• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Majorana fermions induced fast-and slow-light in a hybrid semiconducting nanowire/superconductor device

    2022-02-24 08:59:16HuaJunChen陳華俊PengJieZhu朱鵬杰YongLeiChen陳詠雷andBaoChengHou侯寶成232001
    Chinese Physics B 2022年2期

    Hua-Jun Chen(陳華俊), Peng-Jie Zhu(朱鵬杰), Yong-Lei Chen(陳詠雷), and Bao-Cheng Hou(侯寶成) 232001

    We investigate theoretically Rabi-like splitting and Fano resonance in absorption spectra of quantum dots (QDs)based on a hybrid QD-semiconducting nanowire/superconductor(SNW/SC)device mediated by Majorana fermions(MFs).Under the condition of pump on-resonance and off-resonance, the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes. In addition,the Fano resonances are accompanied by the rapid normal phase dispersion,which will indicate the coherent optical propagation. The results indicate that the group velocity index is tunable with controlling the interaction between the QD and MFs,which can reach the conversion between the fast-and slow-light. Fano resonance will be another method to detect MFs and our research may indicate prospective applications in quantum information processing based on the hybrid QD-SNW/SC devices.

    Keywords: majorana fermions, Fano resonance, slow and fast light, hybrid semiconducting/superconductor device

    1. Introduction

    Majorana fermions (MFs) have witnessed significant progress over the past decade in solid state systems for their potential applications in topological quantum computation and quantum information processing[1—7]due to the fact that they obey non-Abelian statistics. Although MFs were proposed originally as a model for neutrinos,the analogous Majorana zero modes have been observed in condensed matter systems,[8]such as hybrid semiconducting nanowire/superconductor (SNW/SC) structures,[9—12]ferromagnetic atomic chains on a superconductor,[13]ironbased superconductor device,[14]topological superconductor devices,[15,16]and topological insulator structure.[17]In order to observe Majorana-like signatures, several significant experimental schemes have been proposed, including the zerobias peaks(ZBPs)in tunneling spectroscopy,[9—13]the Josephson effect,[18]the Coulomb blockade spectroscopy,[15]and the spin-resolved measurements.[19]

    On the other hand, due to the significant progress in modern nanoscience and nanotechnology, artificial atoms,i.e., quantum dots (QDs),[20—25]manifest the attractive intermediary for probing MFs both theoretically[26—30]and experimentally.[31]However, in the detection of MFs with QDs in the electrical domain, QDs are always considered as only a resonant level.[26—30]Different from the previous schemes for probing MFs, we have presented an optical scheme for probing MFs with a QD considered as a twolevel system (TLS) and driven by the optical pump-probe technology,[32—35]which may provide a potential supplement for probing MFs. However,Rabi splitting and Fano resonance induced by MFs in optical domain based on a hybrid QDSNW/SC device have not yet been explored to the best of our knowledge,needless to say reaching the coherent optical propagation,such as the fast-and slow-light effects.

    In this paper,firstly we demonstrate that the probe absorption spectra of the QD show the switch from Rabi-like splitting to Fano resonance induced by MFs for different detuning regimes in the hybrid QD-SNW/SC device, which can be illustrated using the interference effect with the dressed state theory. Under the condition of pump on-resonance,the probe absorption spectra present a distinct Rabi splitting behavior with increasing the QD-MFs coupling strengthβ,which manifests a strong interaction of the QD and MFs,and the width of the splitting is 2β, which indicates an approach to determine the QD-MFs coupling strength. In the pump off-resonance,the probe absorption spectra can show a series of asymmetric Fano line shapes,and the Fano resonances are tunable under different parametric regimes, such as the Majorana-pump field detuningΔMand the exciton-pump field detuningΔc. As Fano resonances are characterized by a rapid steeper dispersion, the light pulses can be accelerated and decreased significantly, which correspond to the negative and positive dispersions, respectively, and then reach the fast and slow light effect. Secondly, we investigate the coherent optical propagation properties, i.e., the fast and slow light effect via the group delay of the probe field around the transparency window accompanied by the steep phase dispersion. The results show that a controllable fast-to-slow light propagation can be reached with manipulating the parametric regimes.

    2. Model and method

    The system under consideration is sketched in Fig. 1,where a QD coupled to a near by MFs appearing in the hybrid SNW/SC device,[9—12]and the Hamiltonian is given by[26—30,32—35]

    where the first term indicates the Hamiltonian of the QD with the exciton frequencyωex. In the previous works for probing MFs, the QD is consider as a single resonant level with spinsinglet state,[26—30]here we consider that the QD is a TLS with the ground state|0〉and the single exciton state|1〉, which is described by the pseudospin operatorsSzandS±with the commutation relations[Sz,S±]=±S±and[S+,S?]=2Sz.

    Fig. 1. The schematic of the hybrid QD-SNW/SC device, in which a QD driven by a pump field and a probe field coupled to a nearby MF in the end of SNW.

    The second term is the interaction of the two MFs in the end of SNW in the hybrid SNW/SC device. To describe MFs,we introduce the Majorana operatorsγ1andγ2with the relationγ?=γandγ2=1 as they are their own antiparticles.Here,εM=ωM~e?l/ξis the coupling energy withlbeing the length of the SNW andξthe superconducting coherent length with Majorana frequencyωM. If the lengthlof the SNW is large enough, we can find the coupling energyεM~e?l/ξ ~0. Thus,we need to discuss the two cases,i.e.,εM/=0 in terms of coupled Majorana edge states,andεM=0 in terms of uncoupled Majorana edge states.

