• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites

    2022-02-24 08:59:12ShuangjiuFeng馮雙久JiangliNi倪江利FengHu胡鋒XucaiKan闞緒材QingrongLv呂慶榮andXiansongLiu劉先松
    Chinese Physics B 2022年2期

    Shuangjiu Feng(馮雙久) Jiangli Ni(倪江利) Feng Hu(胡鋒)Xucai Kan(闞緒材) Qingrong Lv(呂慶榮) and Xiansong Liu(劉先松)

    1Engineering Technology Research Center of Magnetic Materials of Anhui Province,School of Physics and Materials Science,Anhui University,Hefei 230601,China2Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province,School of Chemistry and Material Engineering,Chaohu University,Hefei 238000,China

    The magnetic field provided by magnetized SrFe12O19 particles in FeSi/SrFe12O19 composites is used to replace the applied transverse magnetic field,which successfully reduces the magnetic loss of the composites with minor reduction of permeability. This magnetic loss reduction mainly comes from the decrease in hysteresis loss,while the eddy current loss is basically unaffected. The hysteresis loss reduction in magnetized composites is believed to be due to the decrease in domain wall displacement caused by the increase in the average magnetic domain size in a DC magnetic field. This is an effective method for reducing the magnetic loss of soft magnetic composites with wide application potential, and there is no problem of increasing the cost and the volume of the magnetic cores.

    Keywords: soft magnetic composites,FeSi,SrFe12O19,magnetic loss

    1. Introduction

    Soft magnetic composites(SMCs)have wide applications in power electronics at kHz frequency band due to their relatively higher resistivity as ferrites and high saturation magnetization as metallic soft magnetic materials.[1–3]In power electronics,wide band gap(WBG)semiconductors enable the reduction of soft magnetic components,but none of the magnetic materials available today can fully unlock the potential of WBG devices.[4]In the problems of soft magnetic materials, too much core loss of SMCs at high frequencies is a key issue.

    In order to mitigate magnetic loss in SMCs cores, two approaches are often used in practice. One is to reduce the eddy current loss of SMCs by increasing the insulation between different soft metallic particles, including the surface oxidation,[5–7]insulating coating,[8–15]and the addition of various insulating agents,[16–24]which is proved to be an effective method to reduce magnetic loss in SMCs. The other is to reduce the hysteresis loss by increasing the permeability of SMCs[25,26]at the expense of deteriorating high frequency performance. There is a certain conflict between the two ways.For example, increasing the amount of insulating agent in SMCs is beneficial to reducing eddy current loss, but it will reduce the ratio of magnetic ingredient and increase the air gap in SMCs,which will cause a decrease in permeability and is not conducive to reducing hysteresis loss. It was reported that the hysteresis loss of SMCs can be reduced obviously by applying a transverse magnetic field in the cores.[27]This is an effective way independent of other methods of reducing losses of SMCs, however, the permanent magnets that provide the transverse field will increase the volume and cost of inductive components which use the SMCs cores. In order to overcome this shortcoming, it is proposed that introducing an internal magnetic field source in SMCs to replace external magnets is a possible approach to solve this problem. The high resistivity of SrFe12O19can be used as an insulating agent for SMCs,and its magnetic properties can also be beneficial to relatively increase the saturation magnetization of SMCs,but its permanent magnetic characteristics are not conducive to improving the permeability and reducing the hysteresis loss of SMCs.[28]At the same time,SrFe12O19ferrite particles can also be used as a magnetic field provider after magnetization. The advantage of FeSi soft magnetic composite is high saturation magnetization and low price, but the magnetic loss is relatively high. In this paper, experimental results of FeSi/SrFe12O19composites in self-bias magnetic field provided by magnetized SrFe12O19particles are reported.

    2. Experimental details

    Commercial FeSi powder and laboratory-prepared SrFe12O19(SrM) ferrite are used as raw materials. Microsphere FeSi with about 35-μm average particle sizes is mixed with a certain proportion of SrM ferrite with about 3-μm particle sizes and the mixtures are compacted into toroidal shape cores (outer/inner diameter: 26 mm/14 mm and height about 8 mm) at 1.2-GPa pressure. The details of the manufactureprocess, the microstructure and the basic magnetic properties of FeSi/SrM composite are reported in Ref. [28]. After annealed at 500°C for 2 hours in a vacuum,magnetic properties of the FeSi/SrM composite cores are measured by a BH/μAnalyzer (Iwatsu SY-8258) with the highest frequency 1-MHz and 1%tolerance. The same toroids are magnetized in a 1.2-MA/m magnetic field provided by an electromagnet, so that the permanent SrM particles in the FeSi/SrM composite can be magnetized to provide a magnetic field for the composite.Then magnetic properties of magnetized FeSi/SrM composites are measured again at the same measurement conditions.

