• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new direct band gap silicon allotrope o-Si32

    2022-02-24 08:59:00XinChaoYang楊鑫超QunWei魏群MeiGuangZhang張美光MingWeiHu胡明瑋LinQianLi李林茜andXuanMinZhu朱軒民
    Chinese Physics B 2022年2期

    Xin-Chao Yang(楊鑫超) Qun Wei(魏群) Mei-Guang Zhang(張美光)Ming-Wei Hu(胡明瑋) Lin-Qian Li(李林茜) and Xuan-Min Zhu(朱軒民)

    1School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China2College of Physics and Optoelectronic Technology,Baoji University of Arts and Sciences,Baoji 721016,China3School of Information,Guizhou University of Finance and Economics,Guiyang 550025,China

    Silicon is a preferred material in solar cells, and most of silicon allotropes have an indirect band gap. Therefore, it is important to find new direct band gap silicon. In the present work, a new direct band gap silicon allotrope of o-Si32 is discovered. The elastic constants, elastic anisotropy, phonon spectra, and electronic structure of o-Si32 are obtained using first-principles calculations. The results show that o-Si32 is mechanically and dynamically stable and is a direct semiconductor material with a band gap of 1.261 eV.

    Keywords: first-principles calculation,elastic anisotropy,silicon

    1. Introduction

    Among all renewable resources, solar energy is safe,adaptable to the region and climate, inexhaustible, and also is one of the cleanest and most sustainable forms of energy that people are seeking in the 21st century. As a new energy source, solar energy can be converted into electricity, so it is essential to develop the efficient photovoltaic materials. Owing to its abundant storage and good structural stability,silicon is widely used as a photovoltaic material. Elements belonging to the same main group usually have similar chemical properties,but there are also some significant differences between them. Pure silicon and pure carbon exist in nature in the same form of diamond, and they both exhibit the ideal tetrahedral coordination. Carbon, silicon, and germanium are known to have many allotropes. For diamond silicon, the indirect narrow band gap (1.12 eV) limits the conversion efficiency of solar energy, whereas the direct wide band gap (3.4 eV) limits the absorption of low energy photons.[1]Therefore, some metastable silicon allotropes with indirect band gaps, such asC2/m-16,R8,P2221, andT12-Si structures, have been reported.[2—6]Owing to the limited performance of these materials in absorbing solar energy, the search for new siliconbased semiconductor materials with direct band gap has become a hot topic.

    Recently, several silicon allotropes with direct band gap have been proposed.[7—12]Bottiet al.[12]have presented a number of quasi-direct band gap silicon allotropes with lower energy of formation, which exhibit better optical properties than cubic silicon. Thus, these allotropes are more efficient in absorbing solar energy. Usingab initiocalculations,Wanget al.[11]predicted six silicon metastable allotropes that can be applied to multiple p—n junction photovoltaic modules.These crystals are direct band gap semiconductor materials and quasi-direct band gap semiconductor materials with band gaps ranging from 0.39 eV to 1.25 eV.Fanet al.[13]proposed two new silicon allotropes, namelyCm-32-Si andP21/m-Si,which are direct band gap semiconductor materials with band gaps of 1.85 eV and 0.83 eV, respectively. It was also found that their absorption spectrum and solar spectrum have a significant overlap, so they are better than diamond silicon in terms of optical performance. Guoet al.[14]discovered a type ofh-Si6 with good thermal stability,dynamic stability and mechanical stability. They also found thath-Si6 is a semiconductor material with a direct band gap of 0.61 eV,further revealing excellent optical properties. Weiet al.[15]found six new silicon phases via high-throughput calculations. They revealed that the six silicon allotropes are direct band gap semiconductor materials with band gap values ranging from 0.66 eV to 1.47 eV. TheCm-32 carbon and theP21/mcarbon both have direct band gaps. By replacing carbon atoms with silicon atoms, the obtainedCm-32 andP21/msilicon allotropes are also direct band gap semiconductors.[13]The direct band gap germanium allotrope of Ge24 is also obtained based on quasi-direct band gap Si24.[9]These two cases motivated us to look for new direct band gap silicon allotropes from carbon allotropes with direct band gap. In Ref. [16], a direct band gap G164-carbon with a band gap of 3.13 eV was uncovered.Thus,in the present work,replacing the carbon atoms by silicon atoms,a new silicon allotrope,namelyo-Si32,is obtained.We systematically study the structural stability,electronic and elastic anisotropy ofo-Si32 via first-principles calculations.In addition,we find thato-Si32 is a direct semiconductor materialwith a band gap of 1.261 eV.