    The third gives the nearby MFsγ1coupled to the QD with the coupling strengthβ, and the coupling strength is related to the distance of the QD and SNW/SC device. For simplicity, we introduce the regular fermion creation and annihilation operatorsf?andfwith the anti-commutative relation=1,thus,according to the relation ofγ1=f?+fandγ2= i(f??f), Majorana operatorγcan be transformed into the regular fermion operatorf. Then the third term reduces to i(S?f??S+f) with neglecting the non-conservation terms of energy i(S?f ?S+f+)based on the rotating wave approximation.[36]

    The last two terms indicate the interactions between the QD and two laser fields including a strong pump field with frequencyωpand a weak probe field with frequencyωssimultaneously irradiating to the QD,whereμis the electric dipole moment of the exciton,εpandεsare the slowly varying envelope of the pump field and probe field,respectively. In a frame rotated to the frequencyωpof the pump field, Eq. (1) can be rewritten as

    whereΔp=ωex?ωpindicates the exciton-pump field detuning,ΔM=ωM?ωpmeans the Majorana-pump field detuning, andδ=ωs?ωpgives the probe-pump detuning. Here,Ωp=μεp/is the Rabi frequency of the pump field. According to the Heisenberg equation of motion i=[ρ,H](ρ=Sz,S?,f),we can obtain the Heisenberg—Langevin equations of the operators with the corresponding noise and damping terms as follows:

    whereΓ1(Γ2)is the exciton relaxation rate(exciton dephasing rate), andκMis the decay rate of the MFs.is theδcorrelated Langevin noise operator with zero mean, andξis Langevin force arising from the interaction between the Majorana modes and the environment.

    Morning came, and the king got up, pale and sulky, and, after learning from the hermit which path to take, was soon mounted and found his way home without much difficulty

    We introduce the perturbation theory:ρ=ρ0+δρ,whereρindicates the operatorsSz,S?, andf, thenρ0(i.e.,,S0,andf0)means the steady parts,andδρ(i.e.,δSz,δS?,andδ f) indicates the fluctuation ones. Substituting the perturbation method into Eqs. (3)—(5) we obtain the steady state solutions of the variables as follows:

    which determine the steady-state population inversion (w0=)of the exciton as follows:

    where, andΞ3=. As all the pump fields are assumed to be sufficiently strong, all the operators can be identified withtheir expectation values under the mean-field approximation〈Qc〉=〈Q〉〈c〉,[37]after being linearized by neglecting nonlinear terms in the fluctuations,the H-LEs for the expectation values are

    In order to solve the equation set of the above H-LEs, we make the ansatz[38]〈δρ〉=ρ+e?iδt+ρ?eiδt. Solving the equation set and working to the lowest order inεsbut to all orders inεp, we obtain the linear optical susceptibility aswithand then the dimensionless linear susceptibilityχ(1)(ωs) is given by

    According to the light group velocity[39,40]υg=c/[n+ωs(dn/dωs)],wheren ≈1+2πχ(1)

    eff,we obtain

    where. One can observe the slow light ifng>0, and the superluminal light whenng<0.[41]The parameter values used in the paper:[9—12,35,42]the QD-MFs coupling strengthβ= 0.1 GHz, the decay rate of the MFsκM= 0.1 MHz,Γ1= 0.3 GHz,Γ2= 0.15 GHz, and=0.005(GHz)2.

    3. Results and discussion

    Firstly, we discuss the case of uncoupled Majorana edge state, i.e.,εM= 0 (orΔM= 0) under the condition of the exciton-pump field detuningΔp=0,and the Hamiltonian describing the coupling between the QD and nearby MFs reduces toHint=i(S?f??S+f). Then the absorption spectra will display the symmetric splitting due to the fact that the coupled Hamiltonian is analogical to the J—C Hamiltonian of the standard model. In Fig. 2, we plot the probe absorption (the imaginary part of the dimensionless susceptibility i.e.,Imχ(1))versus the probe-exciton detuningΔs=ωs?ωexfor several different MF-QD coupling strengthsβ. Obviously,in the case ofβ=0,i.e.,without MF-QD coupling,the absorption spectrum shows a lorentz peak. However, when the MF-QD couplingβis considered,the absorption spectra display an evident splitting behavior, and the splitting is enhanced prominently with increasing the MF-QD couplingβfromβ=0.1 GHz toβ=0.6 GHz. In addition,the splitting in the absorption spectrum is symmetric, which is like the vacuum Rabi splitting,and the width of splitting is 2β, and the peak splitting manifests the strong interaction between MF and QD.The physical origin of the results comes from the coherent interaction of the QD and MFs,and we introduce the dressed state theory to explain this physical phenomena.[35]Because QD is considered as TLS with the ground state|0〉and exciton state|1〉, when QD is coupled to the nearby MFs,QD will be modified by the number states of the MFsnMinducing the Majorana dressed states|0,nM〉,|0,nM+1〉,|1,nM〉,|1,nM+1〉. The left sharp peak of splitting in the absorption spectra indicates the transition from|0〉to|1,nM〉,and the right sharp peak is due to the transition of|0〉to|1,nM+1〉. On the other hand,we find that the absorption dip will reach zero atΔs=0 whenβ /=0,that is to say,the input probe field is transmitted completely without any absorption, which is very similar to electromagnetically induced transparency(EIT)[43]inΛ-type atoms systems.Since EIT can induce slow light,the hybrid QD-SWN/SC system can also reach slow light effect.

