperatures. Therefore, Co3O4/SnO2composite can be used as a good gas sensing nanocomposite. It is reported that the SnO2/Co3O4nanoscale heterojunction has been formed, and the detection of acetone has been greatly improved.[32,33]Co-doped SnO2nanofibers showed the highest response toward 100-ppm ethanol.[1]The0.5SnO2/0.5Co3O4sensor has a good response to C6H6at 350°C.[30]

    The one-dimensional nanofiber material prepared by the electrospinning technology can significantly improve the response of the VOCs gas sensor due to its large specific surface area and high porosity. The homopolar doublejet electrospinning technology can mix the precursor solutions of two different metal oxide semiconductors,which is different from the traditional solution mixed electrospinning[34—36]and double jets of positive and negative polarity electric fields.[37]

    The homopolar doublejet electrospinning technology can effectively ensure that the nanoscale heterojunction forms between the two kinds of precursor solutions,and prevent the different precursor solutions from clustering. The SnO2is compounded with Co3O4in this work, and its gas sensing function is systematically investigated. Themorphologies, chemical compositions and element chemical states of the samples are characterized by XRD, SEM, TEM, EDS, and XPS. The SnO2/Co3O4nanofibers (NFs) have better gas sensing characteristics than the SnO2NFs, such as lower detection limit,lower operating temperature and better selectivity. The gas sensing properties and mechanism of SnO2/Co3O4NFs are also discussed.

    2. Experiment

    2.1. Fabrication of SnO2/Co3O4 NFs-based gas sensors

    Analytical grade chemicals without further purification were used in the experiment. The SnO2/Co3O4NFs were prepared by two stages including electrospinning and annealing. The electrospinning precursors of SnO2and Co3O4were incorporated into two identical 10-ml syringes, respectively. The syringe contains 6 ml of ethanol, 7 ml of 2Ndimethylformamide(DMF),900 mg of polyvinyl pyrrolidone(PVP,Mw=1.3×106),900 mg of Co(NO3)2·6H2O or 700 mg of SnCl2·2H2O after having been stirred magnetically for 10 h.The molar ratio of Co(NO3)2·6H2O to SnCl2·2H2O was 1:1.The PVP/SnCl2·2H2O and PVP/Co(NO3)2·6H2O composite precursors were prepared by homopolar double jets electrospinning. The ratio of Sn to Co could be controlled by setting different propulsion speeds. The schematic diagram of the homopolar doublejet electrospinning device is shown in Fig. 1. In the electrospinning process, the distance between the syringe tip and the aluminum plate collector was fixed at 25 cm, and the potential between the needle tip and the aluminum plate was maintained at 20 kV. The platform moved back and forth with a speed of 20 cm/min. The calcining precursor was collected on the aluminum plate collector and calcined in the crucible. In the calcination process in the muffle furnace, it was annealed at 300°C for 2 h with a heating rate of 2°C/min to ensure the volatilization of PVP, and at 500°C for 2 h to be crystallized,and SnO2/Co3O4NFs were collected after natural cooling. Four kinds of SnO2/Co3O4NFs,i.e.,Sn:Co=1:6,Sn:Co=1:3,Sn:Co=1:1,and Sn:Co=3:1 were prepared at different propulsion speeds of syringe. The obtained samples were named SnO2/Co3O4-1,SnO2/Co3O4-2, SnO2/Co3O4-3, and SnO2/Co3O4-4, respectively. The pure SnO2and Co3O4NFs were prepared by the same process with only one syringe.

    Fig.1. Schematic illustration of homopolar doublejet electrospinning setup.

    2.2. Characterization

    The crystalline structures of samples were recorded by Bruker D8 Advance x-ray powder diffraction(XRD),diffractometer with CuKαradiation and a wavelength of 1.54176over the 2θrange from 10°—80°in steps of 0.03°. The sample morphology was studied using a Sigma500 field emission scanning microscopy(FE-SEM)and Fei Tecnai G2 F20 field emission transmission electron microscope(FE-TEM).The elemental distribution of the sample was characterized by x-ray energy dispersive spectrometer (EDS) equipped with SEM.The x-ray photoelectron spectrometer (XPS) data were obtained by using Thermpfisher EscaLab 250Xi.

    2.3. Measurement of gas sensing properties

    The calcined sample was mixed with deionized water in an agate mortar and grinded it into a paste in a certain direction. The paste was evenly coated on the ceramic tube and dried overnight at room temperature to obtain gas sensors.The gas sensitivity was tested by an intelligent gas sensing analysis system(CGS-8).Owing to the existence of nanoscale p—n heterojunction between SnO2/Co3O4NFs, the resistance of the composite increased and exceeded the upper limit of CGS-8 resistance measurement (500 MΩ). Therefore, the paste was coated on the planar platinum electrode and the gas sensitivity was tested by using the comprehensive gas sensing test platform CGS-MT.The VOCs(the inference gases for gas selectivity testing include methanol, formaldehyde, acetone, ammonia, and ethanol) selectivity, the optimum operating temperature and the response(1 ppm—100 ppm concentration)ofthe prepared gas sensor were studied. All sensors were aged at 300°C for 10 h/time for 3 times prior to measurement.

