• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution

    2022-02-24 08:59:12HafizAliRamzanImranArshadNicolaMorleyHassanAbbasMohammadYusufAttaUrRehmanKhalidMahmoodAdnanAliNasirAminandAjazunNabi
    Chinese Physics B 2022年2期

    Hafiz T.Ali M.Ramzan M Imran Arshad Nicola A.Morley M.Hassan Abbas Mohammad YusufAtta Ur Rehman Khalid Mahmood Adnan Ali Nasir Amin and M.Ajaz-un-Nabi

    1Department of Mechanical Engineering,College of Engineering,Taif University,Taif 21944,Saudi Arabia2Department of Physics,Government College University,Faisalabad,Pakistan3Department of Materials Science and Engineering,University of Sheffield,Sir Robert Hadfield Building,Mapping St.,Sheffield,S1 3JD,UK4Department of Clinical Pharmacy,College of Pharmacy,Taif University,Taif 21944,Saudi Arabia

    We investigate the impact of Ni insertion on the structural, optical, and magnetic properties of Ba0.8La0.2Fe12?xNixO19 hexaferrites (Ni substituted La-BaM hexaferrites). Samples were prepared using the conventional co-precipitation method and sintered at 1000 °C for 4 hours to assist the crystallization process. An analysis of the structure of the samples was carried out using an x-ray diffraction (XRD) spectrometer. The M-type hexagonal structure of all the samples was confirmed using XRD spectra. The lattice parameters a and c were found to be in the ranges of 5.8925±0.001 nm—5.8952±0.001 nm and 23.2123±0.001 nm—23.2219±0.001 nm,respectively. The M-type hexagonal nature of the prepared samples was also indicated by the presence of corresponding FT-IR bands and Raman modes in the FT-IR and Raman spectra, respectively. EDX results confirmed the successful synthesis of the samples according to the required stoichiometric ratio. A UV-vis spectrometer was used to record the absorption spectra of the prepared samples in the wavelength range of 200 nm—1100 nm. The optical energy bandgap of the samples was found to be in the range of 1.21 eV—3.39 eV. The M—H loops of the samples were measured at room temperature at an applied magnetic field range of 0 kOe—60 kOe. A high saturation magnetization of 99.92 emu/g was recorded in the sample with x=0 at a microwave operating frequency of 22.2 GHz. This high value of saturation magnetization is due to the substitution of La3+ ions at the spin-up (12k, 2a, and 2b) sites. The Ni substitution is proven to be a potential candidate for the tuning of the optical and magnetic parameters of M-type hexaferrites. Therefore, we suggest that the prepared samples are suitable for use in magneto-optic applications.

    Keywords: M-type hexaferrite,nanostructured materials,magnetic properties,optical properties

    1. Introduction

    In recent years, hexagonal magnetic nanoparticles have attracted great scientific interest due to their potential for use in various technological applications such as permanent magnets, microwave absorbers, highdensity magnetic media,magneto-optic recording media, and stealth technology.[1—4]Hexagonal ferrites are divided into five sub-categories based on their crystal structure and chemical formula: M-type(AFe12O19), W-type (AFe16O27), X-type (AFe28O46), Y-type(AFe12O22), and Z-type (AFe24O41), whereAis the divalent cation such as Ba2+, Sr2+, Pb2+, Ca2+.[5—7]Among these, M-type hexaferrites have gained more attention due to their distinguished properties, such as their very high magnetic anisotropy,higher coercivity,higher corrosion resistance,and high thermal and chemical stability.[8—11]Barium M-type(BaM)hexaferrites are ferrimagnetic materials with the chemical formula BaFe12O19and the space groupP63/mmc. They consist of tetrahedral (4f1), octahedral (12k, 4f2, and 2a),and hexahedral (2b) sites. Fe3+ions at the 4f1and 4f2sites(eight ions per unit cell) exhibit a spin-down character and Fe3+ions at the 12k, 2a, and 2bsites (sixteen ions in a unit cell)exhibit a spin-up character.[12,13]The substitution of various magnetic and non-magnetic ions at these sites can modify the structural, magnetic, and other properties of BaM ferrites. Some examples of substitution at different sites of the hexaferrite structure are divalent ion (A2+) substitution,[14,15]trivalent ion(A3+)substitution,[16,17]and tetravalent ion(A4+)substitution.[14,18]To achieve the best hexaferrite properties,it is very important to optimize the quantity and type of the substituent cations. Various reports have been published on the topic of modifying the microstructure, electrical, dielectric, optical, and magnetic properties of BaM hexaferrite by replacing the Fe3+and Ba3+cations with divalent and trivalent cations. Recently, Cerneaet al.[9]reported the magnetic properties of Ni2+substituted BaFe12O19hexaferrite.They observed a decreasing trend in the coercivity, retentivity, and maximum energy product with an increase in Ni2+.Iqbalet al.[19]studied the effect of Pr—Ni substitution in the crystal lattice of BaSr hexaferrite. They reported an increase in the electrical resistivity of the prepared samples with an increase in the Ni content. Beheraet al.[20]also investigated the effect of Ni2+incorporation in the lattice matrix ofBaFe12O19synthesized by the sol—gel method. They found a reduction in the saturation magnetization from 68.16 emu/g to 58.99 emu/g when the Ni2+content (x) increased from 0 to 0.5, and an increase in the ferrimagnetic transition temperature (TC) was observed. Guneret al.[21]reported the synthesis of Bi and La doped BaM hexaferrite by the sol-gel autocombustion method. They studied the dependence of the magnetic properties of BaFe12O19on the concentrations of various dopants such as La, Bi, and Y. They reported the saturation magnetization and coercivity of the prepared samples in the range of 53.69 emu/g—67.42 emu/g and 3.812×105A/m—2.177×105A/m, respectively. Some other reports describe attempts to modify the structural, electrical, optical, or magnetic properties of BaM by doping with Ni2+, La3+, and the co-doping of these cations.[19,22—25]However,a detailed study exploring the impact of Ni2+doping on the structural, optical, and magnetic properties of La-BaM hexaferrites is still needed. High coercivity, moderate saturation magnetization,and low cost are all advantages of these materials. The objective of this work is to provide a detailed study of the impact of Ni2+substitution in La-BaM hexaferrites. A series of samples with the chemical formula Ba0.8La0.2Fe12?xNixO19(Ni-doped BL) hexaferrites was prepared via the co-precipitation route.The co-precipitation method was chosen due to its simplicity,low cost, normal temperature, reduced duration, and the homogeneity of prepared nanoparticles.[26,27]The prepared samples were investigated using different techniques including xray diffraction (XRD), energy dispersive x-ray (EDX) spectroscopy,Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,UV-vis spectroscopy,and vibrating sample magnetometry(VSM).