    Fig. 2. The probe absorption versus the probe-exciton detuning Δs =ωs ?ωex for several different MF-QD coupling strengths β. The other parameters are Γ1 =0.3 GHz, Γ2 =0.15 GHz, κM =0.1 MHz,=0.005(GHz)2,ΔM=Δp=0.

    In Fig. 3(a), we investigate the dispersion (the real part of the dimensionless susceptibility, i.e., Reχ(1)) as a function ofΔsfor several different MF-QD coupling strengthsβatΔp=0. It is obvious that the dispersion exhibits the negative steep slope atΔs=0 forβ=0(the black curve in Fig.3(a)),which combines the lorentz peak atΔs=0 in Fig. 2, leading to the fast light effect. However, ifβ /=0, the dispersion will exhibit the positive steep slope atΔs=0,which combines the zero absorption atΔs=0 in Fig. 2, resulting in the slow light effect. It is analogous to EIT[43]inΛ-type atoms systems,a transparency window will lead to the slow light effect,in our system the MF-QD coupling also results in the analogous zero absorption transparency window, which is accompanied with the rapid normal phase dispersion, indicating the coherent optical propagation, such as the fast and slow light effect. No matter what regimes result in the zero absorption,when a transparency window is observed, the slow light or fast light will be induced. In our hybrid coupled QD-SNW/SC system,when the transparency appears in the absorption spectrum,the slope around transparency window of the dispersion will experience the conversion between the negative to positive. The positive steep slope of dispersion will induce the positive group velocity index,i.e.,ng>0,then the slow light phenomenon will appear in the system. On the contrary, if the dispersion shows the negative steep slope, the group velocity index will be negative, i.e.,ng<0, as a result the fast light will be achieved. In Fig. 3(b), we plot the group velocity indexngof probe laser versus QD-MF coupling strengthβunder the condition ofΔM=0 andΔp=0. We can find that the group velocity indexngexperiences the positive—negative—positive change,which corresponds to the slow-fast-slow light.In Fig. 3(c), we also give the group velocity indexngas a function of Rabi frequencyin the case ofβ=0. As the dispersion shows a negative steep slope atΔs=0 forβ=0 as shown in the black curve in Fig. 3(a), which combines a lorentz peak in Fig.2 resulting in the fast light effect. Furthermore, the group velocity indexngvaries significantly around=0.1(GHz)2. In Fig.3(d),we consider the case ofβ /=0,due to the fact that the dispersion exhibits the positive steep slope atΔs=0, and then the group velocity indexngis positive with varying the Rabi frequency,therefore,the slow light effect can be obtained.

    Fig.3. (a)The dispersion as a function of Δs for several different MF-QD coupling strengths β at ΔM=Δp=0. (b)The group velocity index ng versus QD-MF coupling strength β under the condition of ΔM=0 and Δp=0. (c)ng as a function of for β =0. (d)ng versus for β =0.1 GHz.

    Secondly, we consider the coupled Majorana edge state,i.e.,εM/=0(orΔM/=0)still in the case ofΔp=0. In Fig.4,we display the probe absorption spectra versusΔsfor differentΔM,which experience the conversion from unsymmetrical splitting(Fano resonance like splitting)to symmetric splitting(EIT like splitting)to Fano resonance. Unlike EIT with symmetric splitting,the Fano resonance-like splitting is an asymmetry shape due to the fact that the scattering of light amplitude under the condition of EIT is not met and a detuning is introduced. Obviously,the absorption spectra show the Fanoresonance-like splitting underΔM/=0 due to the MF-QD interaction,and the Fano-like resonance will change into a symmetric EIT-like splitting atΔM=0.Furthermore,the evolution process of the two sharp unsymmetrical peaks varies significantly for different detuningΔM, and the amplitude intensity of the left peaks is enhanced and the right peaks are reduced with changingΔMfromΔM=?0.3 GHz toΔM=0.3 GHz.In addition,we find that the absorption spectra are asymmetricand a prominent avoided crossing phenomenon occurs in the system,[44]which is very different from the case ofΔM=0 in Fig. 2, where the absorption spectra split into a doublet with symmetrical splitting and each peak has equal strength. This behavior is attributed to the off-resonant coupling between the QD and MF.

    Fig.4. The probe absorption spectra versus Δs for several different ΔM at the parameters of=0.005(GHz)2 and β =0.1 GHz.