    3. Results and discussion

    3.1. Microstructures

    Figures 2(a)—2(c) show the morphology of SnO2NFs,Co3O4NFs, and SnO2/Co3O4NFs, respectively. Figure 2 shows that all NFs are relatively uniform with diameters in a range of 100 nm—150 nm. In Fig. 2(c), it is impossible to judge whether the nanofibers are SnO2/Co3O4NFs or single NFs, so the SnO2/Co3O4NFs are characterized by EDS, and the results are shown in Fig.3. Tin,cobalt and oxygen appear on one nanofiber. It can be found from Figs.3(c)—3(e)that the elements of Sn, Co and O are uniformly distributed, but the content of Co is clearly less than that of Sn.

    The TEM images of SnO2/Co3O4NFs in Figs. 4(a) and 4(b) show that the sizes and morphologies are similar to the results of SEM. In order to further confirm the composites of SnO2and Co3O4on the same nanofiber, the samples are characterized by HRTEM as shown in Fig. 4(c). The lattice fringes can be observed and the lattice spacings are 0.287 nm and 0.24 nm,corresponding to the(220)plane and(311)plane of Co3O4, respectively. It can be seen from Fig. 4(c) that the lattice fringes with 0.325 nm and 0.328 nm correspond to the crystal plane (110) of SnO2. The lattice fingerprint of SnO2/Co3O4NFs is consistent with the XRD pattern(Fig.6).

    Fig.2. SEM images of(a)SnO2,(b)Co3O4,(c)SnO2/Co3O4 NFs.

    Fig.3. EDS of(a)SnO2/Co3O4 and(b)its mapping,EDS of(c)O element,(d)Sn element,and(e)Co element.

    Fig.4. (a)and(b)TEM images of SnO2/Co3O4 NFs and(c)HRTEM of lattice fringes of SnO2/Co3O4 NFs.

    The SnO2/Co3O4NFs have been compounded in the process of double jets electrospinning,which can be proved by the fact that the initially spun nanofibers collected by aluminum plate are blue. Homopolar doublejet electrospinning makes the two materials contact alternately during collection. Under the influence of positive high voltage electrode, the reaction of PVP/SnCl2·2H2O and PVP/Co(NO3)2·6H2O in doublejet electrospinning can occur as follows:

    where[Co(6H2O)]2+is an octahedral complex,and(CoCl4)2?is a tetrahedral complex. The spectral absorption intensity of the tetrahedral complex is higher than that of the octahedron,so the composite fiber shows light blue.

    In the calcination process, the electrospinning precursors form a hollow nanofiber structure due to the Kirkendall effect.[38—40]As shown in Fig. 5, tin and cobalt ions on the surface of the nanofibers are oxidized,while the internal ones are not oxidized due to hypoxia.The PVP on the surface of the nanofibers is calcined and volatilized,and the PVP inside is in a molten state. The PVP concentration difference between the inside and outside of the nanofiber is formed,while the diffusion rate of the molten PVP is faster, carrying tin and cobalt ions to the surface of the nanofibers to be calcined,forming a hollow nanofiber structure and further compounding.

    Fig.5. Schematic diagram of calcination process model(a)prior to calcination,(b)calcining,(c)as-calcined.

    As shown in Fig. 6, the crystal structures of SnO2NFs, Co3O4NFs and SnO2/Co3O4NFs are characterized by XRD. The diffraction peaks of pure SnO2are observed to be at 2θof 26.579, 33.864, 37.941, 38.965, 42.625, 51.756,54.740,57.804,61.861,64.714, and 65.943,which belong to(110), (101), (200), (111), (210), (211), (220), (002), (310),(112),and(301)crystal planes of tetragonal rutile SnO2(PDF No. 99-0024), respectively. The results show that the (111),(220), (311), (222), (400), (511), and (440) crystal faces of Co3O4correspond to the 2θvalues of 18.999,31.270,36.845,38.547, 44.808, 59.354, and 65.233, respectively, and the absorption peaks match well with those in the standard figure of Co3O4(PDF No. 74-2120). There are characteristic diffraction peaks of Co3O4in the curves of SnO2/Co3O4-1,SnO2/Co3O4-2, SnO2/Co3O4-3, and SnO2/Co3O4-4, which indicates that Co3O4has been successfully loaded on SnO2.No diffraction peaks of other phases are detected, implying high purity of the sample.

    Fig. 6. XRD patterns of SnO2NFs, SnO2/Co3O4-4, SnO2/Co3O4-3,SnO2/Co3O4-2,SnO2/Co3O4-1,and Co3O4 NFs.

