• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe

    2022-02-24 08:58:58NadezdaKorepanovaLongGu顧龍MihaiDimaandHushanXu徐瑚珊
    Chinese Physics B 2022年2期

    Nadezda Korepanova Long Gu(顧龍) Mihai Dima and Hushan Xu(徐瑚珊)

    1Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China2School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 101408,China3Institute for Physics and Nuclear Engineering,Bucharest 077125,Romania4School of Nuclear Science and Technology,Lanzhou University,Lanzhou 730000,China5Paul Scherrer Institute,Villigen 5232,Switzerland

    Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics. The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbide,are analyzed for dependences on temperature, solute concentration, and initial cluster distribution. The results are presented for different temperatures and solute concentrations,compared to experimental data available. They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with monomers only present a significantly different behavior from denser alloys or ones with different initial cluster distributions.

    Keywords: cluster dynamics,precipitates,precipitation kinetics,carbides

    1. Introduction

    Addition of titanium and niobium to steels in metallurgy is conducive to titanium/niobium carbide precipitates in solid solution due to their combination with the carbon present in steels. This process limits the formation of chromium carbides, thereby preventing intergranular corrosion.[1,2]Additionally, finely dispersed carbide precipitates increase alloy strength at low and high temperatures.[2,3]Nuclear-grade steels are required to meet higher additional standards, and the question of precipitate dynamics is raised with respect to their action as point defect recombination centers and sinks for helium, which reduces void swelling and helium embrittlement.[4–8]TiC/NbC precipitates tend to stabilize dislocation networks, and hence enhance creep resistance.[9,10]Titanium carbides are in particular attractive in this respect,which led to the development of 15-15Ti steel in the 1970s[11]for nuclear reactor applications. This steel exhibits excellent resistance to irradiation swelling and creep and has been chosen as a structural material for several generation-IV designs.

    To simulate the precipitation behavior of carbides we use cluster dynamics (CD), which is effective in predicting microstructural evolution in the material, having also minimal computing overhead for long time period simulations. In this method polyatomic clusters embedded in the solid solution exchange solute atoms by absorption or emission. Time evolution of cluster distributions is computed from differential equations coupled through monomer exchanges.

    In the case of iron, CD yields good results for Cu precipitates in ferrite[12]and MnSiNi precipitates in ferritemartensitic steel.[13]

    For NbC and TiC precipitates in steel, classical kinetic nucleation theory (CNT) has been used.[14–17]TiC precipitate modeling focuses more on precipitation–temperature–time (PTT) diagrams, rather than on time-evolution of mean radius,volume fraction,and number density.

    This paper is organized as follows:Section 2 gives a brief description of the CD method. Section 3 presents our simulation results for niobium carbides in austenite and ferrite for titanium carbide in austenite. Also,Section 3 presents a comparison of our results to existing experimental data. Section 4 summarizes our study.

    2. Methodology

    In cluster dynamics, alloys are treated as binary systems of an alloy matrix with clusters of solute atoms. Clusters grow or shrink through the absorption and emission of solute atoms,respectively. Time evolution of solute clusters is dictated by a set of differential equations (1) and (2), which assume that only the monomers are mobile. Small cluster mobility may result from a common drift of monomers, i.e., an assumption reasonable in dilute alloys:[18]

    wherenis the cluster size,Nmaxthe maximal cluster size,Cnthe uniform concentration of size-nclusters,C1the concentration of monomers,αnthe rate of monomer emission from size-nclusters,βnthe rate of monomer absorption by size-nclusters. The latter two can be calculated by

    whereis the atomic volume of the alloy matrix,rnthe radius of size-nclusters,Dthe thermal diffusion coefficient of solute atoms in the system,Athe geometrical factor,σthe interfacial energy between precipitates and matrix,the equilibrium concentration of solute atoms in the system,Tthe temperature in degrees Kelvin,andkthe Boltzmann constant. The radius of clusters with sizenis

    CD is a computationally efficient method. However,with increasingNmax100 it can become CPU-wise intensive.A traditional way to overcome this is to transform the differential equations into a Fokker–Planck partial differential equation[19,20]

    The discretization of the Fokker–Planck equation using the central difference method brings Eq.(6)into the following form:

    and the evolution of monomer concentration to

    Here,njis defined as follows:

    The above system is reduced to the initial differential equations fornj=j. This numerical scheme does not strictly conserve matter(as done by differential equations(1)and(2)).However,under carefully defined circumstances the losses are small and acceptable. To solve the above system we use in our study the ODEINT solver.[15]

    In this study we assume that the diffusion coefficient of titanium/niobium carbide is determined by the most resistive element,i.e.,we use the Ti and Nb diffusion coefficients in the simulations,correspondingly.