    Therefore, in Fig. 5, we further investigate the slow and fast light effect under the condition of the coupled Majorana edge state (ΔM/=0) for the case ofΔp=0. In Fig. 5(a), we plot the absorption and dispersion spectra for the fixed QDMF coupling strengthβ=0.1 GHz and the Rabi frequency=0.005 (GHz)2underΔM=?0.1 GHz, and the absorption shows a Fano resonance and the steep slope aroundΔs=0 in the dispersion changes significantly. Thus,in Fig.5(b),we further display the dispersion versusΔsfor several differentΔM, and the processes of evolutions of the dispersion are related to the coupled Majorana edge state. Here,we only consider the case ofΔM≤0. Figure 5(c)shows the group velocity indexngas a function of QD-MF coupling strengthβunder several differentΔM, and it is obvious thatngcan realize the conversion from fast to slow light. Comparing the condition ofΔM=0 withΔM/=0,we can see that the experience of the group velocity indexnginΔM=0 is salient from the condition ofΔM/=0. Because the parameterβcan be manipulated with controlling the distance between the QD and SNW/SC device,we can obtain fast-to-slow light(or vice versa)by controlling the parameterβin the system. In Fig. 5(d), we also present the group velocity indexngversusfor threeΔM. We obtain thatngexperiences the conversion from slow to fast to slow light atΔM=?0.1 GHz. However, ifΔM

    Fig.5. (a)The absorption and dispersion versus Δs at ΔM =?0.1 GHz. (b)The dispersion versus Δs for several different ΔM at Δp =0. (c)The group velocity index ng versus β for several different ΔM. (d)The group velocity index ng versus for several different ΔM.

    In the above discussions,we only consider the case of the exciton-pump field detuningΔp=0,while under the condition ofΔp/=0, the Fano resonance will be altered tempestuously.In Fig.6(a),we plot the absorption spectra versusΔswith increasingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz under the parameters of=0.005 (GHz)2andβ=0.2 GHz in the uncoupled Majorana edge state (ΔM=0), which experiences the conversion from Fano resonance to Rabi-like splitting to Fano resonance. Furthermore, besidesΔp=0, we find that the peaks in the absorption spectra present mirror symmetry atΔp=±Θ(Θindicates the definite numerical value)in the uncoupled Majorana edge state. Here, we takeΔp=?0.3 GHz andΔp=0.3 GHz as an example. IfΔp=?0.3 GHz, in the absorption spectrum as shown by the red curve in Fig. 6(a),the left peak locates atΔs=?0.4 GHz and the right peak locates atΔs= 0.1 GHz. However, ifΔp= 0.3 GHz, in the absorption spectrum as shown by the purple curve in Fig.6(a),the left peak locates atΔs=?0.1 GHz and the right peak locates atΔs=0.4 GHz. It is obvious that the left peak atΔp=?0.3 GHz is mirror symmetric with the right peak atΔp=0.3 GHz, and the right peak atΔp=?0.3 GHz is mirror symmetric with the left peak atΔp=0.3 GHz in the absorption spectra. When we change the condition ofΔM=0 intoΔM/=0,the Fano resonance manifests evident distinction compared withΔM=0 with varyingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz as shown in Fig.6(b). We find that,with increasingΔpfromΔp=?0.3 GHz toΔp=0,the splitting width of the two peaks in the absorption spectra is reduced,i.e.,the absorption spectra is squeezed. However, with increasingΔpfromΔp=0 toΔp=0.3 GHz, the splitting width of the two peaks in the absorption spectra is enhanced,i.e.,the absorption spectra is stretched. No matter whetherΔM=0 orΔM/=0,we obtain that the full width at half maximum (FWHM) of the left peak is reduced and the FWHM of the right peak is enhanced in the absorption spectra with increasingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz as shown in Figs.6(a)and 6(b).

    Fig. 6. The absorption spectra versus Δs for several different Δp at ΔM =0. (b) The absorption spectra versus Δs for several different Δp at ΔM/=0. The other parameters are =0.005(GHz)2 and β =0.2 GHz.

    Fig.7. (a)and(b)The group velocity index ng versus for several Δp at ΔM=0 and β =0.2 GHz. (c)and(d)The group velocity index ng versus for several Δp at ΔM/=0 and β =0.2 GHz.

    Then,on the other hand,we also demonstrate the coherent optical propagation properties for differentΔp/=0 andΔM/=0.In Fig. 7(a), we investigate the group velocity indexngas a function offorΔp=?0.3 GHz andΔp=0.3 GHz underΔM=0 at fixedβ=0.2 GHz. Figure 7(b)givesngversusforΔp=?0.1 GHz andΔp=0.1 GHz underΔM=0 at fixedβ=0.2 GHz. Compared Fig.7(a)with Fig.7(b)corresponding to Fig.6(a),we find that the group velocity indexngundergoes the conversion from advance to delay which corresponds to fast to slow light,and the conversion is more remarkable atΔp<0 than atΔp>0. In Fig. 7(c), we givengversusatΔM/=0 with increasingΔpfromΔp=0 toΔp=0.3 GHz,and Fig. 7(d) plotsngversusatΔM=?0.1 GHz forΔp<0,which corresponds to Fig. 6(b). We can obtain that the conversion from fast to slow light can reach in the two conditions,and compared with Fig. 7(c), the process of evolution of the conversion from fast to slow light is slightly different from Fig. 7(d). Thus, with controlling different detuning regimes,the fast-to-slow light,or vice versa,can be reached in our system.