    2. Computational method

    The plane wave pseudopotential total energy calculations of theo-Si32 allotrope were performed by using the Viennaab initiosimulation package (VASP)[17]based on density functional theory(DFT)[18,19]with the projector augmented wave(PAW)[20]potentials. In this computational scheme,the pseudopotentials were employed for the 3s23p2atomic configurations of Si. The wave function was expanded by using a plane wave basis set with 450-eV energy cutoff. In the whole Brillouin zone, the Monkhorst—Pack[21]3×7×7 grid sampling was used in calculations. The exchange-related potential was processed at the Perdew—Burke—Ernzerhof(PBE)level of the generalized gradient approximation(GGA).[22]For structural optimization,a convergence criterion require that the total energy of two adjacent steps should not exceed 10?5eV and the atomic force should not exceed 0.05 eV/.The Heyd—Scuseria—Ernzerhof(HSE06)[23,24]hybrid functional and PBE method were used to calculate the electronic structure of theo-Si32 allotrope.The phonon spectra were calculated by using the PHONOPY code.[25]

    3. Results and discussion

    Using the method described above, we obtain a new sp3-hybridized silicon structure with orthorhombic symmetry, namelyo-Si32 as shown in Fig. 1. This structure includes 32 atoms in a unit cell with theImma(No. 74) space group. The two inequivalent atoms occupy the Wyckoff positions of Si1 16j (0.57717, 0.57046, 0.34404) and Si2 16j(0.18589, 0.57209, 0.65406). The lattice constants ofo-Si32 area=15.517,b=6.684, andc=6.987at ambient pressure. The density ofo-Si32 is 2.06 g/cm3.

    From Fig. 1 it can be seen thato-Si32 is composed of nine types of rings, namely three Si4 rings, three Si6 rings, and three Si8 rings, which are identified with different colors. From Fig. 1(a), it can be observed that there are three Si4 rings and two Si6 rings which are colored in yellow, green, purple, pink, and orange, respectively. The 2×2×2 supercell structure ofo-Si32 shows one Si6 ring and one Si8 ring, which are represented in light green and light blue, respectively, as shown in Fig. 1(b). As can be seen from Figs. 1(c) and 1(d), there are two types of Si8 rings, which are represented in light yellow and dark red,respectively. To further understand the structure, all the Si rings ino-Si32 are shown in Fig. 2. The first type of Si4 ring is shown in Fig. 2(a); it is composed of four Si1 atoms and has two types of bonds, with bond lengths of 2.3741(d1(Si1?Si1))and 2.3949(d2(Si1?Si1)),respectively. The second type of Si4 ring is composed of four Si1 atoms and has two types of bonds. In this case, the bond lengths are 2.3999(d3(Si1?Si1)) and 2.3949(d2(Si1?Si1)) as shown in Fig.2(b). From Fig.2(c),it can be seen that in the third type of Si4 ring, there are four Si2 atoms that form two types of bonds with lengths of 2.3781(d1(Si2?Si2)) and 2.3991(d2(Si2?Si2)). The first type of Si6 ring is composed of two Si2 atoms and four Si1 atoms, as shown in Fig. 2(d). These atoms form four types of bonds with bond lengths of 2.3781(d1(Si2?Si2)), 2.3485(dSi1?Si2), 2.3741(d1(Si1?Si1)), and 2.3999(d3(Si1?Si1)). As shown in Fig.2(e),the second type of Si6 ring contains four Si2 atoms and two Si1 atoms, involving four different bond lengths (d3(Si1?Si1)=2.3999,dSi1?Si2=2.3485,d3(Si2?Si2)=2.3583,andd1(Si2?Si2)=2.3781). Figure 2(f) shows four types of bonds with different lengths in the third type of Si6 ring, namely 2.3741(d1(Si1?Si1)), 2.3485(dSi1?Si2), 2.3991(d2(Si2?Si2)), and 2.3585(d3(Si2?Si2)). From Fig. 2(g), it can be seen that there are six bond lengths in the first type of Si8 ring, which ared2(Si2?Si2)(2.3991),d3(Si2?Si2)(2.3585),d1(Si2?Si2)(2.3781),dSi1?Si2(2.3485),d1(Si1?Si1)(2.3741), andd3(Si1?Si1)(2.3999). The second type of Si8 ring is composed of four Si1 atoms and four Si2 atoms,which have three bond lengths(d3(Si1?Si1)=2.3999,dSi1?Si2=2.3485,andd2(Si2?Si2)=2.3991),as shown in Fig.2(h). Like Fig.2(h),the Si8 ring in Fig.2(i)also contains four Si atoms and four Si2 atoms, and the bond constituted by these atoms have lengths ofd1(Si2?Si2)(2.3781),dSi1?Si2(2.3485), andd2(Si1?Si1)(2.3949).

    Fig.1. (a)Global view of crystal structure of o-Si32,(b)2×2×2 supercell along[010]direction,(c)1×2×1 supercell along[001]direction,and(d)schematic depiction of structure, with red sphere and black sphere representing Si1 atom and Si2 atom,respectively.