    2. Experimental details

    2.1. Synthesis

    In this study, Ba0.8La0.2Fe12?xNixO19(x=0,0.1,0.2,0.3,0.4,0.5) ferrites were prepared by the coprecipitation method. The starting materials BaCl2·2H2O,Ni(NO3)2·6H2O,Fe(NO3)3·9H2O,and La(NO3)3·6H2O were purchased from Aldrich and used as received. The required amounts of these chemicals were used to prepare a homogeneous solution in deionized water according to the required stoichiometric ratios. The solution was stirred magnetically on a hotplate at a temperature 70°C until the formation of precipitates occurred. The pH of the solution was maintained at 11 during the precipitation process by adding NaOH dropwise. The samples were placed in a water bath for 12 hours at 90°C to complete the digestion process. The precipitates were laid down at the bottom of the beakers. These precipitates were collected and cleaned with DI water and ethanol to remove impurities. The drying of the washed precipitates was accomplished by placing them in the oven for 15 hours at 110°C. The dried precipitates were then ground using a mortar and pestle to obtain fine powder samples. The samples were sintered at 1000°C in a muffle furnace for four hours to assist the crystallization process. The cooling was done at a very slow rate(~1.4°C)to avoid the development of pores.

    2.2. Characterization

    A phase and microstructure analysis of the sintered samples was carried out using an x-ray diffractometer (D8 Advance,Bruker),with CuKαas the x-ray source. The diffraction patterns were recorded in the 2θrange of 20°—60°. An FT-IR spectrometer (Spectrum 2, PerkinElmer) was used to obtain the infrared spectra. An EDX spectrometer was used to determine the elemental composition of the prepared samples.The Raman spectra were recorded in the wavenumber range of 150 cm?1—800 cm?1using a Raman spectrometer.The optical energy bandgap values were determined using a UV-Vis spectrometer(double beam,Lambda 25,PerkinElmer). The magnetic character of the sintered samples was studied by recordingM—Hloops at room temperature using a vibrating sample magnetometer(Lakeshore-7407).