    In our system, we only consider the QD coupling to the nearby MFs, i.e., QD only couples to one MF due to the fact that it is confined by the length of the SNW and the superconducting coherent length.If QD is coupled to a pair of MFs,the results are significantly different. We have ever designed a hybrid QD-SNW/SC ring device,where QD is coupled to a pair of MFs,[34,35]and the results indicate that both the absorption spectra and the slow light(fast light)are enhanced observably compared with the results in this paper. In order to enhance the coherent optical properties(such as the linear or nonlinear optical phenomena)of QD induced by MFs,we have ever considered introducing a hybrid QD-nanoresonator system to investigate MFs induced coherent optical phenomena,[32,33]and the results manifest that both the linear or nonlinear optical phenomena induced by MFs are enhanced significantly due to the fact that the nanoresonator behaves as a phononic cavity,which enhances the linear and nonlinear optical effect. Therefore, to reach enhanced fast and slow light effect, the hybrid QD-nanoresonator system can be brought,and we will investigate the issue in the future work.

    4. Conclusions

    In summary, we have demonstrated the coherent optical propagation properties in a hybrid QD-SWN/SC device,which includes a QD driven by a pump field and a probe field coupled to a nearby MF in the hybrid SWN/SC system, and we investigate the absorption spectra of the probe field under both the conditions of the pump on-resonance (Δp= 0) and offresonance (Δp/=0). In the situation of pump on-resonance,the absorption spectra displays a Rabi-like splitting manifesting the strong interaction between the QD and MF. In pump off-resonance, the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes. Moreover, the narrow transparency window(i.e.,the absorption dip approaches zero)in the absorption spectrum and the corresponding rapid phase dispersion allow for reaching the slow light effect. The results show that the group velocity index can be controlled by the QD-MF coupling,which can reach the conversion from fast to slow light.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804004 and 11647001),the China Postdoctoral Science Foundation(Grant No. 2020M681973), and Anhui Provincial Natural Science Foundation,China(Grant No.1708085QA11).