    The chemical compositions of the SnO2NFs,Co3O4NFs,SnO2/Co3O4-4 are characterized by XPS as shown in Fig. 7.All the spectra are corrected by the standard C 1s binding energy at 284.8 eV. The survey XPS spectra in Fig. 7(a) indicate the existence of Sn, Co, O, and C in SnO2/Co3O4-4. It is found that the peak position of the binding energy for each of Sn and Co is shifted,which may be due to the formation of nanoscale p—n heterojunction, which produces new hot spots and makes more oxygen anion adsorb on the surface, resulting in the change of binding energy. The Sn 3d spectrum is shown in Fig.7(b),and the SnO2/Co3O4NFs signal located at 495.0 eV and 486.5 eV are assigned to Sn 3d3/2and Sn 3d5/2,respectively. The Co 2p and O 1s are separated into peaks as shown in Figs.7(c)and 7(d). The Co 2p spectrum in Fig.7(c)has two main peaks(796.9 eV and 780.8 eV)and two satellite peaks (802.3 eV and 786.4 eV). The two main peaks are assigned to Co 2p1/2and Co 2p3/2,respectively. Both Co 2p1/2and Co 2p3/2can be divided into two peaks corresponding to Co2+and Co3+.[41,42]The crystal phase of Co3O4is further confirmed. The O 1s spectrum in Fig. 7(d) can be divided into three peaks corresponding to three components: lattice oxygen(Olatt530.22 eV),adsorbed oxygen(Oads530.52 eV),and surface oxygen(Osurf531.72 eV).[42,43]The surface oxygen species of SnO2and SnO2/Co3O4-4 are shown in Table 1.The amount of Oadsis very important for the sensing performance of sensor material.The Oadsof SnO2/Co3O4-4(37.4%)is much higher than that of pure SnO2(21.3%),which plays a positive role in improving the gas sensing performance. This may be due to the catalytic performance of Co3O4promoting the oxygen adsorption of SnO2.In Table 1,the atomic percentages of SnO2and SnO2/Co3O4-4 are analyzed by XPS,which shows that the ratio of Sn to Co is very close to the theoretical ratio.

    Fig.7.XPS about(a)survey spectrums of SnO2/Co3O4-4,SnO2,and Co3O4;(b)Sn 3d of SnO2/Co3O4-4 and SnO2;(c)Co 2p of SnO2/Co3O4-4,(d)O 1s of SnO2 and Co3O4-4.

    Table 1. Relative percentages of three oxygen components,atomic percentages of SnO2 and SnO2/Co3O4-4.

    3.2. Sensing properties

    The response (R) of the SnO2and SnO2/Co3O4-2,SnO2/Co3O4-3,SnO2/Co3O4-4 are defined asR=Ra/Rg.The response (R) of Co3O4and SnO2/Co3O4-1 are defined asR=Rg/Ra, whereRais the stable resistance in air, andRgis the stable resistance in probe gas.

    Fig.8. Curves of response of SnO2, Co3O4, and SnO2/Co3O4 NFs sensors to 100-ppm ethanol versus operating temperature.

    Fig.9. Transient ethanolsensing properties of gas sensors based on Co3O4,SnO2/Co3O4-1, SnO2/Co3O4-2, SnO2/Co3O4-3, SnO2/Co3O4-4, and SnO2 at operating temperature 250 °C.

    The operating temperature strongly influences the response property of a semiconductor gas sensor.Figure 8 shows the gas sensing response of SnO2, Co3O4, and SnO2/Co3O4NFs to 100-ppm ethanol versus operating temperature. Optimum operating temperature of SnO2sensor to 100-ppm ethanol is 350°C, which is a typical disadvantage of SnO2sensor. Compared with the optimum operating temperature of the SnO2sensor, Co3O4sensor’s is lower, only 175°C. The SnO2/Co3O4NFs shows the maximum response at 250°C,and the SnO2/Co3O4-4 has the highest response at 250°C.The SnO2/Co3O4-4 reduces the optimum operating temperature based on SnO2gas sensor.

    Figure 9 shows the dynamic curves of response and recovery transient properties of Co3O4, SnO2/Co3O4-1,SnO2/Co3O4-2, SnO2/Co3O4-3, SnO2/Co3O4-4, and SnO2NFs gas sensors, respectively. The gas sensing properties are tested with ethanol at 250°C. In Fig. 9 from the left to the right are the responses at 1 ppm, 2 ppm, 5 ppm, 10 ppm,20 ppm, 30 ppm, 40 ppm, 50 ppm, 100 ppm, respectively.The conduction types of Co3O4and SnO2/Co3O4-1 are p-type,and the conduction types of SnO2/Co3O4-2, SnO2/Co3O4-3,SnO2/Co3O4-4, and SnO2are n-type. The type of conduction depends on the content of n-SnO2and p-Co3O4in the sample. When the ratio of SnO2to Co3O4is 1:1 (the ratio of Sn to Co is 1:3 for SnO2/Co3O4-2), the sensing behavior of the composite is of n-type, it is due to the contribution of electrons being greater than that of holes.[32]The SnO2/Co3O4NFs sensor can return to the initial resistance when exposed to air after different concentrations of ethanol have been injected,which indicates that the Co3O4/SnO2NFs sensor has good reproducibility. The resistance of SnO2NFs changes differently after the response has been recovered. Serving as a kind of gas sensor, the SnO2NFs have the disadvantage of poor reproducibility. When the ethanol concentration is 100 ppm,the response of SnO2/Co3O4-4, SnO2, and Co3O4are of 50.60,5.79, and 1.36, respectively. The synergistic effect of SnO2and Co3O4makes SnO2/Co3O4-4 have higher response and better reproducibility. It can be seen from the Fig. 9 that the resistance of composite material is much greater than that of single material,which may be due to the narrowing of electron transmission channel caused by the formation of nanoscale p—n heterojunction.