    3. Results and discussion

    3.1. Phase analysis

    The XRD spectra of the synthesized Ni-doped La-BaM hexaferrites, as shown in Fig. 1, were recorded at 300 K.A comparison of the XRD patterns revealed that all the labeled peaks were well-matched with the JCPDS data (card#00-051-1879) for BaM hexaferrites, and that no extra peaks were observed. This confirms the formation of a single-phase magneto-plumbite structure with the space groupP63/mmcto a very high accuracy and without any defects or impurity phase. The various crystal structure parameters including the lattice constants (a&c),[28]crystallite size, unit cell volume,[8]x-ray density,[26]and dislocation density[29,30]are calculated utilizing the indexed XRD patterns; the calculated parameters are presented in Table 1. From Fig.2,it can be observed that the lattice constantaincreased with an increased Ni2+ion content, andcalso increased with the addition of doping except atx=0.3. It can also be seen in Fig. 2 that the unit cell volume (V) was enhanced by the substitution of dopant ions. This increase is attributed to the difference in the ionic radii of Ni2+(0.69)and Fe3+(0.64).[20]The average crystallite size of the prepared nanoparticles was found to be in the range of 25.2±0.1 nm—28.5±0.1 nm and showed a decreasing trend with an increase in the Ni2+ion concentration. The calculated x-ray density of the samples was found to lie in the range of 5.144 g/cm3—5.310 g/cm3. The dislocation density of a material is inversely proportional to the square of the crystallite size and provides information about the strength of the material.[29,30]The calculated values of the dislocation density of the prepared nanoparticles revealed that the sample withx=0.1 had the minimum value of dislocation density.

    Table 1. Concentrations of Ni2+ and calculated structural parameters of Ba0.8La0.2Fe12?xNixO19 hexaferrites.

    Fig.1. XRD patterns of the synthesized Ba0.8La0.2Fe12?xNixO19 hexaferrite powders.

    Fig. 2. Plot of the lattice parameters (a & c) and unit cell volume (V) as a function of the Ni2+ content in the synthesized hexaferrite samples.

    3.2. Elemental composition analysis

    The elemental composition of the synthesized samples was analyzed quantitatively using EDX spectroscopy; the results are presented in Table 2. The observed composition of all the elements was a good match for the expected stoichiometric composition.The results confirmed that La3+and Ni2+cations had been substituted for Ba and Fe cations at the appropriate ratios.

    Table 2. Elemental composition of Ba0.8La0.2Fe12?xNixO19 M-type hexaferrites obtained by EDX.

    3.3. Functional group analysis

    The FTIR spectra of the prepared powder were recorded in the range of 4000 cm?1—400 cm?1and are presented in Fig.3. The absorption bands around 430 cm?1and 580 cm?1are the two featured bands of M-type hexaferrites,which were observed in all the samples, with minor variations in the positions and relative intensities. The band observed at around 430 cm?1relates to the octahedral Fe—O bond,while the band at around 580 cm?1is due to the stretching vibrations of the tetrahedral Ba—O bond.[31,32]The presence of these bonds confirmed the formation of the BaM hexagonal structure. The doublet peak at 2361 cm?1originates from ambient CO2gas.

    Fig.3. FTIR spectra of the synthesized hexaferrite samples.

    3.4. Raman analysis

    The Raman spectra of the hexaferrite samples are shown in Fig.4. According to group theory,42 active Raman modesΓRaman=11A1g+14E1g+17E2garise due to the vibrations of 64 atoms at various sites in the unit cell.[33]In our samples,active Raman modes are observed at around 284.71, 335.22,410.28,457.21,522.13,613.52,and 684.87 cm?1,which confirms the formation of the BaM phase. The peaks present at around 684.87 cm?1are due to theA1gvibration of Fe—O bonds at the octahedral 4f1site and the bipyramidal 2bsite.Furthermore, the peaks at 457.21 cm?1are also due to theA1gvibration of Fe—O bonds at the octahedral 2a site. The peaks at around 613.52 cm?1and 410.28 cm?1are attributedto theA1gvibration of Fe—O bonds at the octahedral 4f2and 12ksites respectively. The Raman modes observed at around 522.13 cm?1and 284.71 cm?1are attributed toE1gvibration. Moreover, the peaks at 335.22 cm?1are attributed toE2gvibrations. The small variations found in the peak positions are attributed to the substitution of Ni2+ions in the BaM lattice.[31,34—36]

    Fig.4. Raman spectra of the Ni2+ substituted Ba-La hexaferrite samples.

    3.5. UV-vis analysis

    The absorption spectra and optical energy bandgap are related,as given by Tauc’s relation:α(hv)=A(hv?Eg)n,[37—39]whereAandαrepresent a constant and the absorption coefficient, respectively, andntakes values of 1/2 for direct and 2 for indirect transitions. Tauc plots of the prepared samples are presented in Fig. 5. The obtained values of the optical energy bandgaps lie in the range of 1.21 eV—3.39 eV and are plotted as a function of the Ni2+ion content, as shown in Fig. 6. It can be seen from Fig. 6 that the optical bandgap is drastically decreased by the incorporation of a small amount of Ni2+at values ofxup tox=0.2, however, a further increase in the Ni2+concentration does not have a significant effect on the bandgap values.[26,31,40—44]These results suggest that the synthesized samples are potential candidates for use in various optoelectronic applications.

    Fig.5. Plot of(αhυ)2 versus the photon energy(hυ)for the prepared hexaferrite nanoparticles.

    Fig.6. Plot of the energy bandgap as a function of the Ni2+ ion content.