    高清av免费在线| 熟女人妻精品中文字幕| tube8黄色片| 校园人妻丝袜中文字幕| 亚洲av欧美aⅴ国产| 亚洲丝袜综合中文字幕| 少妇熟女欧美另类| 欧美日韩国产mv在线观看视频 | 最近的中文字幕免费完整| 狂野欧美激情性xxxx在线观看| 日韩不卡一区二区三区视频在线| 成人毛片60女人毛片免费| 麻豆成人av视频| 老师上课跳d突然被开到最大视频| 日韩 亚洲 欧美在线| 亚洲欧洲日产国产| 哪个播放器可以免费观看大片| 日本黄大片高清| 欧美人与善性xxx| 97在线人人人人妻| 欧美丝袜亚洲另类| 亚洲高清免费不卡视频| 久久久精品欧美日韩精品| 日本wwww免费看| av福利片在线观看| 国产成人一区二区在线| 丝瓜视频免费看黄片| 亚洲av免费高清在线观看| 久久综合国产亚洲精品| 亚洲成人中文字幕在线播放| 国产成人精品久久久久久| 身体一侧抽搐| 在线天堂最新版资源| 91久久精品电影网| 亚洲精品自拍成人| 在线天堂最新版资源| 成人毛片60女人毛片免费| 国产老妇女一区| .国产精品久久| 日本-黄色视频高清免费观看| 天天一区二区日本电影三级| 国产在线男女| 中文字幕久久专区| 在线观看人妻少妇| 丝瓜视频免费看黄片| 九九爱精品视频在线观看| 国产精品国产三级国产专区5o| av女优亚洲男人天堂| 欧美xxxx黑人xx丫x性爽| 亚洲精品久久午夜乱码| 久久久久久久午夜电影| 五月玫瑰六月丁香| 各种免费的搞黄视频| 国产成人91sexporn| 一级毛片 在线播放| 日韩精品有码人妻一区| 在线观看一区二区三区| 欧美日韩视频精品一区| 国产老妇女一区| 天天一区二区日本电影三级| 97超碰精品成人国产| 可以在线观看毛片的网站| 中文字幕人妻熟人妻熟丝袜美| 国产一区有黄有色的免费视频| 久久精品国产亚洲网站| 国产av国产精品国产| 久久久久久国产a免费观看| 国产高清国产精品国产三级 | 99九九线精品视频在线观看视频| 神马国产精品三级电影在线观看| 十八禁网站网址无遮挡 | 婷婷色综合大香蕉| 汤姆久久久久久久影院中文字幕| 白带黄色成豆腐渣| 亚洲人成网站在线观看播放| 国产精品蜜桃在线观看| 久热久热在线精品观看| 18禁动态无遮挡网站| 国产 精品1| 少妇猛男粗大的猛烈进出视频 | 丝瓜视频免费看黄片| 韩国av在线不卡| 一区二区三区乱码不卡18| av国产精品久久久久影院| 搡老乐熟女国产| 美女国产视频在线观看| 亚洲av中文av极速乱| 国产午夜福利久久久久久| 大香蕉久久网| 亚洲国产日韩一区二区| 日韩在线高清观看一区二区三区| 免费少妇av软件| 高清在线视频一区二区三区| 又爽又黄无遮挡网站| 久久人人爽人人片av| 亚洲欧美日韩另类电影网站 | 菩萨蛮人人尽说江南好唐韦庄| 国产精品福利在线免费观看| av网站免费在线观看视频| 国产成人精品久久久久久| 亚洲av二区三区四区| 久久精品国产亚洲av涩爱| 看黄色毛片网站| 日本黄色片子视频| 99热6这里只有精品| 日韩 亚洲 欧美在线| 亚洲欧美中文字幕日韩二区| 性插视频无遮挡在线免费观看| 久久久久久久午夜电影| 色哟哟·www| 丰满乱子伦码专区| 日韩强制内射视频| 精品一区在线观看国产| 丰满乱子伦码专区| 亚洲av电影在线观看一区二区三区 | 一本久久精品| 色播亚洲综合网| 深爱激情五月婷婷| a级毛片免费高清观看在线播放| 久久久精品94久久精品| 久久久久久国产a免费观看| 久久久精品94久久精品| a级毛片免费高清观看在线播放| 超碰av人人做人人爽久久| 国产综合精华液| 欧美激情在线99| 欧美激情在线99| 久久午夜福利片| 久久久久九九精品影院| 日韩亚洲欧美综合| 色视频在线一区二区三区| 免费观看性生交大片5| 欧美激情在线99| 日韩制服骚丝袜av| 国产成人91sexporn| 精品一区二区免费观看| 99久久精品热视频| 精品久久国产蜜桃| 91在线精品国自产拍蜜月| 91精品伊人久久大香线蕉| 在线 av 中文字幕| 国产成人aa在线观看| 免费看av在线观看网站| 国产一级毛片在线| 精品99又大又爽又粗少妇毛片| 极品教师在线视频| 高清在线视频一区二区三区| 成人二区视频| 秋霞在线观看毛片| 嘟嘟电影网在线观看| 国产乱来视频区| 精品一区二区三区视频在线| 97精品久久久久久久久久精品| 最近的中文字幕免费完整| 国产精品国产三级国产专区5o| a级毛色黄片| 国产精品蜜桃在线观看| 啦啦啦啦在线视频资源| 国产中年淑女户外野战色| 最近手机中文字幕大全| 国产片特级美女逼逼视频| 麻豆乱淫一区二区| 美女高潮的动态| 成人二区视频| 伊人久久国产一区二区| 夜夜爽夜夜爽视频| 另类亚洲欧美激情| 国产高清三级在线| 久久久久久久亚洲中文字幕| 免费黄网站久久成人精品| 特大巨黑吊av在线直播| 婷婷色av中文字幕| 亚洲精品成人av观看孕妇| 欧美xxxx性猛交bbbb| 久久精品国产亚洲网站| 建设人人有责人人尽责人人享有的 | 久热久热在线精品观看| 极品教师在线视频| 亚洲人成网站在线播| 免费看日本二区| 亚洲精品中文字幕在线视频 | 另类亚洲欧美激情| 人妻一区二区av| 欧美最新免费一区二区三区| 人妻制服诱惑在线中文字幕| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久人妻蜜臀av| 久久久久久久亚洲中文字幕| 国产一区有黄有色的免费视频| 精品久久久噜噜| 久热这里只有精品99| 国产精品不卡视频一区二区| 特级一级黄色大片| 精品酒店卫生间| 制服丝袜香蕉在线| 精品人妻偷拍中文字幕| 亚洲欧美一区二区三区黑人 | 亚洲成色77777| 少妇高潮的动态图| 亚洲国产高清在线一区二区三| 天天躁夜夜躁狠狠久久av| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 狂野欧美激情性xxxx在线观看| 午夜老司机福利剧场| 国产精品一区www在线观看| 蜜桃久久精品国产亚洲av| 亚洲人成网站在线播| 亚洲精品乱码久久久v下载方式| 老女人水多毛片| 99久久精品一区二区三区| 一个人看视频在线观看www免费| 亚洲av二区三区四区| 国产精品久久久久久久电影| 亚洲av日韩在线播放| 欧美三级亚洲精品| 