    3. Results and discussion

    X-ray diffraction patterns of FeSi and SrM powder are shown in Fig.1,it can be found in Fig.1 that FeSi has a singlephase body-centered cubic structure, while SrM has a singlephase magnetoplumbite structure. Magnetic permeability of FeSi/SrM composites is measured to investigate the impact of magnetization on it. The AC field dependence of the permeability of FeSi/5.3 wt%SrM and FeSi/8.1 wt%SrM composite samples before and after magnetization measured at 50 kHz are shown in Fig. 2. It can be found in Fig. 2 that compared with the data before magnetization, the magnetic permeability after magnetization decreases by about 8% for two samples, which is similar to the results of applying a transverse magnetic field in SMCs.[27]Although the permeability of the FeSi/8.1 wt%SrM composite is about 30%lower than that of FeSi/5.3 wt%SrM sample,the experimental results of the two composites are very similar,and the relative reduction of permeability is also very close at the same magnetic field.

    Fig.1. XRD patterns of FeSi and SrFe12O19 powders.

    Magnetic induction dependence of magnetic loss of FeSi/5.3 wt%SrM and FeSi/8.1 wt%SrM composites before and after magnetization measured at 50 kHz are displayed in Fig. 3. It can be found that the magnetic loss of both composites decreases after magnetization,which indicated that the magnetization process can effectively reduce the magnetic loss of FeSi/SrM composites except for minor reducing magnetic permeability. This result is similar to the result of applying a transverse magnetic field to the SMCs,[27]indicating that the magnetic field provided by magnetized SrM particles in the composites has the same effect as the applied transverse field.Compared with the magnetic loss before magnetization, the relative loss reduction of FeSi/8.1 wt%SrM composite after magnetization is greater than that of FeSi/5.3 wt%SrM,which implied that SrM content increase in the composite is conducive to reduction of magnetic loss after magnetization.Considering that the increase of SrM ferrite content in FeSi/SrM composites will significantly reduce the magnetic permeability, as showed in Fig. 2, low permeability implies that more magnetic field energy is stored in the composite under the same magnetic induction,which will lead to an increase in the magnetic loss before magnetization. So there is optimal SrM content in FeSi/SrM composites that can achieve the lowest magnetic loss in the composites after magnetization.

    Fig.2. Variation of permeability versus magnetic field of FeSi/5.3 wt%SrM(a) and FeSi/8.1 wt%SrM (b) composites measured at 50 kHz before and after magnetization.

    Fig. 3. Variation of magnetic loss versus magnetic induction of FeSi/5.3 wt%SrM (a) and FeSi/8.1 wt%SrM (b) composites measured at 50 kHz before and after magnetization.

    In order to clarify the influence of the magnetization process on different kinds of magnetic losses, the frequency dependence of magnetic loss of FeSi/SrM composites before and after magnetization is also measured atBm=50 mT.Based on the different frequency dependence of hysteresis loss and eddycurrent loss, these two kinds of losses can be separated from the measured total magnetic loss[29,30]