    The authors of Refs. [15,21] employed the “pipediffusion” effect, i.e., a faster solute diffusion along dislocations than in the lattice in general, for TiC/NbC precipitation kinetics. We include the effect of dislocations in the model,in Eq.(3),as a modified effective diffusivity:[15]

    whereDdislis the diffusion along dislocations (equal toDbulkαdisl, with theαdislcorrection factor defined according to Ref. [22] and presented in Table 1),Dbulkis the bulk diffusivity,Rcoreis the radius of the dislocation core, andρis the dislocation density. Figure 1 illustrates the effect of dislocations on diffusivity and how this changes with temperature.The figure shows the ratio of effective diffusivity to bulk diffusivity in austenitic steel for several values of dislocation densities. The ratio increases with dislocation density increasing and drops sharply with increasing temperature.

    Fig. 1. Effect of dislocation on diffusivity, i.e., the ratio of effective diffusivity to bulk diffusivity in austenite steel for several values of dislocation densities.

    The results of the simulation are the time-evolution of the mean radius,the volume fractionfv,and the number density of precipitatesNtot,calculated with the following equations.

    Mean radius

    whereis the atomic volume of precipitate,andthe mean size of precipitate clusters,

    with Δnj=nj ?nj?1,jcuttaken such thatrjcut= 1 nm for TEM data (given the resolution limit in Refs. [23,24], andrjcut=0.5 nm for SANS data).

    Volume fraction

    Number density

    withthe atomic volume of the matrix.

    In our study we use an initial cluster distribution described by

    whereC0is the concentration of the alloying element in steel,xthe part of the alloying element in monomer form,Mthe maximal cluster size assumed to exist in the steel at momentt=0. In the next section, we show the dependence of CD results on the initial state of the system.

    3. Results and discussion

    In this section, we present the results of our CD simulations for NbC and TiC in ferrite and austenite and compare them with experimental data from literature. The parameters used in the simulations are shown in Tables 1 and 2. Table 1 displays the material parameters for TiC, NbC, and iron matrix, and Table 2 gives references from which experimental data and conditions are taken.

    Table 1. Material parameters for titanium and niobium carbides and for the iron matrix.

    Table 2. Experimental datasets and the concentrations and temperatures at which they were measured.

    3.1. Niobium carbide

    Figures 2 and 3 show the dependence on the initial cluster distribution for the time-evolution of precipitate mean radius and number density. We assess this in order to verify the sensitivity of our simulations to the initial state of the system.The initial cluster distributions for our simulations are described by Eq.(15). Note in the figures that we index the radiusrMbyM,the maximal size of a cluster initially exists in the system. The cluster distributions used are described by Eq.(15),as well as by arbitrary distributions: Poisson-like,or step-function. The simulation results show to be the same for all distributions,warranting our use of Eq. (15) describing the initial distributions throughout our study.

    Figure 2 shows the time evolution of precipitate mean radius and number density in 4 distinct cases for which we vary the concentrations of monomers and other clusters (see Eq. (15), while keepingrMconstant. Complementary, Fig. 3 presents the time-evolution of the mean radius and number density in relation torM,for the same corresponding monomer concentrations. For comparison, Fig. 3 shows the simulation only for monomers.

    Fig.2. Dependence of simulation results on initial cluster distributions.T =950 °C,C(wt%Nb)=0.095.

    Fig. 3. Dependence of simulation results on initial cluster distributions and radius rM. T = 950 °C, C(wt%Nb)=0.095 (left graph),C(wt%Nb)=0.031(right graph).