    Figure 10 shows the selectivity of Co3O4, SnO2/Co3O4-1, SnO2/Co3O4-2, SnO2/Co3O4-3, SnO2/Co3O4-4, and SnO2to 40-ppm inference gases at 250°C; the inference gases for gas selectivity testing include ethanol, methanol, formaldehyde, acetone, and ammonia. The sensor of SnO2/Co3O4-4 shows the highest response to ethanol. The ethanol response of SnO2/Co3O4-4 is 10.80,which is higher than that of SnO2(3.23),and Co3O4(1.14),respectively. The sensing characteristics are summarized in Table 2.

    Fig. 10. Response of gas sensors based on the Co3O4, SnO2/Co3O4-1, SnO2/Co3O4-2, SnO2/Co3O4-3, SnO2/Co3O4-4, and SnO2 to 40-ppm formaldehyde, methanol, ethanol, ammonia, and acetone at operating temperature 250 °C.

    Table 2. Summary of sensing characteristics.

    3.3. Gas sensing mechanism

    The gas sensing characteristics of the sensor are related to the initial resistance of semiconductor metal oxides.The influence of temperature and nanoscale heterojunction on oxygen adsorption will change the initial resistance of semiconductor metal oxides. The possible sensing mechanism model for SnO2/Co3O4-based sensors is shown in Fig.11.

    When the p-Co3O4is exposed to air, oxygen molecules adsorb on the surface of the Co3O4and capture electrons from the electron hole pair of Co3O4,forming negative oxygen ion(,O?,O2?);the overall reaction can be represented as

    where ads. is the abbreviation for adsorbed. The hole concentration increases,and the hole accumulation layer(Fig.11(a))is formed on the surface of Co3O4.After contacting the reducing gas, the electron released from the desorption of negative oxygen ion forms a holeelectron pair. The electron released can be explained as[44]

    The hole concentration on the surface of the semiconductor decreases. That is why the resistance of Co3O4increases when Co3O4contacts the reducing gas. When n-SnO2is exposed to air,oxygen molecules adsorb on the surface of the SnO2,oxygen molecules capture electrons from the surface of SnO2to form negative oxygen ion (O2?, O?, O?2), so electron depletion layer(Fig.11(a))is formed on the surface of SnO2. After contacting the reducing gas,the negative oxygen ion desorbs,and the electron concentration on the surface of the semiconductor increases.That is why the resistance of SnO2decreases when SnO2contacting the reducing gas.

    Fig.11. (a)Sensing mechanism of SnO2 and Co3O4 in air and in VOCs,(b)schematic diagram of nanoscale p-Co3O4/n-SnO2 heterojunction,n-SnO2/n-SnO2 homojunction and p-Co3O4/p-Co3O4 homojunction in air and in VOCs,and(c)energy band diagram of SnO2-Co3O4 system.

    When the temperature is raised, the concentration of semiconductor carriers will increase, and more negative oxygen ions will be adsorbed on the sensor surface, so the response will be enhanced after having contacted the reducing gas. However, when the temperature is too high, the affinity energy of gas molecules is less than the work function of the metal—oxide—semiconductor surface. Then the electrons will transfer from the adsorbed negative ions to the semiconductor surface,and the adsorbed negative ions will reduce the hot spots on the semiconductor surface due to the loss of electrons,and thus the response is low after having contacted the reducing gas. Therefore,different semiconductor—metal—oxide sensors have different optimal operating temperatures.[45—47]

    According to the HRTEM, nanoscale p-Co3O4/n-SnO2heterojunctions, n-SnO2/n-SnO2homojunctions, and p-Co3O4/p-Co3O4homojunctions exist in SnO2/Co3O4NFs.The schematic diagram is shown in Fig.11(b). The nanoscale p—n heterojunction plays an important role in improving the gas sensing properties of composite materials.[26,48,49]The Fermi energy levels of n-SnO2and p-Co3O4are different.[30,32,33,50]When the two kinds of NFs are combined,the electrons move from n-SnO2(work function 4.9 eV)to p-Co3O4(work function 6.1 eV) due to the Fermi energy level equilibrium effect.[51]The electron depletion layer is formed on the SnO2side, and the hole is transferred from p-Co3O4to n-SnO2. The hole depletion layer is formed on the Co3O4side. The space charge layer of n-SnO2/p-Co3O4is formed,and the energy bands on both sides are bent(Fig.11(c)),resulting in the potential barrier,which greatly narrows the electron transport channel and reduces the conductivity,[52]as shown in Fig.11(c). The existence of space charge layer can enhance the adsorption capacity of oxygen and make nanoscale p—n heterojunction become a hot spot after having contacted the reducing probe gas. When the SnO2/Co3O4sensors contact the reducing gas, the electrons released from the reactions of reducing gas and the desorption of negative oxygen ion will result in great resistance change,thereby reducing the potential barrier height.