    HereKHandCare proportionality constants,fthe frequency,Bmthe magnetic induction magnitude,dthe average size of eddy current loop andρthe electrical resistivity of the FeSi alloy. InPcv/fplottedversusfrequency figure,PhandPeare given by the zero frequency intercept and the linear part,respectively.[29]The measuredPcv/fdata plottedversusfrequency of two FeSi/SrM composites before and after magnetization are shown in Fig.4,and two conclusions can be clearly drawn from the data in the figure. One is that compared with before magnetization,magnetic loss of the FeSi/SrM composites after magnetization has been significantly reduced,and as added SrM content increases, the relative decrease of magnetic loss becomes more obvious, which is consistent with the results in Fig. 3. The other is that the data in Fig. 4 fit well with linearity, which is consistent with Eq. (1). The fitting parameters are listed in Table 1. From the fitting parameters,it can be found that the linearity slope basically did not change before and after magnetization for the same composite,indicating that the magnetization process does not change the eddy current loss characteristics of FeSi/SrM composites.However,zero frequency intercept of FeSi/SrM composite after magnetization is less than that of before magnetization for the same composite,which implied that the hysteresis loss decreases after magnetization process. Comparing the change in the hysteresis loss of FeSi/SrM composite with different SrM ferrite contents after magnetization, the reduction ratio of FeSi/5.3 wt%SrM composite is about 24.5%, and the reduction ratio of FeSi/8.1 wt%Sr M is about 30%. These results in Fig.4 are also quite similar to the experimental results of SMCs in transverse magnetic field,[27]which indicates that the magnetic field provided by the magnetized permanent ferrite particles in SMCs plays the same role as the transverse magnetic field.From the point view of application,it has obvious advantages to replace the applied transverse magnetic field with the self-biased magnetic field provided by the magnetized permanent ferrite particles in SMCs,at least the cost and volume of the SMCs cores have been effectively controlled.From the fitting parameters of the data in Fig.4, it should be pointed out that the eddy current loss coefficient decreases obviously with the increase of the SrM content in SMCs,which is inconsistent with the result in Ref.[28]that gives very similar eddy current loss coefficient for FeSi/5.3 wt%SrM and FeSi/8.1 wt%SrM composites. Of course,the annealing temperature of SMCs in this paper(500°C)is higher than that in Ref.[28](220°C),which leads to a slight increase in permeability and an obvious decrease in magnetic loss,accompanied by differences in eddy current loss coefficients for SMCs with different SrM content. This result implies that it is important to improve the magnetic properties of SMCs with a proper annealing process.

    Table 1. Linear fitting parameters of FeSi/SrM composites.

    Fig. 4. Variation of magnetic loss per cycle versus frequency of FeSi/5.3 wt%SrM (a) and FeSi/8.1 wt%SrM (b) composites measured at 50 mT before and after magnetization.

    Fig.5.Variation of quality factor versus frequency of FeSi/5.3 wt%SrM(a)and FeSi/8.1 wt%SrM(b)composites measured at 50 mT before and after magnetization.

    In the magnetic loss measurement, a fixed magnetic induction magnitude is used.After magnetization,magnetic permeability of the FeSi/SrM cores decreases, resulting in more magnetic field energy stored in the cores under the same magnetic induction,and the measured power loss is overestimated.In this circumstance, it may be more reasonable to compare relative losses. The frequency dependence of quality factorQof FeSi/SrM composites before and after magnetization measured at the same conditions as given in Fig. 4 is shown in Fig. 5. It can be found in Fig. 5 thatQvalue of FeSi/SrM composites has been significantly improved after magnetization. At the same time,it can also be found that the increase ofSrM content in FeSi/SrM composites is conducive to improving the quality factor of the composites. The relative quality factor increment of two FeSi/SrM composites after magnetization is displayed in Fig.6,it can be found that the quality factor increment of FeSi/8.1 wt%SrM composite is about 1.5 times of FeSi/5.3 wt%SrM.The quality factor increment shows a decreasing trend with increasing frequency,because the ratio of hysteresis loss in the total loss decreases with increasing frequency, and the magnetization process only reduces the hysteresis loss of the composite.

    It should be emphasized that the total power loss of FeSi/8.1 wt%SrM composite is bigger than that of FeSi/5.3 wt%SrM core at the same measurement condition before magnetization, just as shown in Figs. 3 and 4. But the quality factor of the former is also bigger than that of the latter at the same condition, as shown in Fig. 5. The evaluation of SMCs under different parameters is different because of the difference in permeability. Therefore, the composite properties are sometimes difficult to distinguish the pros and cons,but more suitable for application circumstance.FeSi/5.3 wt%SrM core with relatively low hysteresis loss and high eddy current loss,is more suitable for low frequency and high magnetic induction circumstance,and FeSi/8.1 wt%SrM composite with relatively high hysteresis loss and low eddy current loss, is more advantageous applied at high frequency and low magnetic induction condition. After magnetization,both permeability and magnetic loss of the composite are reduced, which may be closer to meeting the requirements of WBG devices for magnetic cores.

    Fig. 6. Comparison of quality factor increment versus frequency of FeSi/5.3 wt%SrM and FeSi/8.1 wt%SrM composites measured at 50 mT after magnetization.