    The mechanical stability of a material is determined by its elastic properties. For the orthorhombic phase,there are nineindependent elastic constants:C11,C22,C33,C44,C55,C66,C12,C13, andC23. These elastic constants ofo-Si32 are calculated and are listed in Table 1. The elastic constants of theI4/mmm-Si andc-Si are also listed in Table 1 for comparison.At 0 GPa,the elastic constants of the orthorhombic symmetry crystal should obey the generalized Born mechanical stability criterion as follows:[26,27]C11>0,C22>0,C33>0,C44>0,C55>0,C66>0,[C11+C22+C33+2(C12+C13+C23)]>0,(C11+C22?2C12)>0, (C11+C33?2C13)>0, and (C22+C33?2C23)>0.

    From Table 1, it can be seen that the elastic constants under ambient pressure satisfy the Born mechanical stability criterion. In other words,the newo-Si32 structure is mechanically stable. Furthermore, it can be seen thatC11andC22ofI4/mmm-Si ando-Si32 are almost equal but are both smaller than those ofc-Si. However,the elastic constantC33ofo-Si32 is larger than that ofI4/mmm-Si, which indicates that theo-Si32 has a stronger compressive deformation capacity along thez-axis direction thanI4/mmm-Si.

    Table 1. Calculated values of elastic constant Cij, bulk modulus B, shear modulus G,Young’s modulus E,Poisson’s ratio ν,B/G ratio,Eg (HSE06),and Eg (PBE)of I4/mmm-Si,o-Si32,and c?Si.

    Fig.2. Silicon rings in o-Si32 structure,indicating((a),(b))two zigzag Si4 rings are composed of Si1 atoms,(c)zigzag Si4 ring is composed of Si2 atoms,((d)—(f))three Si6 rings are all composed of Si1 and Si2 atoms with different bond lengths,and((g)—(i))three zigzag Si8 rings are all also composed of Si1 and Si2 atoms with different bond lengths.

    The elastic modulus is an important metric to measure the extent of elastic deformation of a structure. It can reflect the bonding strength of atoms,ions,or molecules in the structure from a microscale point of view. In general, the larger the elastic modulus,the larger the stiffness of the structure is. The bulk modulus (B) and shear modulus (E) ofo-Si32 are calculated according to the Voigt—Reuss—Hill approximation,[28]and the results are listed in Table 1. For the convenience of comparison, the moduli ofI4/mmm-Si, andc-Si are also listed in Table 1. The Young’s modulus(E)and Poisson’s ratio (ν) can be calculated from the following formulas:[29,30]E=9BG/(3B+G)andν=(3B?2G)/[2(3B+G)]. Both the bulk modulus and shear modulus ofo-Si32 are slightly larger than those ofI4/mmm-Si, whereas the Young’s modulus ofo-Si32 is slightly larger than that ofI4/mmm-Si. Pugh proposed that theB/Gratio can be used as a means to determine brittleness or ductility of a crystal.[31]AB/Gratio larger than 1.75 indicates a crystal with good ductility;on the contrary,aratio less than 1.75 implies a brittle crystal. Foro-Si32, the ratio ofB/Gis 3.94,which is larger than that ofI4/mmm-Si,indicating its high ductility. According to Frantsevich’s rule,a crystal shows brittleness(ductility)when its Poisson’s ratio is less than(larger than)1/3.[32]The Poisson’s ratio ofo-Si32 is 0.383 and thus indicates that the allotrope is ductile.

    The phonon spectra ofo-Si32 are calculated to verify its structural stability,and the corresponding results are illustrated in Fig. 3. No imaginary frequency can be observed in the whole Brillouin zone; thus, it can be concluded thato-Si32 is dynamically stable. The thermodynamic stability ofo-Si32 is examined by a direct enthalpy comparison with previously reported silicon allotropes,and the results are shown in Fig.4.Figure 4 shows that theo-Si32 is energetically more favorable thanIm-3mandI4/mmmsilicon allotropes, confirming its thermodynamic stability.

    Fig.3. Phonon spectra of o-Si32.

    Fig.4. Enthalpy relative to c-Si of o-Si32 and other direct band silicon allotropes.