    3.6. Magnetic hysteresis loop analysis

    The magnetic hysteresis(M—H)loops of the synthesized nanohexaferrite samples were recorded at 300 K and are depicted in Fig. 7. TheM—Hloops of all the samples show a hard magnetic nature. Various magnetic parameters,including the saturation magnetization (Ms), magnetic retentivity (Mr),coercivity (Hc), and squareness ratio (Mr/Ms) are measured from theM—Hloops and are given in Table 3. The maximum observed value of saturation magnetization is 99.92 emu/g for the sample withx=0, which reduced to 40.8 emu/g for the sample withx=0.5. According to previous research, Fe3+ions exhibit various magnetic moments at different sites. As a result, the preferred sites of magnetic Ni2+ions determine the material’s overall magnetization. The Ni2+has a magnetic nature, but a low magnetic moment compared to Fe3+.It was reported previously that Ni2+ions prefer to substitute for Fe3+ions at 4f2and 12kat low concentrations and at the 12ksites for higher concentrations. The substitution of Ni2+(2μB)ions at the Fe3+(5μB)ion sites is responsible for the decrease in saturation magnetization with increasing Ni2+concentration.[15,20,31,45]The saturation magnetization values that are achieved in this study for Ni2+free samples are compared with the values reported in the literature[4,9,20,45—47]and are found to be significantly higher. The higher values of saturation magnetization achieved are attributed to the vacancy free nature of the samples and the presence of paramagnetic La3+cations at the spin-up(12k, 2a, and 2b)sites.[48,49]The magnetic retentivityMr, coercivityHc, and squareness ratio(Mr/Ms) also decreased with an increase in the Ni2+content. A graphical representation of the Ni2+contents versus the saturation magnetization (Ms) and the magnetic retentivity (Mr) are shown in Fig. 8. Magneto-crystalline anisotropyis known to be responsible for the variations in the magnetic retentivity, coercivity, and squareness ratio values of ferrite materials.[20]The microwave frequency (ωm) is determined using the relationωm=8π2Msγ, whereγis a gyromagnetic fraction with the significance of 2.8 MHz/Oe, andMsis the saturation magnetization.[50]The applied field versus the microwave operating frequency(ωm)of the prepared hexaferrites samples is plotted in Fig. 9. It can be seen in Fig. 9 that the range of microwave operating frequencies(ωm)is 8.80 GHz—22.2 GHz, indicating that the prepared hexaferrites are applicable in longitudinal recording media, data storage magnetic devices,and microwave absorption.

    Table 3. Magnetic parameters of the prepared hexaferrites.

    Fig.7. The M—H loops for the Ni2+ doped Ba—La hexaferrites.

    Fig. 8. Plot of the saturation magnetization and remanent magnetization of the synthesized samples as a function of the Ni content.

    Fig.9. Applied field versus microwave operating frequency.

    4. Conclusion

    The BaM nanoferrites with the general formula Ba0.8La0.2Fe12?xNixO19(0≤x ≤0.5)were synthesized by the co-precipitation route. The prepared powders were densified using conventional sintering processing at 1000°C for 4 h.A phase confirmation and a structural analysis were carried out using XRD and the average crystallite size of the samples was found to be in the range of 25.2±0.1 nm—28.5±0.1 nm.The optical properties of the prepared samples were investigated using UV-vis spectroscopy and it was found that the optical energy bandgap lies in the range 1.21 eV—3.39 eV. A high value of saturation magnetizationMs(99.92 emu/g)was achieved for the sample withx= 0, which makes La-BaM hexaferrites suitable for operation in the significantly higher frequency range of up to 22.2 GHz. The magnetic parameters(Ms,Mr,Hc, andMr/Ms)of the prepared samples show a decreasing trend with an increase in the Ni content. The optical and magnetic properties of the Ni2+substituted BaM hexaferrites suggest that these samples are potential candidates for use in magnetic storage, microwave frequency absorption devices,and magneto-optical devices.

    Acknowledgment

    Project supported by the Taif University Researchers Supporting Project number (TURSP-2020/293), Taif University,Taif,Saudi Arabia.