    4. Conclusions

    The SnO2/Co3O4NFs with the hollow structure are prepared by homopolar doublejet electrospinning. The SnO2/Co3O4NFs gas sensor has good ethanolsensing properties at 250°C. The formation mechanism of SnO2/Co3O4NFs’ hollow structure is analyzed. The results show that the SnO2/Co3O4NFs have better reproducibility than the SnO2.The optimum operating temperature of SnO2/Co3O4NFs is 250°C, which is 100°C lowers than that of SnO2NFs. The mechanism of gas sensing is analyzed. The SnO2/Co3O4NFs form nanoscale p—n heterojunction, which produces new hot spots to adsorb oxygen and improves its initial resistance. In addition, the method of homopolar doublejet electrospinning can be used for preparing other composite materials by changing the content of doping in the future work,which will be conducive to the quantitative research of the enhanced gas sensing performance of electrochemical gas sensors.

    一级毛片aaaaaa免费看小| 看免费成人av毛片| 日韩欧美精品免费久久| 男人舔女人下体高潮全视频| 日韩在线高清观看一区二区三区| 国产精品嫩草影院av在线观看| 悠悠久久av| 天堂网av新在线| 丝袜美腿在线中文| 日本五十路高清| 亚洲成av人片在线播放无| 国产麻豆成人av免费视频| 精品一区二区免费观看| 一级黄色大片毛片| 中文字幕制服av| 我要搜黄色片| 一级黄色大片毛片| 最近最新中文字幕大全电影3| videossex国产| 色吧在线观看| 成人特级黄色片久久久久久久| 又爽又黄a免费视频| 国产麻豆成人av免费视频| 天美传媒精品一区二区| 3wmmmm亚洲av在线观看| 看免费成人av毛片| 在线播放国产精品三级| 天美传媒精品一区二区| 热99在线观看视频| 亚洲色图av天堂| 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线| 亚洲国产欧美人成| 日本五十路高清| 搞女人的毛片| 高清在线视频一区二区三区 | 成年av动漫网址| 免费在线观看成人毛片| 午夜免费激情av| 亚洲美女视频黄频| 国产精品一区二区性色av| a级一级毛片免费在线观看| 欧美丝袜亚洲另类| 综合色av麻豆| 2022亚洲国产成人精品| 国产黄片美女视频| 黄色欧美视频在线观看| 久久精品久久久久久久性| 男女视频在线观看网站免费| 久久中文看片网| 中文字幕av成人在线电影| 久久久久免费精品人妻一区二区| 欧美成人免费av一区二区三区| 精品久久久久久久末码| 搡女人真爽免费视频火全软件| 一进一出抽搐gif免费好疼| 97超碰精品成人国产| 久久草成人影院| 99riav亚洲国产免费| 一边亲一边摸免费视频| 最近的中文字幕免费完整| 国产亚洲91精品色在线| 国产高潮美女av| 一个人看视频在线观看www免费| 国产v大片淫在线免费观看| 亚洲五月天丁香| 中文精品一卡2卡3卡4更新| 村上凉子中文字幕在线| 国语自产精品视频在线第100页| 国产乱人偷精品视频| 六月丁香七月| 99在线人妻在线中文字幕| 人妻夜夜爽99麻豆av| 黄色欧美视频在线观看| 欧美xxxx性猛交bbbb| а√天堂www在线а√下载| 久久久久久久久大av| 国产女主播在线喷水免费视频网站 | 免费看a级黄色片| 成人高潮视频无遮挡免费网站| 日本三级黄在线观看| 午夜福利在线在线| 村上凉子中文字幕在线| 少妇人妻精品综合一区二区 | 黄色视频,在线免费观看| 两个人视频免费观看高清| 卡戴珊不雅视频在线播放| 国产成人福利小说| 亚洲婷婷狠狠爱综合网| 国产69精品久久久久777片| 日本欧美国产在线视频| 99热这里只有是精品在线观看| 精品一区二区三区视频在线| 亚洲精品成人久久久久久| 久久精品国产亚洲网站| 一个人看的www免费观看视频| 乱系列少妇在线播放| 亚洲aⅴ乱码一区二区在线播放| 欧美性猛交黑人性爽| 波多野结衣高清作品| 美女国产视频在线观看| 国产伦精品一区二区三区视频9| 黄片无遮挡物在线观看| 在线天堂最新版资源| 久久久久久久久中文| 给我免费播放毛片高清在线观看| 国产91av在线免费观看| kizo精华| 国产精品久久久久久久电影| 在线国产一区二区在线| 成年免费大片在线观看| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 91在线精品国自产拍蜜月| 搞女人的毛片| 久久这里有精品视频免费| 欧美+日韩+精品| 欧美日韩综合久久久久久| 蜜臀久久99精品久久宅男| 国产蜜桃级精品一区二区三区| 亚洲av.av天堂| or卡值多少钱| 久久九九热精品免费| 国产日本99.