    Atoms arrange with different periodicities and densities along different directions of a crystal, which results in different physical and chemical properties for different orientations; in other words, these crystals exhibit anisotropy. As is well known, elastic anisotropy plays an important role in engineering science and crystal physics. Describing the anisotropy behavior of the elasticity of a crystal by using the Young’s modulus graph of its three-dimensional (3D) surface is a feasible and effective method. For orthorhombic systems, the variation of Young’s modulus along an arbitrary [hkl] direction can be calculated as follows:[33]E?1=α4S11+β4S22+γ4S33+2α2β2S12+2α2γ2S13+2β2γ2S23+α2β2S66+α2γ2S55+β2γ2S44, whereα,β, andγare the direction cosines of the tensile stress direction, andSijare the elastic compliance constants. The result of this calculation foro-Si32 is presented in Fig.5(a),and the two-dimensional representations of Young’s modulus in thexy-plane,xz-plane,andyz-plane are illustrated in Fig. 5(b). As shown in Fig. 5(a),the structure exhibits anisotropy. In particular,it exhibits high anisotropy according to the extent of deviation from a sphere on the surface of the 3D model. Figure 5(b) shows that the anisotropy of Young’s modulus is mainly projected onto thexy-plane andxz-plane, relative to theyz-plane. Foro-Si32,the maximum(Emax)and minimum(Emin)of Young’s modulus are 98.8 GPa and 23.5 GPa, respectively, with an average value being 60 GPa. The ratio ofEmax/Eminis 4.20, which further suggests the existence of elastic anisotropy foro-Si32.

    Fig. 5. (a) Young’s modulus in arbitrary direction for o-Si32; (b) Young’s modulus for o-Si32 projected onto xy-plane(black line),xz-plane(red line),and yz-plane(blue line).

    The electronic properties of o-Si32 are calculated. Interestingly,o-Si32 is a direct semiconductor with a band gap of 0.682 eV at the PBE level. Foro-Si32,the valence band maximum and conduction band minimum are both located at theG point. Given that the band gap calculated by PBE is usually underestimated, the actual band gap is typically larger than the calculated result.[34]To address this problem, Heydet al.[23,24]proposed the Heyd—Scuseria—Ernzerhof (HSE06)functional, which is a more tractable hybrid functional approach. The expression of HSE06 is, where the HF mixing parameterμand the screening parameterωwith good accuracy for the band gap are 0.25?1and 0.207?1,respectively.[35]The band gap ofo-Si32 is calculated,and the band gaps ofI4/mmm-Si andc-Si are listed in Table 1. The band structure ofo-Si32 is shown in Fig. 6. From Table 1,it can be seen that the band gap ofo-Si32 is 1.261 eV at the HSE06 level. As shown in Fig. 7, the band structure ofc-Si has a band gap of 1.191 eV at HSE06 level,and theo-Si32 is a direct semiconductor,so it may have good optical properties.

    Fig.6. Electronic band structure for o-Si32 at(a)PBE level and(b)HSE06 level.

    Fig.7. Electronic band structure for c-Si at HSE06 level.

    In addition,we calculated the total density of states ofo-Si32 and the density of states projected onto some Si atoms,as shown in Fig.8. It can be seen from Fig.8 that theo-Si32 has the following two main characteristics:first,the main contribution of the state density at the peak of the low-energy part(?13 eV to?6 eV)comes from the electrons in the s orbital of silicon atom, while the contribution of the electrons in the p orbital is very small; second, the main contribution of the state density in the low energy part (?6 eV to 0 eV) and the high energy part (0 eV to 5 eV) comes from the electrons in the p orbital of the silicon atom,while the contribution of the electrons in the s orbital is very small.

    Fig.8. Densities of states for o-Si32.

    4. Conclusions

    In this work, we systematically study the structural and electronic properties ofo-Si32 based on first-principles calculations. From the results obtained for the elastic constants it is found thato-Si32 has a strong capability of compressive deformation along thezaxis. The Poisson’s ratio, the ratio of bulk modulus to shear modulus,and the directional dependence of Young’s modulus indicate that theo-Si32 exhibits ductility and good elastic anisotropy. In addition, the electronic band structure is calculated, revealing thato-Si32 is a direct semiconductor material with a band gap of 1.261 eV.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11965005 and 11964026), the 111 Project, China (Grant No. B17035), the Natural Science Basic Research Plan in Shaanxi Province of China(Grant Nos. 2020JM-186 and 2020JM-621), and the Fundamental Research Funds for the Central Universities,China.

    All the authors thank the High Performance Computing Center of Xidian University for providing the computing facilities.