    色视频www国产| 最近2019中文字幕mv第一页| 少妇的逼好多水| 精品人妻视频免费看| av国产免费在线观看| 日韩中字成人| 午夜福利在线在线| 国内少妇人妻偷人精品xxx网站| 大话2 男鬼变身卡| 亚洲国产精品999| 中文字幕久久专区| 在线观看人妻少妇| 国产美女午夜福利| 亚洲欧美清纯卡通| 青春草亚洲视频在线观看| 网址你懂的国产日韩在线| 熟女人妻精品中文字幕| 日本午夜av视频| 熟妇人妻不卡中文字幕| 欧美日韩精品成人综合77777| 婷婷色av中文字幕| 九色成人免费人妻av| 国产真实伦视频高清在线观看| 成人欧美大片| 99九九线精品视频在线观看视频| 久久这里有精品视频免费| 亚洲欧美精品专区久久| 少妇人妻精品综合一区二区| 久久热精品热| 久久久久国产精品人妻一区二区| 国产精品福利在线免费观看| 简卡轻食公司| 亚洲天堂av无毛| 久久人人爽人人片av| 欧美日韩在线观看h| 精品人妻熟女av久视频| 久久久久久九九精品二区国产| 久久久色成人| 寂寞人妻少妇视频99o| 国产亚洲精品久久久com| 22中文网久久字幕| 亚洲精品一二三| 在线观看人妻少妇| 午夜亚洲福利在线播放| 国产精品一区二区性色av| 久久久久网色| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| 少妇人妻久久综合中文| 亚洲精品一二三| 丝袜美腿在线中文| 欧美日韩综合久久久久久| 97精品久久久久久久久久精品| 国产一区二区在线观看日韩| av黄色大香蕉| 亚洲av成人精品一二三区| 国产成人精品一,二区| 久久久精品94久久精品| .国产精品久久| 日本黄色片子视频| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 国产男女内射视频| 午夜福利在线在线| 国产精品不卡视频一区二区| 国产乱人偷精品视频| 精品国产一区二区三区久久久樱花 | 国产欧美日韩精品一区二区| 亚洲高清免费不卡视频| 国产精品精品国产色婷婷| 国产亚洲最大av| 日韩制服骚丝袜av| 亚洲欧美精品专区久久| 午夜福利在线观看免费完整高清在| 免费av观看视频| 亚洲av中文字字幕乱码综合| 亚洲av电影在线观看一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄| 日产精品乱码卡一卡2卡三| 熟女电影av网| 精品人妻一区二区三区麻豆| 禁无遮挡网站| 国产综合精华液| 亚洲国产欧美人成| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久精品电影| 久久久午夜欧美精品| 精品国产露脸久久av麻豆| 伦理电影大哥的女人| av专区在线播放| 亚洲四区av| 国产成人免费无遮挡视频| 97超视频在线观看视频| 黄色一级大片看看| 不卡视频在线观看欧美| 亚洲,欧美,日韩| 干丝袜人妻中文字幕| 天天躁日日操中文字幕| 麻豆国产97在线/欧美| 亚洲真实伦在线观看| 国产免费福利视频在线观看| 欧美3d第一页| 一级a做视频免费观看| 国产精品一及| 久久99热这里只有精品18| 各种免费的搞黄视频| 亚洲av.av天堂| 久久久国产一区二区| 中文精品一卡2卡3卡4更新| 免费高清在线观看视频在线观看| 99久久九九国产精品国产免费| 极品少妇高潮喷水抽搐| 女的被弄到高潮叫床怎么办| 欧美极品一区二区三区四区| 丝瓜视频免费看黄片| 特大巨黑吊av在线直播| 国产精品久久久久久精品古装| av女优亚洲男人天堂| 一级毛片久久久久久久久女| 午夜视频国产福利| 免费少妇av软件| 在线观看人妻少妇| 夜夜爽夜夜爽视频| 一个人看视频在线观看www免费| 黄色日韩在线| 街头女战士在线观看网站| 亚洲内射少妇av| 亚洲精品久久午夜乱码| 亚洲精品日本国产第一区| 亚洲婷婷狠狠爱综合网| 在线观看免费高清a一片| 午夜亚洲福利在线播放| 日韩成人av中文字幕在线观看| 亚洲最大成人av| 噜噜噜噜噜久久久久久91| 久久久久久久午夜电影| 国产亚洲午夜精品一区二区久久 | 久久久久精品性色| 成年人午夜在线观看视频| 熟女人妻精品中文字幕| 国产黄色视频一区二区在线观看| 一级黄片播放器| 超碰97精品在线观看| 国产精品蜜桃在线观看| 成年av动漫网址| 精品人妻一区二区三区麻豆| 国产高清三级在线| 亚洲精品456在线播放app| 女人被狂操c到高潮| 日韩一区二区三区影片| 久久久久国产精品人妻一区二区| 天堂俺去俺来也www色官网| 