    As shown in Figs. 2 and 3, the initial cluster distributions play a role only in the initial departure time (with the notable exception of the 0.031 wt%Nb-steel simulation, with monomers and very small clusters). After 1000 s the effect of the initial cluster distribution wanes and all simulations become indiscernable from one another. The exception case of 0.031 wt%Nb-steel with monomers and very small clusters is shown in Fig. 3. Its anomalous behavior is also observed for TiC inγ-Fe and NbC inα-Fe. This is likely due to the very few precipitation centers in very dilute alloys,which have the opportunity to grow faster than those in higher solute concentration alloys. The amount of such clusters remains however small (see upper panels in Fig. 3). If we introduce clusters with higher size in the initial distribution, the precipitate kinetic would follow the typical behavior.

    Fig. 4. Comparison of simulation results with experimental data for NbC precipitates in austenitic stainless steel. The dots represent the experimental data of Ref. [23]. The simulations and experimental data are shown for Nb concentration of 0.031 wt%and 0.095 wt%at temperatures 900 °C and 950 °C.

    Comparing our simulations (Fig. 4) with experimental data for niobium carbide precipitates in austenitic iron[23]we find that in 0.031 wt%Nb-steel, 90%of niobium should exist as monomers. If we accept the 100%assertion of Ref.[23],the simulations would contradict with the available experimental data. We assume that the remaining 10% distributes in clusters withrM<1 nm,invisible in TEM.The exact dislocation density for the steel used by Hansenet al.[23]is unavailable,hence we adjust this parameter to agree with the experimental data. The result shows that the dislocation density of steel is in the range 1011–1012m?2. This concurs with the mention that the steel is well annealed.[23]Note that the pipe-diffusion effect for given dislocation density range and temperatures is negligible.

    For niobium carbide precipitates in ferrite,the simulation results and experimental data[16,34]are depicted in Fig.5. Our model with the set of parameters from Table 2 matches quite well with the experimental data of Refs. [16,34]. There appears less volume fraction, predicting faster clustering of the precipitates than the data. Figure 5 also shows better agreement with the experimental data at low temperatures versus high temperatures. This is likely due to the higher energy available at high temperatures, which activates the diffusion of small clusters along with monomers,whereas in our model only the monomers are mobile.

    Fig. 5. Simulation results for C(wt%Nb)=0.079 (left) and 0.040 (right) at temperatures 600 °C, 700 °C and 800 °C. The dots represent the experimental data of Refs.[16,34]. For C(wt%Nb)=0.040 at T =800 °C the simulated number density and volume fraction of precipitates are too small,and therefore invisible in the figures.

    3.2. Titanium carbide

    Simulation results for TiC precipitates in austenite and experimental data from Refs.[24,27,32,33]are presented in Figs. 6–8. Figure 6 displays the time evolution of mean particle diameter, with CD predicting a particle diameter ∝t1/3,regardless concentration,temperature,and dislocation density(except in 0.1 wt%Ti-steel–∝t1/2). Experimental data on the other hand exhibits two regions: an initial region, with mean diameter proportional to time exponent with factor 0.5–1.0;and a second region with the time exponent having a very low factor, practically a plateau. Although in Ref. [33] the secondary region was considered as ∝t1/3(reflecting the Ostwald ripening phenomenon controlled by bulk diffusion of Ti), the authors believed that the time exponent exhibits a much lower factor (likely due to other phenomena). The two regions are also clearly observed in the size distributions.

    The size distributions from experimental data[33]are shown in Fig.7. Although our model predicts a smaller mean diameter, the overall distribution shape of the sizes is strikingly similar to the experimental ones (up to 3610 s, after which the distributions start to differ). Additionally, in the insets in Fig. 7 the experimental and simulated size distributions are plotted such that both have the same mean diameter and maximal magnitude. The comparison of size distributions relative to the experiment[24]at 750°C(Fig.8)shows a similar change in size distribution. The small difference observed may suggest a competing mechanism controlling the growth of TiC precipitates.

    Fig. 6. Comparison of simulation results with experimental data for TiC precipitates in austenitic stainless steel. The dots represent the experimental data taken from Refs.[24,27,32,33].

    Fig.7.Size distributions from experiment[33]and simulation for different times at 900°C.The insets inside the graphs display the experimental and calculated distributions shifted such that both have the same mean particle diameter.The dot-dashed vertical line represents mean diameter.

    Fig.8.Size distributions from experiment[24]and simulation for different times at 750°C.The insets inside the graphs display the experimental and calculated distributions shifted such that both have the same mean particle diameter.The dot-dashed vertical line represents mean diameter.