    精品人妻熟女毛片av久久网站| 麻豆精品久久久久久蜜桃| 久久久国产精品麻豆| 欧美日韩亚洲高清精品| 亚洲人与动物交配视频| 婷婷色综合www| 亚洲四区av| 亚洲综合精品二区| 亚洲,一卡二卡三卡| 亚洲精品久久午夜乱码| av天堂久久9| 一级a做视频免费观看| 国产精品人妻久久久影院| 久久人人爽人人爽人人片va| 国产精品免费大片| 亚洲精品国产成人久久av| 日韩强制内射视频| 搡老乐熟女国产| 亚洲av电影在线观看一区二区三区| 97在线视频观看| 一边亲一边摸免费视频| 亚洲精品日韩av片在线观看| 国产一区二区三区av在线| 亚洲精品,欧美精品| 免费观看av网站的网址| 熟女电影av网| 熟女电影av网| 在线天堂最新版资源| 一级毛片黄色毛片免费观看视频| 亚洲电影在线观看av| 九草在线视频观看| 人妻一区二区av| 在线播放无遮挡| 久久毛片免费看一区二区三区| 亚洲丝袜综合中文字幕| av在线app专区| 国产深夜福利视频在线观看| 亚洲精品乱码久久久v下载方式| 嘟嘟电影网在线观看| av在线app专区| 如何舔出高潮| 精品99又大又爽又粗少妇毛片| 熟妇人妻不卡中文字幕| 三上悠亚av全集在线观看 | 午夜视频国产福利| 亚洲av在线观看美女高潮| 晚上一个人看的免费电影| 免费看日本二区| 国产中年淑女户外野战色| 亚洲av综合色区一区| 亚洲精品中文字幕在线视频 | 久久av网站| 黄色配什么色好看| .国产精品久久| 黑丝袜美女国产一区| 免费av不卡在线播放| 看十八女毛片水多多多| 成人亚洲欧美一区二区av| 黑丝袜美女国产一区| .国产精品久久| 三级国产精品欧美在线观看| a级毛片在线看网站| 91aial.com中文字幕在线观看| 日韩av在线免费看完整版不卡| 国产成人精品久久久久久| 女人久久www免费人成看片| 夫妻性生交免费视频一级片| 国产av码专区亚洲av| 大陆偷拍与自拍| a级毛片在线看网站| 91aial.com中文字幕在线观看| 国产一区二区在线观看av| 精品久久久久久久久亚洲| 菩萨蛮人人尽说江南好唐韦庄| 日韩中字成人| 国产一区二区在线观看av| 精品午夜福利在线看| 国产日韩一区二区三区精品不卡 | 精品一区二区免费观看| 最近最新中文字幕免费大全7| 亚洲av.av天堂| 欧美变态另类bdsm刘玥| 超碰97精品在线观看| 三上悠亚av全集在线观看 | 黑人高潮一二区| 国产男女内射视频| 偷拍熟女少妇极品色| 热re99久久国产66热| 夜夜骑夜夜射夜夜干| 久久99热6这里只有精品| 麻豆乱淫一区二区| 亚洲精品国产av蜜桃| 久久国产精品男人的天堂亚洲 | 久久6这里有精品| 男人和女人高潮做爰伦理| 久久精品久久久久久久性| 最近手机中文字幕大全| 午夜免费鲁丝| 王馨瑶露胸无遮挡在线观看| 亚洲va在线va天堂va国产| 国产老妇伦熟女老妇高清| 国产一级毛片在线| 免费看日本二区| 在线观看www视频免费| 国产高清三级在线| 色5月婷婷丁香| 亚洲欧美精品自产自拍| 久久99蜜桃精品久久| 少妇人妻 视频| 男女边吃奶边做爰视频| 日本爱情动作片www.在线观看| 插阴视频在线观看视频| 欧美精品亚洲一区二区| 男人狂女人下面高潮的视频| 精品亚洲成国产av| 久久久精品免费免费高清| 国产伦在线观看视频一区| 美女脱内裤让男人舔精品视频| 久久99精品国语久久久| 国产极品粉嫩免费观看在线 | 伊人亚洲综合成人网| 如日韩欧美国产精品一区二区三区 | 亚洲欧洲日产国产| 免费观看无遮挡的男女| 亚洲欧美中文字幕日韩二区| 日韩 亚洲 欧美在线| 国产一级毛片在线| 黑人巨大精品欧美一区二区蜜桃 | 欧美少妇被猛烈插入视频| 在线观看国产h片| 亚洲成人手机| 国语对白做爰xxxⅹ性视频网站| 亚洲av免费高清在线观看| 国产精品国产三级国产专区5o| 久久久久久人妻| 赤兔流量卡办理| 免费看光身美女| 成人亚洲精品一区在线观看| 国产永久视频网站| 国产一区二区在线观看日韩| 免费久久久久久久精品成人欧美视频 | www.