狂野欧美激情性bbbbbb| 国产黄色视频一区二区在线观看| 91狼人影院| 久久人人爽人人片av| 国产淫片久久久久久久久| 嫩草影院入口| 精品一区在线观看国产| 欧美精品一区二区大全| 亚洲久久久久久中文字幕| 中文乱码字字幕精品一区二区三区| 人妻系列 视频| 热re99久久精品国产66热6| 亚洲成人一二三区av| 免费少妇av软件| 国产白丝娇喘喷水9色精品| 免费高清在线观看视频在线观看| 99久久精品热视频| 欧美国产精品一级二级三级 | 在线免费观看不下载黄p国产| 在现免费观看毛片| 欧美日韩国产mv在线观看视频 | 久久国产乱子免费精品| av免费在线看不卡| 婷婷色麻豆天堂久久| 午夜福利在线在线| 亚洲av免费在线观看| 免费观看性生交大片5| 国产亚洲一区二区精品| 97超碰精品成人国产| 欧美精品一区二区大全| 亚洲av.av天堂| 麻豆国产97在线/欧美| 插阴视频在线观看视频| 少妇熟女欧美另类| 国产精品久久久久久精品电影小说 | 国产乱人视频| 国产极品天堂在线| 亚洲精品成人久久久久久| 久久久久精品久久久久真实原创| 2018国产大陆天天弄谢| 一级片'在线观看视频| 久久久久久伊人网av| 2022亚洲国产成人精品| 亚洲电影在线观看av| av在线app专区| 人妻系列 视频| av在线播放精品| 国产免费视频播放在线视频| 天美传媒精品一区二区| 日日摸夜夜添夜夜爱| 18禁在线无遮挡免费观看视频| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人手机在线| 下体分泌物呈黄色| 中文字幕制服av| 亚洲精品456在线播放app| 国产精品蜜桃在线观看| 男插女下体视频免费在线播放| 国产高清国产精品国产三级 | 欧美+日韩+精品| 少妇熟女欧美另类| 国产片特级美女逼逼视频| 老司机影院成人| 日韩一区二区三区影片| 晚上一个人看的免费电影| 精品亚洲乱码少妇综合久久| 黄色欧美视频在线观看| 国产精品不卡视频一区二区| 别揉我奶头 嗯啊视频| 简卡轻食公司| av在线播放精品| 七月丁香在线播放| 日本免费在线观看一区| 中文字幕久久专区| 99久久人妻综合| 极品少妇高潮喷水抽搐| 国产亚洲av片在线观看秒播厂| 男人添女人高潮全过程视频| 亚洲无线观看免费| av天堂中文字幕网| 国产女主播在线喷水免费视频网站| 久久热精品热| 身体一侧抽搐| 国产午夜精品一二区理论片| 真实男女啪啪啪动态图| 真实男女啪啪啪动态图| 在线亚洲精品国产二区图片欧美 | 国产成人a∨麻豆精品| 好男人在线观看高清免费视频| 人妻系列 视频| 久久精品国产鲁丝片午夜精品| 精品一区二区三卡| 亚洲在久久综合| 国产免费福利视频在线观看| 春色校园在线视频观看| 国产av国产精品国产| 国产av国产精品国产| 日本爱情动作片www.在线观看| 日本爱情动作片www.在线观看| 久久ye,这里只有精品| 国产精品三级大全| 最近中文字幕高清免费大全6| 国产成人a∨麻豆精品| 午夜激情福利司机影院| 中文字幕制服av| 日韩一区二区视频免费看| 国产一区二区三区综合在线观看 | 欧美少妇被猛烈插入视频| 精品一区二区免费观看| 男人添女人高潮全过程视频| 在线观看人妻少妇| 蜜桃久久精品国产亚洲av| 久久精品久久久久久久性| 丝袜脚勾引网站| 51国产日韩欧美| 新久久久久国产一级毛片| 国产欧美日韩精品一区二区| 久久久久国产网址| 麻豆久久精品国产亚洲av| 美女主播在线视频| 国产亚洲午夜精品一区二区久久 | 国产大屁股一区二区在线视频| 成人午夜精彩视频在线观看| 80岁老熟妇乱子伦牲交| 成人一区二区视频在线观看| 看黄色毛片网站| 日韩成人伦理影院| 亚洲性久久影院| 亚洲最大成人中文| .国产精品久久| 国产精品偷伦视频观看了| 日日撸夜夜添| 午夜免费鲁丝| 一本一本综合久久| 香蕉精品网在线| 欧美潮喷喷水| 在线a可以看的网站| 久久99蜜桃精品久久| 欧美日韩视频精品一区| 91午夜精品亚洲一区二区三区| av.