    In Ref. [24] it is mentioned that the pinning of mobile dislocation affects TiC precipitates kinetics in the temperature range 650–900°C. However, CD applies only diffusioncontrolled growth of precipitate clusters.To overcome this obstacle, a model for time-evolution of mobile dislocation density needs to be introduced,alongside with the dependency of diffusion on mobile dislocation density. The verification of this assertion will be explored in subsequent studies. Note that the data itself is quite scarce for TiC precipitations. We feel that there is a need for broader experimental and theoretical work on TiC precipitates.

    4. Conclusion

    In summary, we have applied cluster dynamics to model precipitation kinetics of niobium and titanium carbides in iron.The kinetic behaviors of NbC precipitates have been simulated for ferritic and austenitic iron matrices. Our simulation results are in agreement with the experimental data. We have analyzed our results for dependence on initial cluster distribution, where we consider various types of distributions and monomers concentration. The analysis has shown that the initial distribution plays a role only in the initial-time range. After this initial time,all simulations exhibit the same behavior.The analysis has also shown the“special”behavior of precipitates for the case of very dilute alloys with only monomers present: a fast growth of mean particle diameter, with small number densities. We therefore assume that dilute alloys have fewer precipitation centers, with less competition per center,allowing said centers to grow faster.

    For TiC on the other hand,the simulation results and experimental data differ somewhat more.This is indicative of another controlling mechanism besides diffusion. Such a mechanism could be mobile dislocation and its pining, which was suggested in Ref.[24]. We feel there is a need for more experimental and theoretical work to fully model titanium carbide precipitates kinetics.

    Acknowledgement

    N.Korepanova is grateful for the CAS-TWAS President’s Fellowship Programme for this doctoral fellowship (Grant No.2016CTF004).