免费观看| 国产精品蜜桃在线观看 | 国产黄色视频一区二区在线观看 | 日日撸夜夜添| 亚洲欧洲日产国产| 男插女下体视频免费在线播放| 欧美色欧美亚洲另类二区| 尤物成人国产欧美一区二区三区| 九草在线视频观看| 99国产极品粉嫩在线观看| 精品午夜福利在线看| 最近视频中文字幕2019在线8| 久久久精品94久久精品| 插阴视频在线观看视频| 亚洲精品456在线播放app| 免费人成在线观看视频色| 亚洲性久久影院| 日本-黄色视频高清免费观看| 亚洲精品自拍成人| 亚洲精品粉嫩美女一区| 亚洲国产精品成人综合色| 麻豆成人午夜福利视频| 国产成人精品一,二区 | 内射极品少妇av片p| 国产伦理片在线播放av一区 | 国产极品精品免费视频能看的| 国产精品福利在线免费观看| 国产视频首页在线观看| 热99re8久久精品国产| 极品教师在线视频| 亚洲无线观看免费| 日韩人妻高清精品专区| 变态另类丝袜制服| 成人无遮挡网站| 国产精品一区www在线观看| 老司机福利观看| 亚洲av中文字字幕乱码综合| 国产高潮美女av| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av不卡在线观看| 国产av麻豆久久久久久久| 在线观看免费视频日本深夜| 丰满人妻一区二区三区视频av| 青青草视频在线视频观看| 人妻少妇偷人精品九色| 亚洲丝袜综合中文字幕| 国产精品一区二区三区四区免费观看| 我的老师免费观看完整版| 亚洲美女视频黄频| 好男人视频免费观看在线| 99riav亚洲国产免费| 中出人妻视频一区二区| av在线亚洲专区| 神马国产精品三级电影在线观看| 淫秽高清视频在线观看| 久久人人爽人人片av| a级一级毛片免费在线观看| 欧美激情久久久久久爽电影| 草草在线视频免费看| 一个人免费在线观看电影| 在线免费观看不下载黄p国产| 啦啦啦观看免费观看视频高清| 九九在线视频观看精品| 久久中文看片网| 一个人观看的视频www高清免费观看| 国产亚洲av嫩草精品影院| 国产在视频线在精品| 亚洲欧美日韩高清在线视频| 欧美日韩一区二区视频在线观看视频在线 | 成人永久免费在线观看视频| 成人永久免费在线观看视频| 国产伦在线观看视频一区| 国产伦精品一区二区三区四那| 黄色日韩在线| 欧美日本亚洲视频在线播放| 黑人高潮一二区| 欧美在线一区亚洲| 欧美色欧美亚洲另类二区| 亚洲欧美日韩高清在线视频| h日本视频在线播放| 只有这里有精品99| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜爱| 国产在视频线在精品| 亚洲激情五月婷婷啪啪| 亚洲精品影视一区二区三区av| 欧美一级a爱片免费观看看| 人人妻人人澡欧美一区二区| 国产亚洲av嫩草精品影院| 国产伦理片在线播放av一区 | 简卡轻食公司| 亚洲经典国产精华液单| 中国国产av一级| 高清毛片免费看| 国产乱人视频| 亚洲va在线va天堂va国产| 中文字幕av在线有码专区| 看非洲黑人一级黄片| 99久国产av精品国产电影| 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| av在线天堂中文字幕| 又爽又黄a免费视频| 大型黄色视频在线免费观看| 最后的刺客免费高清国语| 赤兔流量卡办理| 日韩制服骚丝袜av| 极品教师在线视频| 2022亚洲国产成人精品| 禁无遮挡网站| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 国产成人影院久久av| 日韩在线高清观看一区二区三区| 又粗又硬又长又爽又黄的视频 | 欧美一区二区精品小视频在线| 69av精品久久久久久| 国产欧美日韩精品一区二区| 久久久久久久久大av| a级毛色黄片| 日本-黄色视频高清免费观看| 校园人妻丝袜中文字幕| a级一级毛片免费在线观看| 男女做爰动态图高潮gif福利片| 美女 人体艺术 gogo| 人人妻人人澡人人爽人人夜夜 | 男的添女的下面高潮视频| 岛国在线免费视频观看| 18+在线观看网站| 国产精品,欧美在线| 99热这里只有是精品在线观看| 你懂的网址亚洲精品在线观看 | 桃色一区二区三区在线观看| 1000部很黄的大片| 18禁裸乳无遮挡免费网站照片| 欧美+日韩+精品| 国产国拍精品亚洲av在线观看| 欧美成人免费av一区二区三区| 1000部很黄的大片| 禁无遮挡网站| 欧美最新免费一区二区三区| 亚洲av第一区精品v没综合| 日韩视频在线欧美| av免费在线看不卡| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av| av在线天堂中文字幕| 