在线天堂| 亚洲最大成人中文| 特级一级黄色大片| 久热这里只有精品99| 日韩在线高清观看一区二区三区| 美女脱内裤让男人舔精品视频| 大话2 男鬼变身卡| 国内揄拍国产精品人妻在线| 日韩强制内射视频| 国内精品宾馆在线| 别揉我奶头 嗯啊视频| 尾随美女入室| 两个人的视频大全免费| 精品国产乱码久久久久久小说| 日日撸夜夜添| 五月玫瑰六月丁香| 亚洲一级一片aⅴ在线观看| 97超视频在线观看视频| 免费播放大片免费观看视频在线观看| 国产黄频视频在线观看| av免费在线看不卡| 噜噜噜噜噜久久久久久91| 色婷婷久久久亚洲欧美| 亚洲图色成人| 日日摸夜夜添夜夜添av毛片| 高清午夜精品一区二区三区| av国产免费在线观看| 久久久精品欧美日韩精品| 久久久久精品性色| 日日啪夜夜爽| 男人添女人高潮全过程视频| av黄色大香蕉| 男女无遮挡免费网站观看| 欧美老熟妇乱子伦牲交| 亚洲人成网站在线观看播放| 免费黄频网站在线观看国产| 国产精品国产av在线观看| 肉色欧美久久久久久久蜜桃 | 大香蕉97超碰在线| 欧美成人午夜免费资源| 欧美激情国产日韩精品一区| 午夜日本视频在线| 国产男女内射视频| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 九草在线视频观看| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡动漫免费视频 | 在线免费观看不下载黄p国产| 99热这里只有是精品在线观看| 亚洲人成网站在线播| 国产综合懂色| 十八禁网站网址无遮挡 | 91在线精品国自产拍蜜月| 免费黄色在线免费观看| 99久久精品一区二区三区| 久热这里只有精品99| 麻豆成人av视频| 亚洲真实伦在线观看| 97在线视频观看| 少妇熟女欧美另类| 国产精品麻豆人妻色哟哟久久| 不卡视频在线观看欧美| 伦精品一区二区三区| 在线看a的网站| av.在线天堂| 91午夜精品亚洲一区二区三区| 国产一区亚洲一区在线观看| 午夜亚洲福利在线播放| 亚洲精品日本国产第一区| 男女那种视频在线观看| 成年女人看的毛片在线观看| 精品一区二区免费观看| 精品久久久久久久末码| 精品99又大又爽又粗少妇毛片| 久久鲁丝午夜福利片| 国产真实伦视频高清在线观看| 99九九线精品视频在线观看视频| 韩国av在线不卡| 在线播放无遮挡| 精华霜和精华液先用哪个| 久久影院123| 久久久久国产精品人妻一区二区| 国产乱人偷精品视频| 天天一区二区日本电影三级| 成人毛片a级毛片在线播放| 国产成人免费观看mmmm| 少妇猛男粗大的猛烈进出视频 | 搞女人的毛片| 黄片无遮挡物在线观看| 91久久精品国产一区二区成人| 亚洲国产成人一精品久久久| 少妇高潮的动态图| 亚洲美女视频黄频| 一区二区三区免费毛片| 日日啪夜夜爽| 免费观看在线日韩| 在线观看三级黄色| 国产人妻一区二区三区在| 成人午夜精彩视频在线观看| 国产黄频视频在线观看| 久久综合国产亚洲精品| 免费黄色在线免费观看| av专区在线播放| 国内精品美女久久久久久| 我的女老师完整版在线观看| 精品少妇久久久久久888优播| 水蜜桃什么品种好| 亚洲不卡免费看| 国产av码专区亚洲av| 一级毛片 在线播放| 一本一本综合久久| 日韩电影二区| 亚洲精品久久久久久婷婷小说| 亚洲av一区综合| 中文字幕免费在线视频6| 亚洲经典国产精华液单| 菩萨蛮人人尽说江南好唐韦庄| 国精品久久久久久国模美| 欧美成人午夜免费资源| 在线a可以看的网站| 亚洲美女视频黄频| 视频中文字幕在线观看| 美女高潮的动态| 中国美白少妇内射xxxbb| 国产 一区精品| 高清欧美精品videossex| 可以在线观看毛片的网站| 国产精品国产三级专区第一集| 视频中文字幕在线观看| 九九爱精品视频在线观看| 亚洲国产高清在线一区二区三| 九色成人免费人妻av| 青春草国产在线视频| 人妻制服诱惑在线中文字幕| 亚洲国产精品专区欧美| 中文乱码字字幕精品一区二区三区| 免费少妇av软件| 免费观看av网站的网址| av国产免费在线观看| 一区二区三区免费毛片| 一级爰片在线观看| 22中文网久久字幕| 噜噜噜噜噜久久久久久91| 久久精品久久久久久久性| 国产伦在线观看视频一区| 免费播放大片免费观看视频在线观看| 亚洲四区av| 亚洲精华国产精华液的使用体验| 亚洲天堂av无毛| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩精品一区二区| 国产精品无大码| 最后的刺客免费高清国语| 美女被艹到高潮喷水动态| 国产精品无大码| 一级毛片我不卡| 赤兔流量卡办理| 国产男人的电影天堂91| 建设人人有责人人尽责人人享有的 | 午夜福利网站1000一区二区三区| 最近最新中文字幕免费大全7| 欧美xxxx黑人xx丫x性爽| 国产欧美日韩一区二区三区在线 | 波野结衣二区三区在线| www.