    久久久久国产精品人妻aⅴ院| 亚洲成av人片在线播放无| 日本与韩国留学比较| 亚洲人成网站在线播放欧美日韩| 精品人妻1区二区| 国产精品免费一区二区三区在线| 色精品久久人妻99蜜桃| 校园春色视频在线观看| 一个人看的www免费观看视频| 日韩欧美精品v在线| 男女边吃奶边做爰视频| 1024手机看黄色片| 国产在线精品亚洲第一网站| 欧美区成人在线视频| 午夜a级毛片| 天美传媒精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 在线观看舔阴道视频| 日韩精品青青久久久久久| 亚洲内射少妇av| 久久国内精品自在自线图片| 亚洲欧美日韩高清在线视频| 国产爱豆传媒在线观看| 国产欧美日韩精品亚洲av| 午夜福利视频1000在线观看| 黄色欧美视频在线观看| 又紧又爽又黄一区二区| 亚洲av.av天堂| 男女视频在线观看网站免费| 中文在线观看免费www的网站| av天堂中文字幕网| 久久精品国产亚洲av香蕉五月| 岛国在线免费视频观看| 欧美高清性xxxxhd video| 亚洲最大成人中文| 黄色女人牲交| 日本一二三区视频观看| 可以在线观看毛片的网站| 精品一区二区三区视频在线观看免费| 久久久久久久久久黄片| 麻豆成人午夜福利视频| 人妻丰满熟妇av一区二区三区| 日韩中文字幕欧美一区二区| 波多野结衣高清作品| 国产亚洲精品久久久com| 中文在线观看免费www的网站| 变态另类成人亚洲欧美熟女| 国产91精品成人一区二区三区| 中国美女看黄片| 直男gayav资源| 老熟妇乱子伦视频在线观看| 男女下面进入的视频免费午夜| а√天堂www在线а√下载| 少妇人妻精品综合一区二区 | 有码 亚洲区| 亚洲欧美清纯卡通| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看| 免费看美女性在线毛片视频| 极品教师在线视频| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 校园人妻丝袜中文字幕| 成人二区视频| 久久精品国产亚洲av涩爱 | 中文字幕av成人在线电影| АⅤ资源中文在线天堂| 乱系列少妇在线播放| 亚洲在线观看片| 国产高清不卡午夜福利| 人人妻人人澡欧美一区二区| 乱人视频在线观看| 亚洲欧美清纯卡通| 高清在线国产一区| 99久久久亚洲精品蜜臀av| 有码 亚洲区| 非洲黑人性xxxx精品又粗又长| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 嫩草影院新地址| 极品教师在线视频| 国产精品98久久久久久宅男小说| 欧美黑人欧美精品刺激| 在线免费观看不下载黄p国产 | 天天躁日日操中文字幕| 欧美国产日韩亚洲一区| 三级国产精品欧美在线观看| 亚洲最大成人av| 国产亚洲欧美98| 国产精品99久久久久久久久| 亚洲综合色惰| 午夜爱爱视频在线播放| 国产亚洲精品av在线| 午夜福利18| 亚洲七黄色美女视频| 校园春色视频在线观看| 我的老师免费观看完整版| 国产一区二区亚洲精品在线观看| 美女高潮的动态| 少妇熟女aⅴ在线视频| 国产高清激情床上av| 久久久久国内视频| 午夜视频国产福利| 欧美bdsm另类| 中国美女看黄片| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 中文字幕精品亚洲无线码一区| 中国美白少妇内射xxxbb| 无遮挡黄片免费观看| 一区二区三区四区激情视频 | 欧美中文日本在线观看视频| 小说图片视频综合网站| 综合色av麻豆| 免费看日本二区| 欧美不卡视频在线免费观看| АⅤ资源中文在线天堂| 精品日产1卡2卡| 免费av不卡在线播放| 欧美黑人欧美精品刺激| 一级av片app| 色综合色国产| 国产成人福利小说| 国产亚洲欧美98| 白带黄色成豆腐渣| 高清日韩中文字幕在线| 非洲黑人性xxxx精品又粗又长| 欧美激情国产日韩精品一区| 久久精品国产亚洲av香蕉五月| 欧美+日韩+精品| 欧美日韩精品成人综合77777| 欧美zozozo另类| 亚洲男人的天堂狠狠| 欧美区成人在线视频| 哪里可以看免费的av片| 91麻豆av在线| 12—13女人毛片做爰片一| 我要看日韩黄色一级片| 欧美高清性xxxxhd video| 免费观看在线日韩| 国产伦人伦偷精品视频| 久久精品国产亚洲av天美| 亚洲第一区二区三区不卡| 久久久久久久午夜电影| 欧美成人免费av一区二区三区| 在线观看66精品国产| 国产av不卡久久| 欧美色欧美亚洲另类二区| 国产精品乱码一区二三区的特点| 他把我摸到了高潮在线观看| 国产成人aa在线观看| av在线亚洲专区| 男人舔女人下体高潮全视频| 国产精品一区www在线观看 | 在线免费十八禁| 午夜免费男女啪啪视频观看 | 久久6这里有精品| 老师上课跳d突然被开到最大视频| 国产高潮美女av| 深爱激情五月婷婷| 又黄又爽又刺激的免费视频.