久久久亚洲精品成人影院| 亚洲欧美日韩无卡精品| 久久国产乱子免费精品| 成人毛片60女人毛片免费| 日产精品乱码卡一卡2卡三| 国产精品福利在线免费观看| 国产精品无大码| 免费高清在线观看视频在线观看| 成人毛片60女人毛片免费| 日韩欧美 国产精品| 91久久精品电影网| 精品酒店卫生间| 日韩,欧美,国产一区二区三区| 黄色欧美视频在线观看| 国产色爽女视频免费观看| 极品少妇高潮喷水抽搐| 国产欧美日韩一区二区三区在线 | 一区二区三区四区激情视频| 久久97久久精品| 啦啦啦中文免费视频观看日本| 亚洲aⅴ乱码一区二区在线播放| 国产成人免费无遮挡视频| 亚洲精品国产av成人精品| 国产成人aa在线观看| 国产欧美日韩一区二区三区在线 | 熟妇人妻不卡中文字幕| 高清在线视频一区二区三区| 欧美97在线视频| 日韩成人伦理影院| 久久久久久九九精品二区国产| 国产一区二区在线观看日韩| 日韩av免费高清视频| 大片免费播放器 马上看| 亚洲精品中文字幕在线视频 | 日韩,欧美,国产一区二区三区| 色综合色国产| 永久网站在线| 成人黄色视频免费在线看| 大码成人一级视频| 久久99热这里只频精品6学生| 精品久久久久久久末码| 水蜜桃什么品种好| 久久久a久久爽久久v久久| 人体艺术视频欧美日本| 深夜a级毛片| 日韩不卡一区二区三区视频在线| 国产亚洲午夜精品一区二区久久 | 久久久久久久久久成人| 天天一区二区日本电影三级| 国产av码专区亚洲av| 亚洲一区二区三区欧美精品 | 晚上一个人看的免费电影| 老女人水多毛片| 国产精品人妻久久久久久| 国产高清不卡午夜福利| 亚洲精品久久久久久婷婷小说| 大码成人一级视频| av国产久精品久网站免费入址| 婷婷色av中文字幕| 午夜精品一区二区三区免费看| 欧美激情国产日韩精品一区| 天堂中文最新版在线下载 | 大码成人一级视频| 舔av片在线| 能在线免费看毛片的网站| 麻豆精品久久久久久蜜桃| 观看免费一级毛片| 国产午夜精品一二区理论片| 国产精品.久久久| 日韩av不卡免费在线播放| 国产黄a三级三级三级人| 男男h啪啪无遮挡| 久久99热6这里只有精品| 精品视频人人做人人爽| 麻豆久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 欧美少妇被猛烈插入视频| 久久国内精品自在自线图片| 在线亚洲精品国产二区图片欧美 | 欧美老熟妇乱子伦牲交| 亚洲,欧美,日韩| 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 久久久久久久午夜电影| 在线观看免费高清a一片| 成年免费大片在线观看| 国产色婷婷99| 精品少妇黑人巨大在线播放| 成人毛片60女人毛片免费| 尤物成人国产欧美一区二区三区| 女人被狂操c到高潮| 成年女人在线观看亚洲视频 | 一边亲一边摸免费视频| 亚洲欧美日韩卡通动漫| 国产老妇伦熟女老妇高清| 麻豆乱淫一区二区| 99久久精品一区二区三区| 身体一侧抽搐| 一本色道久久久久久精品综合| 久久6这里有精品| 欧美成人精品欧美一级黄| 波多野结衣巨乳人妻| 精品人妻偷拍中文字幕| 国产av不卡久久| 国产成人免费无遮挡视频| 亚洲国产色片| 99热这里只有是精品50| 欧美激情久久久久久爽电影| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 2022亚洲国产成人精品| 成人国产麻豆网| 国产成人福利小说| 午夜福利视频1000在线观看| 久久久久久久国产电影| 少妇高潮的动态图| 日本与韩国留学比较| 亚洲一级一片aⅴ在线观看| 国产av国产精品国产| 欧美成人午夜免费资源| 日本免费在线观看一区| 亚洲欧洲日产国产| 日韩 亚洲 欧美在线| 欧美成人a在线观看| av在线老鸭窝| 久久亚洲国产成人精品v| 最新中文字幕久久久久| 国产亚洲av嫩草精品影院| 亚洲丝袜综合中文字幕| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 新久久久久国产一级毛片| 自拍偷自拍亚洲精品老妇| 一二三四中文在线观看免费高清| 中文字幕人妻熟人妻熟丝袜美| 18禁在线播放成人免费| 91午夜精品亚洲一区二区三区| 综合色av麻豆| a级毛色黄片| 亚洲欧美一区二区三区黑人 | av免费观看日本| 国产高清有码在线观看视频| 干丝袜人妻中文字幕| 波多野结衣巨乳人妻| 国产爱豆传媒在线观看| 九色成人免费人妻av| 水蜜桃什么品种好| 国产淫语在线视频| 22中文网久久字幕| 国产精品av视频在线免费观看| 国精品久久久久久国模美| 嘟嘟电影网在线观看| 国产欧美亚洲国产| 亚洲国产av新网站| 一本一本综合久久| 91狼人影院| freevideosex欧美| 国产一区二区亚洲精品在线观看| av卡一久久| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 久久精品国产自在天天线| 午夜福利视频精品| 日本三级黄在线观看| 在线天堂最新版资源| 亚州av有码| 能在线免费看毛片的网站| 久久精品国产亚洲av天美| 三级经典国产精品| 在线观看一区二区三区| 91精品伊人久久大香线蕉| 国产精品久久久久久久久免| 国产成人午夜福利电影在线观看| 两个人的视频大全免费| 免费电影在线观看免费观看| 最近手机中文字幕大全| 又爽又黄a免费视频| 免费观看av网站的网址| 国产欧美另类精品又又久久亚洲欧美| 国模一区二区三区四区视频| 乱码一卡2卡4卡精品| 免费观看在线日韩| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 成人一区二区视频在线观看| 22中文网久久字幕| 狂野欧美激情性xxxx在线观看| 麻豆精品久久久久久蜜桃| 搞女人的毛片| 少妇丰满av| 亚洲国产精品成人综合色| 欧美成人精品欧美一级黄| 在线精品无人区一区二区三 | 汤姆久久久久久久影院中文字幕| 舔av片在线| 成人鲁丝片一二三区免费| 尾随美女入室| 亚洲天堂av无毛| 啦啦啦中文免费视频观看日本| 亚洲国产精品国产精品| 国产免费福利视频在线观看| 大码成人一级视频| 一本久久精品| av专区在线播放| 国产精品成人在线| 天天躁日日操中文字幕| 精品人妻一区二区三区麻豆| 成人毛片60女人毛片免费| 超碰av人人做人人爽久久| 亚洲久久久久久中文字幕| av.