色视频.com| 欧美另类一区| 久久 成人 亚洲| 美女cb高潮喷水在线观看| 国产精品久久久久久精品古装| tube8黄色片| 久久亚洲国产成人精品v| 国产在线免费精品| 男女边摸边吃奶| 成人国产麻豆网| 狂野欧美激情性xxxx在线观看| 嫩草影院入口| 国产精品一二三区在线看| 乱码一卡2卡4卡精品| 中国美白少妇内射xxxbb| 岛国毛片在线播放| 男女免费视频国产| av免费观看日本| 少妇的逼好多水| 亚洲婷婷狠狠爱综合网| av女优亚洲男人天堂| 久久人人爽人人片av| 熟妇人妻不卡中文字幕| 久久久欧美国产精品| 插逼视频在线观看| 美女主播在线视频| 成人特级av手机在线观看| 国产成人免费无遮挡视频| 日韩 亚洲 欧美在线| 老女人水多毛片| 欧美老熟妇乱子伦牲交| 熟女电影av网| 久久国产乱子免费精品| 国产亚洲午夜精品一区二区久久| 中文字幕精品免费在线观看视频 | 免费播放大片免费观看视频在线观看| 国产亚洲午夜精品一区二区久久| av免费在线看不卡| 国产精品女同一区二区软件| 高清不卡的av网站| 免费看不卡的av| 美女视频免费永久观看网站| 秋霞伦理黄片| 黄色日韩在线| 黄片无遮挡物在线观看| 亚洲内射少妇av| 大香蕉97超碰在线| 内地一区二区视频在线| 免费看不卡的av| 欧美精品一区二区大全| 亚洲av男天堂| 91精品国产国语对白视频| 国产欧美日韩一区二区三区在线 | 建设人人有责人人尽责人人享有的| 一个人免费看片子| 岛国毛片在线播放| 国产精品成人在线| 欧美精品国产亚洲| 日韩免费高清中文字幕av| 国产乱人偷精品视频| 亚洲,欧美,日韩| 亚洲精品视频女| 亚洲国产欧美在线一区| 午夜福利视频精品| 建设人人有责人人尽责人人享有的| 免费少妇av软件| 精品国产一区二区三区久久久樱花| 国产熟女午夜一区二区三区 | 精品久久久久久久久av| 亚洲综合精品二区| 久久久久久人妻| 不卡视频在线观看欧美| 日韩av不卡免费在线播放| 成人国产av品久久久| a级毛色黄片| 午夜免费观看性视频| 国产有黄有色有爽视频| 最黄视频免费看| 日韩强制内射视频| 一本久久精品| 久久久久久久国产电影| 高清视频免费观看一区二区| 成人毛片a级毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 亚洲婷婷狠狠爱综合网| 在线亚洲精品国产二区图片欧美 | 国产成人午夜福利电影在线观看| 日本-黄色视频高清免费观看| 99热网站在线观看| 男男h啪啪无遮挡| 内地一区二区视频在线| 成年人免费黄色播放视频 | 国产黄片视频在线免费观看| 免费看av在线观看网站| 不卡视频在线观看欧美| 欧美日韩精品成人综合77777| 国产综合精华液| 最近的中文字幕免费完整| 久久久欧美国产精品| 精品人妻偷拍中文字幕| 夫妻午夜视频| 国产精品久久久久久精品电影小说| 亚洲图色成人| av有码第一页| 欧美日韩在线观看h| 9色porny在线观看| 日韩免费高清中文字幕av| 九九爱精品视频在线观看| 国产欧美亚洲国产| 五月伊人婷婷丁香| 日日摸夜夜添夜夜爱| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品日本国产第一区| 99热这里只有是精品50| 亚洲av日韩在线播放| 日本猛色少妇xxxxx猛交久久| 亚洲精品日本国产第一区| 精品一区二区三卡| 亚洲欧美一区二区三区黑人 | 亚洲av电影在线观看一区二区三区| 熟女人妻精品中文字幕| a级一级毛片免费在线观看| 亚洲精品aⅴ在线观看| 精品午夜福利在线看| 国产片特级美女逼逼视频| 91成人精品电影| 免费观看在线日韩| 亚洲精品乱久久久久久| 夜夜骑夜夜射夜夜干| 欧美精品高潮呻吟av久久| 大陆偷拍与自拍| 18禁裸乳无遮挡动漫免费视频| av国产久精品久网站免费入址| 老熟女久久久| av天堂中文字幕网| 亚洲伊人久久精品综合| 一区二区三区免费毛片| 又黄又爽又刺激的免费视频.| 插逼视频在线观看| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| tube8黄色片| 久久人妻熟女aⅴ| av又黄又爽大尺度在线免费看| 老司机影院成人| 男女无遮挡免费网站观看| 国产在线视频一区二区| 女人久久www免费人成看片| 欧美日韩精品成人综合77777| 免费观看无遮挡的男女| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区| 天天躁夜夜躁狠狠久久av| 欧美亚洲 丝袜 人妻 在线| 国产精品人妻久久久影院| 国国产精品蜜臀av免费| 国产精品久久久久成人av| 免费少妇av软件| 久久国产精品大桥未久av | 嘟嘟电影网在线观看| 国产在线视频一区二区| 哪个播放器可以免费观看大片| 免费观看性生交大片5| 久久99热6这里只有精品| 国产毛片在线视频| 纵有疾风起免费观看全集完整版| 亚洲伊人久久精品综合| 日韩欧美精品免费久久| 