| 久久精品人妻少妇| 午夜福利在线观看吧| 成人综合一区亚洲| 自拍偷自拍亚洲精品老妇| 亚洲五月天丁香| 国产色婷婷99| 国产午夜精品久久久久久一区二区三区 | 久久婷婷人人爽人人干人人爱| 日本欧美国产在线视频| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 色av中文字幕| 22中文网久久字幕| www.www免费av| 亚洲av中文字字幕乱码综合| 色噜噜av男人的天堂激情| 成年人黄色毛片网站| 在线观看舔阴道视频| 国产免费av片在线观看野外av| 99精品久久久久人妻精品| 特级一级黄色大片| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 欧美潮喷喷水| 免费av毛片视频| 一进一出抽搐动态| av福利片在线观看| 俄罗斯特黄特色一大片| 国产大屁股一区二区在线视频| ponron亚洲| 欧美激情在线99| 国产色婷婷99| 国产免费av片在线观看野外av| 国产麻豆成人av免费视频| 欧美激情久久久久久爽电影| 亚洲av成人av| 久久草成人影院| 日本黄大片高清| 免费看美女性在线毛片视频| 窝窝影院91人妻| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 免费无遮挡裸体视频| 哪里可以看免费的av片| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文av极速乱 | 国产高清视频在线播放一区| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看 | a在线观看视频网站| 午夜视频国产福利| 亚洲18禁久久av| 亚洲精品456在线播放app | 亚洲精品456在线播放app | 蜜桃亚洲精品一区二区三区| 久久精品人妻少妇| 好男人在线观看高清免费视频| 亚洲午夜理论影院| 长腿黑丝高跟| 一本精品99久久精品77| 3wmmmm亚洲av在线观看| 色视频www国产| 一区二区三区激情视频| 日韩av在线大香蕉| 伦精品一区二区三区| 国产精品一区二区三区四区久久| 成熟少妇高潮喷水视频| 嫩草影视91久久| 亚洲五月天丁香| 在线播放无遮挡| 免费不卡的大黄色大毛片视频在线观看 | av黄色大香蕉| 精品久久久久久久久亚洲 | eeuss影院久久| 国产真实乱freesex| 色综合色国产| 一夜夜www| 欧美最黄视频在线播放免费| 日日撸夜夜添| 中文字幕免费在线视频6| 中文字幕av成人在线电影| 亚洲精品久久国产高清桃花| 国产精品亚洲美女久久久| 十八禁网站免费在线| 国产精品久久电影中文字幕| 日本与韩国留学比较| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 午夜亚洲福利在线播放| 在线国产一区二区在线| 哪里可以看免费的av片| 亚洲在线自拍视频| 亚洲综合色惰| 色尼玛亚洲综合影院| 色在线成人网| 一级黄片播放器| 免费观看在线日韩| 俺也久久电影网| 国内精品一区二区在线观看| 制服丝袜大香蕉在线| 成人综合一区亚洲| 亚洲精品色激情综合| 老司机福利观看| 亚洲av中文av极速乱 | 色在线成人网| 免费在线观看成人毛片| 大型黄色视频在线免费观看| 嫁个100分男人电影在线观看| 欧美激情国产日韩精品一区| 俄罗斯特黄特色一大片| 18+在线观看网站| 免费不卡的大黄色大毛片视频在线观看 | 国内久久婷婷六月综合欲色啪| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 老熟妇乱子伦视频在线观看| 免费电影在线观看免费观看| 日本三级黄在线观看| 亚洲乱码一区二区免费版| 日本欧美国产在线视频| 免费av不卡在线播放| 精品免费久久久久久久清纯| 欧美+日韩+精品| 琪琪午夜伦伦电影理论片6080| 男女那种视频在线观看| 美女免费视频网站| 午夜福利在线观看吧| 成人午夜高清在线视频| 听说在线观看完整版免费高清| 午夜精品久久久久久毛片777| 日韩在线高清观看一区二区三区 | 婷婷色综合大香蕉| 两人在一起打扑克的视频| 我的老师免费观看完整版| www.www免费av| 黄色一级大片看看| 69人妻影院| 欧美高清成人免费视频www| 天堂√8在线中文| 午夜久久久久精精品| 