    The direction of the applied transverse magnetic field in SMCs is determined,and it can be considered that the domain wall displacement and the spin rotation in the direction of the transverse field are completely locked,resulting in a reduction in permeability and hysteresis loss.[27]However, this locking requires SMCs to be magnetized to saturation in the direction of the transverse magnetic field. The magnetic field provided by magnetized SrM particles in the FeSi/SrM composites obviously no longer has a definite direction and cannot magnetize FeSi/SrM composite to saturation in any direction,so the original explanation is not suitable for FeSi/SrM composite.Considering that the application of a DC magnetic field to soft magnetic material would change the magnetic domain structure of the magnetic materials,the volume of the magnetic domain parallel to the direction of DC field increases,while the anti-parallel magnetic domain decreases or even disappears.As a result, the average volume of the magnetic domains in soft magnetic material increases and the number of magnetic domain walls decreases. In this way, permeability caused by the domain walls displacement and the hysteresis loss caused by the irreversible domain walls displacement will decrease.As for the inconsistency of the relative reduction ratio of permeability and magnetic loss after magnetization,it can be attributed to the distributed air gaps in the composites.[27]On the other hand, due to the volume reduction of the anti-parallel magnetic domain, the increases in the ratio of domain wall energy to magnetic domain energy will cause spin rotation to occur more easily, and the permeability contributed by the spin rotation and the hysteresis loss caused by the irreversible spin rotation increase. The domain wall displacement dominates the contribution of permeability and hysteresis loss at low magnetic induction,it was also observed in the experiment that the permeability and magnetic loss of FeSi/SrM composites atBm=50 mT decreased significantly after magnetization,which is qualitatively consistent with the above analysis.As the magnetic induction increases, the contribution of spin rotation will gradually increase,it is possible that under a very high magnetic induction,the loss characteristic has a crossover behavior and magnetic loss changes from decreasing to an increase after magnetization.

    4. Conclusions

    Magnetic properties of FeSi/SrM composites before and after magnetization are investigated in this paper. Experimental results found that the magnetic field provided by SrM ferrite particles in the magnetized composite instead of the transverse magnetic field provided by the external magnets can also effectively reduce the power loss of the composites at the expense of minor reduction of permeability. The power loss reduction of FeSi/SrM composites after magnetization is due primarily to the reduction of hysteresis loss,and the eddy current loss is basically not affected by the magnetization process.The relative reduction of power loss after magnetization increases with increase of SrM ferrite content in the composite,however,increasing SrM ferrite content in the composite will also increase the power loss of the composite before magnetization,there is an optimal SrM ferrite content in the composite which has lowest power loss after magnetization. The possible mechanism of the hysteresis loss reduction in FeSi/SrMcomposites after magnetization is discussed,and it is believed that the existence of the DC magnetic field caused the increase of the average magnetic domain size in the composites,which leads to a decrease in the number of domain walls and a weakening of domain wall displacement.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51872004 and 51802002), the Key Program of the Education Department of Anhui Province,China(Grant No.KJ2019ZD03),and the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Specials Environments (Grant No.6142905202112).