丝瓜视频免费看黄片| 成年人免费黄色播放视频 | 免费观看性生交大片5| 成人二区视频| 精品少妇黑人巨大在线播放| 一区在线观看完整版| 在线观看免费高清a一片| 特大巨黑吊av在线直播| 欧美激情国产日韩精品一区| 国产一区二区在线观看日韩| 91精品伊人久久大香线蕉| 欧美成人午夜免费资源| 国产有黄有色有爽视频| 亚洲精品乱久久久久久| 亚洲精品国产av成人精品| 91成人精品电影| 国产熟女欧美一区二区| 美女国产视频在线观看| 久久国内精品自在自线图片| 亚洲国产精品国产精品| 欧美日韩综合久久久久久| 色吧在线观看| 婷婷色综合www| 国产免费又黄又爽又色| 中文天堂在线官网| 久久久精品94久久精品| 国产精品久久久久久精品古装| 十八禁网站网址无遮挡 | 狂野欧美白嫩少妇大欣赏| a级片在线免费高清观看视频| 免费高清在线观看视频在线观看| 综合色丁香网| 久久久久久人妻| 久久久久久久久久人人人人人人| 五月玫瑰六月丁香| 国产美女午夜福利| 国产av一区二区精品久久| 永久网站在线| 丰满乱子伦码专区| 久久精品久久久久久久性| www.av在线官网国产| 国产一区二区在线观看av| 国产精品久久久久成人av| 欧美高清成人免费视频www| 久久久午夜欧美精品| 伦理电影免费视频| 亚洲av综合色区一区| 两个人免费观看高清视频 | 亚洲美女视频黄频| 多毛熟女@视频| 精品少妇久久久久久888优播| 欧美 亚洲 国产 日韩一| 麻豆成人午夜福利视频| 性色av一级| 免费黄频网站在线观看国产| 色5月婷婷丁香| 国产精品一区二区性色av| 又大又黄又爽视频免费| 噜噜噜噜噜久久久久久91| 精品少妇内射三级| 韩国av在线不卡| 又爽又黄a免费视频| 国产精品99久久久久久久久| 日韩av在线免费看完整版不卡| 亚洲怡红院男人天堂| 久久99热这里只频精品6学生| 下体分泌物呈黄色| 免费少妇av软件| 亚洲天堂av无毛| 一本久久精品| 国产精品国产av在线观看| 只有这里有精品99| 男男h啪啪无遮挡| 精品视频人人做人人爽| 婷婷色麻豆天堂久久| 国产免费一区二区三区四区乱码| 久久国产精品男人的天堂亚洲 | 在线观看www视频免费| 成人免费观看视频高清| 日韩av免费高清视频| 久久99热6这里只有精品| 国产av精品麻豆| 精品一区在线观看国产| 高清毛片免费看| 午夜福利网站1000一区二区三区| 久久人人爽av亚洲精品天堂| 久久精品国产鲁丝片午夜精品| 天堂中文最新版在线下载| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃 | 曰老女人黄片| 亚洲在久久综合| 十分钟在线观看高清视频www | 免费人成在线观看视频色| 亚洲熟女精品中文字幕| 国产精品久久久久成人av| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 欧美丝袜亚洲另类| 高清午夜精品一区二区三区| 人人妻人人添人人爽欧美一区卜| 97在线人人人人妻| 插逼视频在线观看| 成人影院久久| 中文字幕av电影在线播放| 久久久久久久久久久丰满| 国产免费一级a男人的天堂| 久久综合国产亚洲精品| 国产高清三级在线| 国产黄频视频在线观看| 性色avwww在线观看| 久久久欧美国产精品| 美女国产视频在线观看| 丰满饥渴人妻一区二区三| 色网站视频免费| 偷拍熟女少妇极品色| 国产一区有黄有色的免费视频| 日本午夜av视频| 国内精品宾馆在线| 久久鲁丝午夜福利片| 97超视频在线观看视频| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| av天堂久久9| 精品久久久噜噜| 国内揄拍国产精品人妻在线| 51国产日韩欧美| 美女脱内裤让男人舔精品视频| 9色porny在线观看| 午夜免费观看性视频| 少妇人妻久久综合中文| 日韩欧美精品免费久久| 久久毛片免费看一区二区三区| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 全区人妻精品视频| 精品少妇久久久久久888优播| 黄色欧美视频在线观看| 精品国产一区二区久久| 久久精品夜色国产| 欧美日韩综合久久久久久| 青青草视频在线视频观看| 夜夜爽夜夜爽视频| av福利片在线| 久久久久精品性色| 国产av精品麻豆| 久久精品久久精品一区二区三区| 男人添女人高潮全过程视频| 欧美日韩精品成人综合77777| 最近2019中文字幕mv第一页| 黑丝袜美女国产一区| 