久久久精品大字幕| 久久久成人免费电影| 亚洲欧美中文字幕日韩二区| 国产老妇女一区| 少妇裸体淫交视频免费看高清| 亚洲人成网站高清观看| 久久精品国产亚洲av香蕉五月| 午夜激情福利司机影院| 亚洲一区二区三区色噜噜| 久久6这里有精品| 看片在线看免费视频| 高清日韩中文字幕在线| 日本在线视频免费播放| 亚洲成人中文字幕在线播放| 美女高潮的动态| av在线蜜桃| 精品久久久久久久末码| 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 日韩欧美国产在线观看| 精品国产三级普通话版| 午夜福利成人在线免费观看| 91av网一区二区| 乱系列少妇在线播放| 在线观看免费视频日本深夜| 亚洲高清免费不卡视频| 成年版毛片免费区| 日韩强制内射视频| 欧美潮喷喷水| 久久精品影院6| 天堂影院成人在线观看| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 国内少妇人妻偷人精品xxx网站| 能在线免费看毛片的网站| 日本熟妇午夜| 我要搜黄色片| 国产精品99久久久久久久久| 舔av片在线| 99热精品在线国产| 久久精品影院6| 国产综合懂色| 国产精品国产三级国产av玫瑰| 特大巨黑吊av在线直播| 五月伊人婷婷丁香| 中出人妻视频一区二区| 97人妻精品一区二区三区麻豆| 美女cb高潮喷水在线观看| 久久久精品大字幕| 久久九九热精品免费| 亚洲美女搞黄在线观看| 国产成人a区在线观看| 欧美区成人在线视频| av国产免费在线观看| 99国产精品一区二区蜜桃av| 晚上一个人看的免费电影| 婷婷精品国产亚洲av| 久久久久久久久久黄片| 久久久国产成人免费| 赤兔流量卡办理| 成人三级黄色视频| 欧美在线一区亚洲| 久久人妻av系列| 欧美精品一区二区大全| 中国国产av一级| 中文字幕制服av| 夜夜看夜夜爽夜夜摸| 亚洲国产欧洲综合997久久,| 内地一区二区视频在线| 免费观看a级毛片全部| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| 免费黄网站久久成人精品| 亚洲久久久久久中文字幕| 欧美+日韩+精品| 91aial.com中文字幕在线观看| av在线播放精品| 尤物成人国产欧美一区二区三区| 国产一级毛片七仙女欲春2| 日韩三级伦理在线观看| 一进一出抽搐动态| 成人高潮视频无遮挡免费网站| 国产精品无大码| 欧美xxxx黑人xx丫x性爽| 99精品在免费线老司机午夜| 日日啪夜夜撸| 欧美激情在线99| 又黄又爽又刺激的免费视频.| 欧美一区二区精品小视频在线| 观看美女的网站| 亚洲无线观看免费| 亚洲av第一区精品v没综合| 熟妇人妻久久中文字幕3abv| 国产黄片视频在线免费观看| 日韩,欧美,国产一区二区三区 | 中国美女看黄片| 国产精品.久久久| 亚洲av熟女| 国产探花极品一区二区| av在线播放精品| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 免费人成视频x8x8入口观看| 成人亚洲欧美一区二区av| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 欧美色视频一区免费| 国产午夜精品久久久久久一区二区三区| 国产真实乱freesex| 亚洲欧美精品自产自拍| 久久国内精品自在自线图片| 91久久精品电影网| 韩国av在线不卡| 午夜福利在线在线| 成人二区视频| 精品国产三级普通话版| 亚洲天堂国产精品一区在线| 亚洲精品色激情综合| 国产色爽女视频免费观看| 爱豆传媒免费全集在线观看| 黄色欧美视频在线观看| 国产一区二区亚洲精品在线观看| 欧美高清成人免费视频www| 国产一区二区三区在线臀色熟女| 麻豆成人av视频| 超碰av人人做人人爽久久| 中文资源天堂在线| 岛国在线免费视频观看| 日本成人三级电影网站| 1024手机看黄色片| 亚洲精品乱码久久久久久按摩| 免费在线观看成人毛片| 国产一区二区三区av在线 | 男女下面进入的视频免费午夜| 亚洲美女搞黄在线观看| 亚洲一级一片aⅴ在线观看| 久久人妻av系列| 波多野结衣高清作品| 国产av麻豆久久久久久久| 国产精品爽爽va在线观看网站| 国产精品不卡视频一区二区| 嫩草影院新地址| 久久久久国产网址| 97热精品久久久久久| 成人特级黄色片久久久久久久| 一本久久精品| 日本免费一区二区三区高清不卡| 久久久久性生活片| av天堂在线播放| 美女高潮的动态| 黄片wwwwww| 久久精品国产亚洲av天美| 久久精品国产清高在天天线| 亚洲丝袜综合中文字幕| 免费大片18禁| 三级经典国产精品| 亚洲欧美清纯卡通| 午夜福利高清视频| 日日啪夜夜撸| 校园春色视频在线观看| 99热只有精品国产| 波多野结衣巨乳人妻| 免费看美女性在线毛片视频| 少妇高潮的动态图| 日韩高清综合在线| 99久久久亚洲精品蜜臀av| 最近2019中文字幕mv第一页| 亚洲欧美精品专区久久| 成年av动漫网址| 日韩欧美一区二区三区在线观看| 老师上课跳d突然被开到最大视频| 91麻豆精品激情在线观看国产| 精品久久久久久久久久久久久| 