    久久精品亚洲av国产电影网| 激情在线观看视频在线高清 | 一本大道久久a久久精品| 国产亚洲av高清不卡| 丝袜喷水一区| 亚洲av日韩在线播放| 美女主播在线视频| 少妇猛男粗大的猛烈进出视频| 日韩中文字幕欧美一区二区| 国产精品国产av在线观看| 日韩欧美免费精品| 精品欧美一区二区三区在线| 超碰成人久久| 亚洲av成人不卡在线观看播放网| 免费高清在线观看日韩| 桃花免费在线播放| 搡老熟女国产l中国老女人| 欧美亚洲日本最大视频资源| 国产在线视频一区二区| 日本av免费视频播放| 欧美大码av| 黄色成人免费大全| 免费少妇av软件| 99精国产麻豆久久婷婷| 亚洲国产欧美在线一区| 欧美性长视频在线观看| 欧美黑人精品巨大| a在线观看视频网站| 亚洲国产中文字幕在线视频| 欧美精品啪啪一区二区三区| av欧美777| 国产成人精品无人区| 可以免费在线观看a视频的电影网站| 大片免费播放器 马上看| 飞空精品影院首页| 人人妻人人澡人人爽人人夜夜| 麻豆国产av国片精品| 久久人妻av系列| 亚洲精品成人av观看孕妇| 80岁老熟妇乱子伦牲交| 两性夫妻黄色片| 91大片在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品久久成人aⅴ小说| 国产福利在线免费观看视频| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 男女午夜视频在线观看| 欧美激情高清一区二区三区| 国产精品免费大片| 欧美激情久久久久久爽电影 | 精品午夜福利视频在线观看一区 | 国产在线视频一区二区| 无人区码免费观看不卡 | 亚洲性夜色夜夜综合| 国产极品粉嫩免费观看在线| xxxhd国产人妻xxx| 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产成人一精品久久久| 黄色视频不卡| 人人妻人人澡人人看| 久久 成人 亚洲| 999久久久国产精品视频| 亚洲精品美女久久av网站| 两性夫妻黄色片| 午夜免费鲁丝| 午夜免费成人在线视频| 国产精品av久久久久免费| 国产麻豆69| 美女福利国产在线| 美女午夜性视频免费| 亚洲精品中文字幕一二三四区 | 久久亚洲精品不卡| 在线观看免费日韩欧美大片| 看免费av毛片| 国产区一区二久久| 国产单亲对白刺激| 一级a爱视频在线免费观看| 两个人免费观看高清视频| 久久天躁狠狠躁夜夜2o2o| 黑人猛操日本美女一级片| 侵犯人妻中文字幕一二三四区| 国产主播在线观看一区二区| 制服诱惑二区| 亚洲精品av麻豆狂野| 亚洲全国av大片| 露出奶头的视频| 色婷婷av一区二区三区视频| 午夜激情av网站| 人妻 亚洲 视频| 久久精品熟女亚洲av麻豆精品| 满18在线观看网站| 欧美国产精品一级二级三级| 亚洲欧美激情在线| 美女高潮到喷水免费观看| 午夜老司机福利片| 一边摸一边抽搐一进一出视频| 国产又色又爽无遮挡免费看| 在线观看免费日韩欧美大片| 精品卡一卡二卡四卡免费| 欧美+亚洲+日韩+国产| 欧美激情极品国产一区二区三区| 亚洲伊人久久精品综合| 久久久久网色| 日韩欧美一区视频在线观看| 青草久久国产| netflix在线观看网站| 久久久国产欧美日韩av| 电影成人av| 亚洲欧洲精品一区二区精品久久久| 国产亚洲av高清不卡| 99国产精品免费福利视频| 精品国产乱码久久久久久小说| 久久国产精品人妻蜜桃| 悠悠久久av| 露出奶头的视频| 一本色道久久久久久精品综合| 老司机深夜福利视频在线观看| 午夜福利欧美成人| 亚洲黑人精品在线| 亚洲情色 制服丝袜| 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 国产熟女午夜一区二区三区| 国产精品影院久久| 亚洲精品成人av观看孕妇| 精品人妻1区二区| 欧美黄色片欧美黄色片| 少妇裸体淫交视频免费看高清 | 久久免费观看电影| 国产成人啪精品午夜网站| 午夜福利影视在线免费观看| 在线观看www视频免费| 热99久久久久精品小说推荐| av超薄肉色丝袜交足视频| 成人18禁在线播放| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看的高清视频| 久久免费观看电影| 99热网站在线观看| 丰满少妇做爰视频| 波多野结衣av一区二区av| 久久中文字幕人妻熟女| 麻豆国产av国片精品| 欧美精品av麻豆av| 一本久久精品| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| 国产成人免费观看mmmm| av不卡在线播放| 妹子高潮喷水视频| 一二三四社区在线视频社区8| 电影成人av| aaaaa片日本免费| 制服人妻中文乱码| 91九色精品人成在线观看| 