午夜a级毛片| 一级av片app| 精品人妻1区二区| 精品人妻熟女av久视频| 99久久久亚洲精品蜜臀av| 亚洲欧美清纯卡通| 久久精品91蜜桃| 最后的刺客免费高清国语| 少妇高潮的动态图| 亚洲aⅴ乱码一区二区在线播放| 久久久久免费精品人妻一区二区| or卡值多少钱| 在线观看舔阴道视频| 国国产精品蜜臀av免费| 波多野结衣巨乳人妻| 久久人人爽人人爽人人片va| 精品国内亚洲2022精品成人| 我的女老师完整版在线观看| 日本在线视频免费播放| 国产精品av视频在线免费观看| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av在线| 国产真实乱freesex| 国产午夜福利久久久久久| www.www免费av| .国产精品久久| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜添av毛片 | 国产精品国产高清国产av| 18禁在线播放成人免费| 久久久久久久久久成人| 国产精品自产拍在线观看55亚洲| 少妇的逼水好多| 国产一区二区在线av高清观看| av在线老鸭窝| 国产精品一区二区三区四区久久| 欧美最黄视频在线播放免费| АⅤ资源中文在线天堂| 国产伦精品一区二区三区四那| 天堂√8在线中文| 黄色欧美视频在线观看| 有码 亚洲区| 联通29元200g的流量卡| 久久久久久国产a免费观看| 窝窝影院91人妻| 99在线人妻在线中文字幕| 国内精品久久久久精免费| 亚洲精品色激情综合| 九色国产91popny在线| 一进一出好大好爽视频| 国产综合懂色| 国产精品人妻久久久影院| 精品久久久久久久久久久久久| 日本 av在线| 午夜福利成人在线免费观看| 国产主播在线观看一区二区| 亚洲天堂国产精品一区在线| 五月玫瑰六月丁香| 99久久精品一区二区三区| 国产黄a三级三级三级人| 免费人成在线观看视频色| АⅤ资源中文在线天堂| 国产在线男女| 欧美一区二区亚洲| 天天一区二区日本电影三级| 国产精品久久久久久av不卡| 欧美日韩综合久久久久久 | 成人高潮视频无遮挡免费网站| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| 18禁裸乳无遮挡免费网站照片| 99视频精品全部免费 在线| 高清毛片免费观看视频网站| 永久网站在线| 99精品久久久久人妻精品| ponron亚洲| 欧美xxxx性猛交bbbb| 亚洲 国产 在线| x7x7x7水蜜桃| 亚洲精品日韩av片在线观看| 中文字幕免费在线视频6| 国产高清激情床上av| 在线播放国产精品三级| 天堂动漫精品| 看片在线看免费视频| 国产精品爽爽va在线观看网站| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 亚洲,欧美,日韩| 日本爱情动作片www.在线观看 | 久久亚洲精品不卡| 中文在线观看免费www的网站| 亚洲一级一片aⅴ在线观看| 亚洲在线自拍视频| a级毛片免费高清观看在线播放| 精品久久久久久久人妻蜜臀av| a级毛片a级免费在线| 国产精品人妻久久久久久| or卡值多少钱| 日韩,欧美,国产一区二区三区 | 亚洲成人久久性| 国产淫片久久久久久久久| 一进一出抽搐gif免费好疼| 一进一出抽搐动态| 精品人妻视频免费看| 校园春色视频在线观看| 色综合亚洲欧美另类图片| 老女人水多毛片| 十八禁网站免费在线| 天堂av国产一区二区熟女人妻| 亚洲精品国产成人久久av| av在线亚洲专区| 狠狠狠狠99中文字幕| 99久久九九国产精品国产免费| 欧美成人一区二区免费高清观看| 亚洲中文字幕一区二区三区有码在线看| 男人和女人高潮做爰伦理| 22中文网久久字幕| 欧美中文日本在线观看视频| 99久久精品热视频| 亚洲三级黄色毛片| 欧美性感艳星| 亚洲av五月六月丁香网| 给我免费播放毛片高清在线观看| 中文字幕av成人在线电影| 国产亚洲欧美98| 一a级毛片在线观看| 日韩欧美国产在线观看| 国产精品三级大全| 成人永久免费在线观看视频| 99久久无色码亚洲精品果冻| 国产一级毛片七仙女欲春2| 99精品久久久久人妻精品| 人人妻,人人澡人人爽秒播| 蜜桃亚洲精品一区二区三区| 草草在线视频免费看| 最近最新中文字幕大全电影3| 99在线人妻在线中文字幕| 看黄色毛片网站| 欧美日韩乱码在线| .