99热网站在线观看| 亚洲av成人精品一区久久| 亚洲18禁久久av| 精品国内亚洲2022精品成人| 色综合站精品国产| 国产午夜精品论理片| 观看美女的网站| 欧美激情久久久久久爽电影| 18禁裸乳无遮挡免费网站照片| 国产午夜福利久久久久久| 久久久色成人| 亚洲激情五月婷婷啪啪| 久久久久久久久大av| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄 | 精品久久久久久久人妻蜜臀av| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩东京热| 丝袜美腿在线中文| 在线天堂最新版资源| 99在线视频只有这里精品首页| 欧美精品一区二区大全| 色视频www国产| 色噜噜av男人的天堂激情| 在线播放国产精品三级| 五月玫瑰六月丁香| 天堂av国产一区二区熟女人妻| 国国产精品蜜臀av免费| 中国美白少妇内射xxxbb| 两个人视频免费观看高清| 在线a可以看的网站| 亚洲精品久久国产高清桃花| 成人毛片60女人毛片免费| 国产精品一区www在线观看| 男人舔奶头视频| 女人被狂操c到高潮| 人人妻人人澡欧美一区二区| 人妻久久中文字幕网| 亚洲av.av天堂| 日韩视频在线欧美| 一级二级三级毛片免费看| 岛国毛片在线播放| 久久午夜福利片| 在线a可以看的网站| 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 免费看av在线观看网站| 婷婷色综合大香蕉| 亚洲国产精品国产精品| 99在线人妻在线中文字幕| 久久亚洲国产成人精品v| 亚洲aⅴ乱码一区二区在线播放| 国产熟女欧美一区二区| 久久精品夜色国产| 精华霜和精华液先用哪个| 天堂影院成人在线观看| 97在线视频观看| 国产探花极品一区二区| 一本久久精品| 波多野结衣高清无吗| 99久国产av精品| 国产私拍福利视频在线观看| 小蜜桃在线观看免费完整版高清| 两个人视频免费观看高清| 美女脱内裤让男人舔精品视频 | 亚洲国产日韩欧美精品在线观看| 岛国在线免费视频观看| 国产午夜福利久久久久久| 免费在线观看成人毛片| 热99在线观看视频| 黄色欧美视频在线观看| 免费看美女性在线毛片视频| 小说图片视频综合网站| 成人性生交大片免费视频hd| 97人妻精品一区二区三区麻豆| 中文字幕人妻熟人妻熟丝袜美| 长腿黑丝高跟| 在线播放无遮挡| 丝袜美腿在线中文| 亚洲av二区三区四区| 夜夜爽天天搞| 白带黄色成豆腐渣| 欧美在线一区亚洲| 黄色配什么色好看| 99国产精品一区二区蜜桃av| 国产精品.久久久| 免费人成视频x8x8入口观看| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 国内精品一区二区在线观看| 亚洲av一区综合| 人妻制服诱惑在线中文字幕| 欧美在线一区亚洲| av天堂中文字幕网| 99riav亚洲国产免费| 亚洲第一区二区三区不卡| 亚洲国产精品成人久久小说 | 国产真实乱freesex| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 日产精品乱码卡一卡2卡三| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 一级av片app| 男女下面进入的视频免费午夜| 日本在线视频免费播放| 亚洲av.av天堂| 午夜精品一区二区三区免费看| 变态另类丝袜制服| 欧美日本视频| 久久国内精品自在自线图片| 91av网一区二区| 99精品在免费线老司机午夜| 免费看美女性在线毛片视频| 成年版毛片免费区| 亚洲精品国产av成人精品| 国产精品综合久久久久久久免费| 青春草国产在线视频 | 热99re8久久精品国产| 色综合亚洲欧美另类图片| 波多野结衣巨乳人妻| 日韩欧美精品免费久久| 日本与韩国留学比较| 成人美女网站在线观看视频| 免费大片18禁| 亚洲成人久久性| 欧美高清性xxxxhd video| 久久久久久国产a免费观看| 国产高清不卡午夜福利| 久久精品久久久久久久性| 高清日韩中文字幕在线| 赤兔流量卡办理| 在线观看午夜福利视频| 日韩欧美精品v在线| 国产探花在线观看一区二区| 亚洲aⅴ乱码一区二区在线播放| 亚洲激情五月婷婷啪啪| 亚洲不卡免费看| 丰满人妻一区二区三区视频av| 99久国产av精品| 亚洲av中文字字幕乱码综合| 久久久久久大精品| 熟妇人妻久久中文字幕3abv| 国产成人a∨麻豆精品| 99视频精品全部免费 在线| 亚洲最大成人手机在线| 成人毛片60女人毛片免费| 99热全是精品| 国产真实伦视频高清在线观看| 成人亚洲精品av一区二区| 亚洲av男天堂| 亚洲在线自拍视频| 噜噜噜噜噜久久久久久91| 看免费成人av毛片| 欧美xxxx黑人xx丫x性爽| 欧美精品一区二区大全| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 国产色爽女视频免费观看| 国产成年人精品一区二区| 午夜视频国产福利| 午夜亚洲福利在线播放| 老熟妇乱子伦视频在线观看| 亚洲av免费高清在线观看| 男人舔奶头视频| 99热这里只有精品一区| 国产成人精品婷婷|