91九色精品人成在线观看| 国产亚洲一区二区精品| 99国产综合亚洲精品| 亚洲精品国产一区二区精华液| 欧美激情久久久久久爽电影 | 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品古装| 国产三级黄色录像| 国产精品久久电影中文字幕 | 男人舔女人的私密视频| 99国产精品一区二区蜜桃av | 国产亚洲一区二区精品| 精品国产乱码久久久久久男人| 欧美成人免费av一区二区三区 | 欧美 日韩 精品 国产| 久久中文字幕一级| 久久99热这里只频精品6学生| 午夜免费成人在线视频| 国产精品偷伦视频观看了| 亚洲中文日韩欧美视频| 国产免费av片在线观看野外av| 国产熟女午夜一区二区三区| 精品福利观看| 日本黄色日本黄色录像| 夫妻午夜视频| 18禁观看日本| 中亚洲国语对白在线视频| 啦啦啦中文免费视频观看日本| 999久久久国产精品视频| 国产免费福利视频在线观看| 精品国产乱子伦一区二区三区| 人人妻,人人澡人人爽秒播| 国产成人精品久久二区二区91| 国产精品一区二区免费欧美| 国产日韩欧美在线精品| 欧美人与性动交α欧美精品济南到| 丰满少妇做爰视频| 十八禁网站网址无遮挡| 熟女少妇亚洲综合色aaa.| 久久婷婷成人综合色麻豆| 精品国产乱码久久久久久男人| 丰满人妻熟妇乱又伦精品不卡| 黄色 视频免费看| 久久人妻熟女aⅴ| 最近最新中文字幕大全电影3 | 国产一区二区三区视频了| 成在线人永久免费视频| 精品一区二区三区av网在线观看 | 男人操女人黄网站| 精品福利观看| 女性生殖器流出的白浆| 最近最新中文字幕大全电影3 | 日韩成人在线观看一区二区三区| 日本av免费视频播放| 亚洲自偷自拍图片 自拍| 日韩欧美三级三区| 国产区一区二久久| 狠狠精品人妻久久久久久综合| 俄罗斯特黄特色一大片| 怎么达到女性高潮| 国产日韩欧美在线精品| 国产成人一区二区三区免费视频网站| 国产精品熟女久久久久浪| 99精品欧美一区二区三区四区| 两人在一起打扑克的视频| 又紧又爽又黄一区二区| 色94色欧美一区二区| av一本久久久久| 韩国精品一区二区三区| 丝袜人妻中文字幕| 热99国产精品久久久久久7| 91精品三级在线观看| 欧美成人免费av一区二区三区 | 97在线人人人人妻| 视频在线观看一区二区三区| 高清欧美精品videossex| 一本一本久久a久久精品综合妖精| 1024视频免费在线观看| 国产成人免费无遮挡视频| 男女午夜视频在线观看| 黄色视频,在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影 | 91精品国产国语对白视频| 久热这里只有精品99| 久久久精品国产亚洲av高清涩受| 超碰97精品在线观看| 黄频高清免费视频| 精品第一国产精品| 考比视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲 欧美一区二区三区| 精品视频人人做人人爽| 菩萨蛮人人尽说江南好唐韦庄| 一级黄色大片毛片| 亚洲av日韩在线播放| 久久国产亚洲av麻豆专区| 国产精品国产av在线观看| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| 亚洲国产欧美一区二区综合| 午夜福利影视在线免费观看| 露出奶头的视频| 两个人看的免费小视频| 国产在线观看jvid| 操美女的视频在线观看| 亚洲全国av大片| 国产成人影院久久av| 久久精品亚洲精品国产色婷小说| 久久久国产精品麻豆| 久久人妻av系列| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 亚洲色图av天堂| 久久中文字幕人妻熟女| 看免费av毛片| 欧美黄色片欧美黄色片| 国产人伦9x9x在线观看| 久热这里只有精品99| 欧美黄色淫秽网站| 亚洲伊人色综图| 成人黄色视频免费在线看| 老熟妇乱子伦视频在线观看| 满18在线观看网站| 不卡av一区二区三区| 国产精品.久久久| 久久国产精品人妻蜜桃| 精品少妇黑人巨大在线播放| 午夜成年电影在线免费观看| av在线播放免费不卡| 亚洲国产av新网站| 日韩制服丝袜自拍偷拍| 国产欧美日韩一区二区精品| 国产亚洲av高清不卡| 欧美激情高清一区二区三区| 天天躁日日躁夜夜躁夜夜| 高清视频免费观看一区二区| 91大片在线观看| 久久精品熟女亚洲av麻豆精品| 日本vs欧美在线观看视频| 国产精品久久久久久精品古装| 老鸭窝网址在线观看| 欧美日韩国产mv在线观看视频| 国产精品国产av在线观看| 亚洲综合色网址| 亚洲伊人色综图| 最黄视频免费看| 天堂俺去俺来也www色官网| 久久久久久久精品吃奶| 国产精品熟女久久久久浪| 国产精品自产拍在线观看55亚洲 | 热re99久久精品国产66热6| 