色视频.com| 插阴视频在线观看视频| 中文在线观看免费www的网站| 五月开心婷婷网| 国内揄拍国产精品人妻在线| 晚上一个人看的免费电影| 久久久久久久久久成人| 亚洲国产av新网站| 少妇被粗大猛烈的视频| 国产免费一区二区三区四区乱码| 国产日韩欧美在线精品| 亚洲精品自拍成人| av在线播放精品| av在线老鸭窝| 在线观看av片永久免费下载| av在线天堂中文字幕| 日日啪夜夜爽| 2022亚洲国产成人精品| 亚洲综合精品二区| 国产精品国产av在线观看| 久久精品国产自在天天线| 能在线免费看毛片的网站| 亚洲三级黄色毛片| 亚洲真实伦在线观看| 国产精品久久久久久av不卡| 在线播放无遮挡| 黑人高潮一二区| 久热久热在线精品观看| 身体一侧抽搐| 青青草视频在线视频观看| 丝袜喷水一区| 97人妻精品一区二区三区麻豆| 老司机影院成人| 国产黄片美女视频| 欧美日韩视频高清一区二区三区二| 大又大粗又爽又黄少妇毛片口| 日本wwww免费看| 毛片女人毛片| 国产精品99久久久久久久久| 最新中文字幕久久久久| 日韩 亚洲 欧美在线| 免费av不卡在线播放| 狂野欧美激情性xxxx在线观看| 日本一本二区三区精品| 精品国产三级普通话版| 麻豆成人午夜福利视频| 久久久久久久久久人人人人人人| 五月玫瑰六月丁香| 中文字幕制服av| 午夜福利在线在线| 精品一区二区三区视频在线| 欧美区成人在线视频| 少妇裸体淫交视频免费看高清| 精品久久久噜噜| 久久久成人免费电影| 国产精品99久久99久久久不卡 | 美女cb高潮喷水在线观看| 91精品一卡2卡3卡4卡| 国产男女内射视频| 国产日韩欧美亚洲二区| 日本wwww免费看| 亚洲久久久久久中文字幕| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 亚洲经典国产精华液单| 成人特级av手机在线观看| 免费黄频网站在线观看国产| 深夜a级毛片| 国产淫片久久久久久久久| 日本熟妇午夜| 久久精品综合一区二区三区| 国产日韩欧美亚洲二区| 亚洲精品日韩av片在线观看| 精品人妻熟女av久视频| 亚洲成人av在线免费| 国产精品女同一区二区软件| 日韩视频在线欧美| 精品一区二区免费观看| 国产精品久久久久久精品古装| 麻豆久久精品国产亚洲av| 亚洲高清免费不卡视频| 人妻一区二区av| 男女边吃奶边做爰视频| 97在线人人人人妻| 婷婷色综合大香蕉| 水蜜桃什么品种好| 肉色欧美久久久久久久蜜桃 | videos熟女内射| 自拍偷自拍亚洲精品老妇| 一本一本综合久久| 五月开心婷婷网| 欧美性感艳星| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 熟妇人妻不卡中文字幕| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 女人久久www免费人成看片| 青春草亚洲视频在线观看| 成年女人在线观看亚洲视频 | 国产片特级美女逼逼视频| 国产毛片a区久久久久| 男女边吃奶边做爰视频| 亚洲av成人精品一区久久| 亚洲怡红院男人天堂| 99热全是精品| 久久久久久九九精品二区国产| 午夜老司机福利剧场| 国产精品.久久久| 校园人妻丝袜中文字幕| 免费看不卡的av| 国产一区二区亚洲精品在线观看| 97在线人人人人妻| 在线观看一区二区三区| 又爽又黄无遮挡网站| 2021天堂中文幕一二区在线观| 国产精品一区www在线观看| 熟女电影av网| 性色avwww在线观看| 十八禁网站网址无遮挡 | 亚洲国产成人一精品久久久| 2022亚洲国产成人精品| 简卡轻食公司| 在线看a的网站| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 国产成人a∨麻豆精品| 天天一区二区日本电影三级| 国产精品女同一区二区软件| 免费av观看视频| 丰满乱子伦码专区| 国产淫语在线视频| 亚洲av福利一区| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 久久精品久久久久久噜噜老黄| 香蕉精品网在线| 成人黄色视频免费在线看| 免费看av在线观看网站| 国产黄频视频在线观看| 麻豆精品久久久久久蜜桃| 亚洲av国产av综合av卡| 黄色视频在线播放观看不卡| 成人毛片60女人毛片免费| 日本欧美国产在线视频| 亚洲电影在线观看av| 婷婷色综合www| 成年女人看的毛片在线观看| 一本一本综合久久| 中文字幕av成人在线电影| 精品人妻熟女av久视频| 男女边摸边吃奶| 久久99热6这里只有精品| 精品人妻视频免费看| 中文字幕制服av| 亚洲伊人久久精品综合| 久久久a久久爽久久v久久|