在线天堂| 中国国产av一级| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 亚洲精品久久久久久婷婷小说| 偷拍熟女少妇极品色| 蜜桃亚洲精品一区二区三区| 高清午夜精品一区二区三区| 噜噜噜噜噜久久久久久91| 又爽又黄a免费视频| 国产av码专区亚洲av| 久久精品综合一区二区三区| 国产精品久久久久久久久免| .国产精品久久| 成人特级av手机在线观看| 亚洲精品456在线播放app| 伦精品一区二区三区| 97超视频在线观看视频| 水蜜桃什么品种好| 大香蕉久久网| 中文精品一卡2卡3卡4更新| 国产精品蜜桃在线观看| 人体艺术视频欧美日本| 国产男女内射视频| 亚洲av免费高清在线观看| 国产精品不卡视频一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧洲日产国产| 水蜜桃什么品种好| 日日摸夜夜添夜夜添av毛片| av免费在线看不卡| 亚洲av一区综合| 色视频www国产| 一个人看的www免费观看视频| 亚洲av日韩在线播放| 亚洲精品自拍成人| 色吧在线观看| 国产精品国产三级国产专区5o| 久久久久久久久久久免费av| 最新中文字幕久久久久| 毛片女人毛片| 在线播放无遮挡| 少妇人妻 视频| 国产中年淑女户外野战色| 久久久久久久久久久免费av| 日本猛色少妇xxxxx猛交久久| 男人狂女人下面高潮的视频| 亚洲电影在线观看av| 一级二级三级毛片免费看| 久久精品国产鲁丝片午夜精品| 午夜日本视频在线| 亚洲欧美日韩卡通动漫| 久久久欧美国产精品| 亚洲精品,欧美精品| 婷婷色综合www| 十八禁网站网址无遮挡 | 精品视频人人做人人爽| 视频区图区小说| 97精品久久久久久久久久精品| 大陆偷拍与自拍| 深爱激情五月婷婷| 天堂俺去俺来也www色官网| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 久热久热在线精品观看| 欧美xxⅹ黑人| 色视频在线一区二区三区| 日韩视频在线欧美| 日韩精品有码人妻一区| 51国产日韩欧美| 大陆偷拍与自拍| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播| 午夜日本视频在线| 久久国内精品自在自线图片| 在线精品无人区一区二区三 | 又粗又硬又长又爽又黄的视频| 午夜老司机福利剧场| 欧美老熟妇乱子伦牲交| 一本色道久久久久久精品综合| 欧美日韩亚洲高清精品| 波野结衣二区三区在线| 国产综合精华液| 亚洲精品一区蜜桃| 免费高清在线观看视频在线观看| 我要看日韩黄色一级片| 国产淫语在线视频| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 黄色一级大片看看| 久久人人爽av亚洲精品天堂 | 观看免费一级毛片| 中文字幕av成人在线电影| 日韩欧美精品免费久久| 内射极品少妇av片p| 亚洲自偷自拍三级| 内地一区二区视频在线| 天堂中文最新版在线下载 | 成年免费大片在线观看| 日本黄大片高清| 久久午夜福利片| 搞女人的毛片| 狂野欧美激情性xxxx在线观看| av在线app专区| 国产 一区精品| 国语对白做爰xxxⅹ性视频网站| 精品少妇黑人巨大在线播放| 久久精品综合一区二区三区| 天堂网av新在线| 亚洲美女视频黄频| 国产爽快片一区二区三区| 少妇被粗大猛烈的视频| 色视频www国产| 亚洲精品亚洲一区二区| av女优亚洲男人天堂| 天堂中文最新版在线下载 | 亚洲美女搞黄在线观看| 欧美bdsm另类| 国产精品蜜桃在线观看| 深夜a级毛片| 国产精品蜜桃在线观看| 午夜福利在线在线| 少妇人妻精品综合一区二区| 我的老师免费观看完整版| 亚洲综合精品二区| 欧美日本视频| 亚洲国产欧美人成| 国产免费又黄又爽又色| 国产精品一及| 国产成人a区在线观看| 精品久久久久久久久亚洲| 蜜桃亚洲精品一区二区三区| 亚洲av国产av综合av卡| 青春草亚洲视频在线观看| 国产欧美日韩精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久久久久久性| freevideosex欧美| 最近2019中文字幕mv第一页| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站| 大又大粗又爽又黄少妇毛片口| 免费av毛片视频| 国产精品国产三级国产专区5o| 国产精品偷伦视频观看了| 乱系列少妇在线播放| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 激情 狠狠 欧美| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 涩涩av久久男人的天堂| 日日撸夜夜添| 99久久人妻综合| 国产综合精华液| 亚洲三级黄色毛片| 哪个播放器可以免费观看大片| 欧美xxxx性猛交bbbb| 成年女人看的毛片在线观看| 日韩免费高清中文字幕av| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品成人综合色| 一个人看视频在线观看www免费| 夫妻午夜视频| 99久久精品一区二区三区| 欧美国产精品一级二级三级 | 日韩三级伦理在线观看| 久久久久久久国产电影| 日韩精品有码人妻一区| 免费黄网站久久成人精品| 97人妻精品一区二区三区麻豆| 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| 最近的中文字幕免费完整| 日韩av不卡免费在线播放| 国产亚洲av嫩草精品影院| av在线蜜桃| 在线 av 中文字幕| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 国产午夜福利久久久久久| 午夜福利视频1000在线观看| h日本视频在线播放| 在线观看免费高清a一片| 亚洲成色77777| 性色avwww在线观看| 免费观看av网站的网址| 亚洲国产最新在线播放|