国产精品久久久久久人妻精品电影 | 国产日韩欧美亚洲二区| 波多野结衣一区麻豆| 麻豆乱淫一区二区| 国产成人精品无人区| 免费一级毛片在线播放高清视频 | 久久久久久久久免费视频了| 久久中文看片网| 欧美国产精品一级二级三级| 国产不卡一卡二| e午夜精品久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 无遮挡黄片免费观看| svipshipincom国产片| 国产日韩欧美视频二区| 午夜福利欧美成人| 欧美日韩成人在线一区二区| 王馨瑶露胸无遮挡在线观看| 国产精品香港三级国产av潘金莲| 亚洲av第一区精品v没综合| 欧美久久黑人一区二区| 涩涩av久久男人的天堂| 汤姆久久久久久久影院中文字幕| 黄色毛片三级朝国网站| 丁香欧美五月| 在线观看免费日韩欧美大片| 美女福利国产在线| 一进一出好大好爽视频| 两人在一起打扑克的视频| 亚洲国产欧美日韩在线播放| 香蕉丝袜av| 欧美成人免费av一区二区三区 | 久久国产精品大桥未久av| bbb黄色大片| av不卡在线播放| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 黄色怎么调成土黄色| 人人妻,人人澡人人爽秒播| 性色av乱码一区二区三区2| 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 精品国内亚洲2022精品成人 | 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 国产不卡av网站在线观看| 亚洲国产中文字幕在线视频| av视频免费观看在线观看| 久久久国产一区二区| 国产又爽黄色视频| 成人国语在线视频| 啦啦啦免费观看视频1| 91麻豆av在线| 久久精品aⅴ一区二区三区四区| 大片电影免费在线观看免费| 精品人妻在线不人妻| 国产亚洲欧美精品永久| avwww免费| 777米奇影视久久| 国产xxxxx性猛交| 婷婷丁香在线五月| 天天影视国产精品| 熟女少妇亚洲综合色aaa.| 久久精品熟女亚洲av麻豆精品| av又黄又爽大尺度在线免费看| 一个人免费看片子| 成人国语在线视频| 欧美亚洲日本最大视频资源| 亚洲av第一区精品v没综合| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三区视频在线观看免费 | 涩涩av久久男人的天堂| 18在线观看网站| 日韩免费高清中文字幕av| 久久av网站| 精品久久蜜臀av无| 亚洲精品国产区一区二| 亚洲欧美一区二区三区黑人| 国产av国产精品国产| 国产不卡一卡二| 午夜老司机福利片| 成人特级黄色片久久久久久久 | 成年女人毛片免费观看观看9 | 一区二区日韩欧美中文字幕| 搡老乐熟女国产| 黄片小视频在线播放| 国产精品一区二区免费欧美| 国产精品九九99| 丝袜美足系列| 中文字幕人妻丝袜制服| 成年版毛片免费区| 桃红色精品国产亚洲av| 悠悠久久av| 日本一区二区免费在线视频| 99国产极品粉嫩在线观看| 成人国产av品久久久| 久久国产精品大桥未久av| 黄片大片在线免费观看| 99久久国产精品久久久| 国产日韩欧美视频二区| 亚洲欧美一区二区三区黑人| 久久久久久久久免费视频了| 国产不卡一卡二| √禁漫天堂资源中文www| 欧美变态另类bdsm刘玥| 天堂8中文在线网| 捣出白浆h1v1| 中文字幕高清在线视频| 天堂中文最新版在线下载| 国产精品久久久久久精品电影小说| 男女下面插进去视频免费观看| 欧美日韩精品网址| 中文欧美无线码| 亚洲国产成人一精品久久久| 亚洲免费av在线视频| 亚洲美女黄片视频| 夫妻午夜视频| 十八禁网站免费在线| 国产免费视频播放在线视频| 国产精品av久久久久免费| 国产精品熟女久久久久浪| 久久免费观看电影| 黄色 视频免费看| 午夜老司机福利片| 巨乳人妻的诱惑在线观看| 亚洲国产中文字幕在线视频| 国产精品二区激情视频| 精品卡一卡二卡四卡免费| 国产伦人伦偷精品视频| 变态另类成人亚洲欧美熟女 | 欧美乱码精品一区二区三区| 男女下面插进去视频免费观看| 国产精品免费视频内射| 成人黄色视频免费在线看| 男女边摸边吃奶| 天堂俺去俺来也www色官网| 最黄视频免费看| av天堂在线播放| 色综合欧美亚洲国产小说| 久久久精品免费免费高清| 正在播放国产对白刺激| 日本黄色日本黄色录像| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦在线免费观看视频4| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 天堂动漫精品| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 