久久 成人 亚洲| 色5月婷婷丁香| 亚州av有码| 久久久久久久国产电影| 大陆偷拍与自拍| 我的女老师完整版在线观看| 夜夜骑夜夜射夜夜干| 成人综合一区亚洲| 成人亚洲精品一区在线观看| 一区二区av电影网| 一区二区三区乱码不卡18| 中文字幕久久专区| 婷婷色麻豆天堂久久| 免费大片18禁| 国产爽快片一区二区三区| 最近中文字幕2019免费版| 亚洲精品久久午夜乱码| 国产欧美日韩精品一区二区| 色吧在线观看| av线在线观看网站| 亚洲美女黄色视频免费看| 99热6这里只有精品| 永久免费av网站大全| 婷婷色综合www| av福利片在线观看| 伦理电影免费视频| 一个人免费看片子| 亚洲伊人久久精品综合| 中文字幕亚洲精品专区| 亚洲精品日韩av片在线观看| 麻豆精品久久久久久蜜桃| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 国产熟女欧美一区二区| av卡一久久| 女性生殖器流出的白浆| 人人妻人人添人人爽欧美一区卜| 久久婷婷青草| 日韩中文字幕视频在线看片| 伊人久久国产一区二区| 一区二区av电影网| 性色av一级| 天天躁夜夜躁狠狠久久av| 下体分泌物呈黄色| 欧美最新免费一区二区三区| 一区二区三区四区激情视频| 精品少妇黑人巨大在线播放| 国产亚洲最大av| 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 亚洲欧洲国产日韩| 色视频www国产| 在线观看免费日韩欧美大片 | 免费黄色在线免费观看| 亚洲精品亚洲一区二区| 丝袜脚勾引网站| av.在线天堂| 性色avwww在线观看| 亚洲成色77777| 美女内射精品一级片tv| 少妇高潮的动态图| 一区二区三区四区激情视频| 十八禁网站网址无遮挡 | 国产探花极品一区二区| 色视频在线一区二区三区| 尾随美女入室| 丰满迷人的少妇在线观看| 国产精品国产av在线观看| av天堂久久9| 欧美人与善性xxx| 我要看日韩黄色一级片| 国产精品人妻久久久久久| 黑人猛操日本美女一级片| 久久久精品免费免费高清| 午夜激情久久久久久久| 久久久久久久亚洲中文字幕| xxx大片免费视频| 精品一区二区三卡| 一边亲一边摸免费视频| 久热这里只有精品99| 成人特级av手机在线观看| 午夜免费男女啪啪视频观看| 在线观看国产h片| 亚洲第一av免费看| 精品久久久久久久久av| 另类亚洲欧美激情| 青青草视频在线视频观看| 不卡视频在线观看欧美| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看| 啦啦啦视频在线资源免费观看| 亚洲经典国产精华液单| 日韩欧美精品免费久久| 精品熟女少妇av免费看| 春色校园在线视频观看| 日本-黄色视频高清免费观看| 麻豆成人午夜福利视频| 日韩一本色道免费dvd| 国产中年淑女户外野战色| 自拍偷自拍亚洲精品老妇| 91精品国产九色| 亚洲欧洲国产日韩| 在线观看人妻少妇| 国产国拍精品亚洲av在线观看| 久久狼人影院| 国产亚洲午夜精品一区二区久久| 欧美高清成人免费视频www| 人人澡人人妻人| 精品少妇黑人巨大在线播放| 少妇猛男粗大的猛烈进出视频| 免费av不卡在线播放| 久久久精品94久久精品| 午夜福利,免费看| 国产成人免费无遮挡视频| 国产av码专区亚洲av| 简卡轻食公司| 少妇人妻一区二区三区视频| av黄色大香蕉| a级毛片免费高清观看在线播放| 精品人妻熟女毛片av久久网站| 国语对白做爰xxxⅹ性视频网站| a级毛片在线看网站| 久久久久久久大尺度免费视频| 丰满人妻一区二区三区视频av| 成人美女网站在线观看视频| 久久久久人妻精品一区果冻| 伦理电影大哥的女人| 男人和女人高潮做爰伦理| 只有这里有精品99| 久久精品国产鲁丝片午夜精品| 午夜久久久在线观看| 99re6热这里在线精品视频| 欧美日韩国产mv在线观看视频| 国产永久视频网站| 中文字幕亚洲精品专区| 亚洲国产欧美在线一区| 久久亚洲国产成人精品v| 久久6这里有精品| 国产精品久久久久久久电影| 下体分泌物呈黄色| 欧美精品一区二区免费开放| 亚洲精品乱码久久久v下载方式| 97超视频在线观看视频| 国产淫语在线视频| 亚洲国产精品一区三区| 久久鲁丝午夜福利片| 一区二区三区乱码不卡18| av网站免费在线观看视频| 妹子高潮喷水视频| 九九久久精品国产亚洲av麻豆| 亚洲国产毛片av蜜桃av| 噜噜噜噜噜久久久久久91| a级片在线免费高清观看视频|