高清毛片免费观看视频网站 | 人妻一区二区av| 青青草视频在线视频观看| 亚洲精品美女久久久久99蜜臀| 丰满迷人的少妇在线观看| 91麻豆精品激情在线观看国产 | 亚洲全国av大片| av福利片在线| 亚洲专区中文字幕在线| 99热国产这里只有精品6| 18禁观看日本| 亚洲人成电影免费在线| 好男人电影高清在线观看| 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 久久香蕉激情| 大型黄色视频在线免费观看| 国产成人一区二区三区免费视频网站| 婷婷成人精品国产| 最黄视频免费看| 国产成人欧美| 成人黄色视频免费在线看| 久久久久久人人人人人| 三级毛片av免费| 三上悠亚av全集在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 成人特级黄色片久久久久久久 | 欧美大码av| 亚洲视频免费观看视频| 多毛熟女@视频| 久久亚洲精品不卡| 法律面前人人平等表现在哪些方面| avwww免费| 久久久久精品国产欧美久久久| 日韩欧美一区视频在线观看| 日韩中文字幕视频在线看片| 天天躁狠狠躁夜夜躁狠狠躁| 黄色片一级片一级黄色片| 亚洲成人免费电影在线观看| 国产免费福利视频在线观看| 一区二区三区乱码不卡18| 中文字幕人妻丝袜一区二区| 亚洲 欧美一区二区三区| 91精品三级在线观看| 两个人看的免费小视频| 热99久久久久精品小说推荐| 国产成人啪精品午夜网站| av视频免费观看在线观看| 脱女人内裤的视频| 色94色欧美一区二区| 老司机深夜福利视频在线观看| 亚洲国产欧美一区二区综合| 热re99久久精品国产66热6| 桃花免费在线播放| 亚洲第一青青草原| 咕卡用的链子| 桃红色精品国产亚洲av| 精品亚洲成国产av| 欧美久久黑人一区二区| 日韩欧美免费精品| 精品一区二区三区视频在线观看免费 | 91老司机精品| 国产精品98久久久久久宅男小说| 亚洲一卡2卡3卡4卡5卡精品中文| 国产在线观看jvid| 看免费av毛片| cao死你这个sao货| 亚洲全国av大片| 亚洲欧洲日产国产| av有码第一页| 亚洲欧美精品综合一区二区三区| 一进一出抽搐动态| 午夜福利一区二区在线看| 久久国产亚洲av麻豆专区| 亚洲av欧美aⅴ国产| 999久久久国产精品视频| 亚洲国产中文字幕在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 少妇 在线观看| 一进一出抽搐动态| 午夜福利一区二区在线看| 国产成人精品久久二区二区免费| 亚洲国产欧美一区二区综合| 老熟女久久久| av天堂久久9| 国产av精品麻豆| 一区二区三区激情视频| 狂野欧美激情性xxxx| 一二三四社区在线视频社区8| 不卡av一区二区三区| 麻豆国产av国片精品| 亚洲国产看品久久| 少妇猛男粗大的猛烈进出视频| 日韩视频一区二区在线观看| 一本大道久久a久久精品| 欧美在线一区亚洲| 好男人电影高清在线观看| 法律面前人人平等表现在哪些方面| 热99久久久久精品小说推荐| 黄色怎么调成土黄色| 亚洲九九香蕉| 建设人人有责人人尽责人人享有的| 成人国产av品久久久| 国产aⅴ精品一区二区三区波| 大陆偷拍与自拍| 日韩一区二区三区影片| 桃花免费在线播放| 免费在线观看完整版高清| 99国产精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 精品亚洲成国产av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲自偷自拍图片 自拍| 亚洲性夜色夜夜综合| 老熟妇乱子伦视频在线观看| 亚洲人成电影观看| 蜜桃国产av成人99| 精品国产一区二区久久| 色在线成人网| 亚洲精品国产一区二区精华液| 免费少妇av软件| 高清av免费在线| 人妻一区二区av| 91九色精品人成在线观看| 久久精品国产亚洲av高清一级| 欧美人与性动交α欧美软件| 最近最新免费中文字幕在线| 免费在线观看影片大全网站| 久久久久久亚洲精品国产蜜桃av| 免费黄频网站在线观看国产| 日韩中文字幕视频在线看片| 午夜福利乱码中文字幕| 亚洲欧洲精品一区二区精品久久久| 人妻一区二区av| 国产av国产精品国产| 丝袜美腿诱惑在线| 两性午夜刺激爽爽歪歪视频在线观看 | 蜜桃在线观看..| 黄片播放在线免费| 91成年电影在线观看| 国产精品久久久久成人av| 电影成人av| 亚洲国产欧美日韩在线播放| 国产精品美女特级片免费视频播放器 | 看免费av毛片| 国产精品久久久久久人妻精品电影 | 露出奶头的视频| 国产精品1区2区在线观看. | 国产区一区二久久| 99re6热这里在线精品视频| 久久香蕉激情| 国产精品久久久人人做人人爽| 黑人操中国人逼视频|