国产精品久久| 一本一本综合久久| 免费看a级黄色片| 人妻久久中文字幕网| 他把我摸到了高潮在线观看| 欧美潮喷喷水| 搡老妇女老女人老熟妇| 中文亚洲av片在线观看爽| 能在线免费观看的黄片| 男人舔奶头视频| 亚洲人成伊人成综合网2020| 18禁黄网站禁片免费观看直播| 久久精品国产鲁丝片午夜精品 | 一本精品99久久精品77| 成人国产一区最新在线观看| 国产一区二区三区在线臀色熟女| 色尼玛亚洲综合影院| 精品久久久久久久久亚洲 | 久久精品国产亚洲av涩爱 | 身体一侧抽搐| 日韩高清综合在线| 老司机深夜福利视频在线观看| or卡值多少钱| 18+在线观看网站| 精品久久久久久久久av| 国产精品永久免费网站| 国产三级在线视频| 99精品久久久久人妻精品| 国产精品久久久久久久电影| 亚洲精品影视一区二区三区av| 亚洲最大成人中文| 极品教师在线免费播放| 国产激情偷乱视频一区二区| 国产精品三级大全| 精品国内亚洲2022精品成人| 一进一出好大好爽视频| 欧洲精品卡2卡3卡4卡5卡区| 91av网一区二区| 免费看av在线观看网站| 91久久精品电影网| 久久午夜福利片| 日韩国内少妇激情av| 国产精品精品国产色婷婷| 麻豆一二三区av精品| 亚洲熟妇中文字幕五十中出| 午夜精品一区二区三区免费看| 久久中文看片网| 内地一区二区视频在线| 久久国产乱子免费精品| 老司机午夜福利在线观看视频| 亚洲 国产 在线| 国产精品嫩草影院av在线观看 | av国产免费在线观看| xxxwww97欧美| 日韩欧美一区二区三区在线观看| 赤兔流量卡办理| 亚洲aⅴ乱码一区二区在线播放| 国产午夜福利久久久久久| 国产视频内射| 国产蜜桃级精品一区二区三区| 国产精品电影一区二区三区| 狠狠狠狠99中文字幕| 亚洲中文字幕一区二区三区有码在线看| 97超级碰碰碰精品色视频在线观看| 99久久精品热视频| 中文字幕av在线有码专区| 少妇猛男粗大的猛烈进出视频 | 国产亚洲精品久久久久久毛片| 国产麻豆成人av免费视频| 久久精品久久久久久噜噜老黄 | 一区二区三区四区激情视频 | 亚洲人成网站在线播放欧美日韩| 免费在线观看成人毛片| 香蕉av资源在线| 真人做人爱边吃奶动态| 免费搜索国产男女视频| 国内少妇人妻偷人精品xxx网站| 亚洲av不卡在线观看| 免费高清视频大片| 黄色配什么色好看| 能在线免费观看的黄片| 热99在线观看视频| 亚洲av中文字字幕乱码综合| 国产精品久久久久久av不卡| 欧美+亚洲+日韩+国产| 日韩欧美在线二视频| 精品久久国产蜜桃| 一个人看的www免费观看视频| 18禁黄网站禁片午夜丰满| 一a级毛片在线观看| 国产欧美日韩精品一区二区| 一夜夜www| 人妻夜夜爽99麻豆av| 精品午夜福利视频在线观看一区| 亚洲av成人av| 黄色配什么色好看| 国产精品美女特级片免费视频播放器| 国产主播在线观看一区二区| 亚洲中文日韩欧美视频| 成人无遮挡网站| 欧美又色又爽又黄视频| 国产大屁股一区二区在线视频| 俄罗斯特黄特色一大片| 亚洲第一区二区三区不卡| 久久精品国产99精品国产亚洲性色| 丰满人妻一区二区三区视频av| 欧美日本视频| 免费观看的影片在线观看| 无遮挡黄片免费观看| 黄色欧美视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产爱豆传媒在线观看| 国产精品永久免费网站| 黄色视频,在线免费观看| 亚洲国产高清在线一区二区三| 国产单亲对白刺激| 国产av不卡久久| 免费无遮挡裸体视频| 国产中年淑女户外野战色| 一进一出好大好爽视频| 国产伦在线观看视频一区| 久久久色成人| 日本 av在线| 18+在线观看网站| 午夜福利视频1000在线观看| 精华霜和精华液先用哪个| 日韩一区二区视频免费看| 国产精品久久视频播放| ponron亚洲| 在线播放国产精品三级| 偷拍熟女少妇极品色| 色哟哟哟哟哟哟| 内地一区二区视频在线| 乱人视频在线观看| 不卡一级毛片| 国产精品久久电影中文字幕| 亚洲狠狠婷婷综合久久图片| 午夜福利在线观看免费完整高清在 | 日韩强制内射视频| 全区人妻精品视频| 色视频www国产| АⅤ资源中文在线天堂| 波野结衣二区三区在线| 一进一出抽搐动态| www日本黄色视频网| 国产综合懂色| a级毛片a级免费在线| 国内精品一区二区在线观看| 成人无遮挡网站| 日本黄大片高清| 国产中年淑女户外野战色| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 五月玫瑰六月丁香| netflix在线观看网站| 一区二区三区四区激情视频 | 国产单亲对白刺激| 国产91精品成人一区二区三区| 精品国内亚洲2022精品成人| 深爱激情五月婷婷| 又紧又爽又黄一区二区| av女优亚洲男人天堂| 婷婷色综合大香蕉| 亚洲在线观看片| 极品教师在线免费播放| 一个人看的www免费观看视频| 成人av在线播放网站| 亚洲精品日韩av片在线观看| 久久国产精品人妻蜜桃| 久久久久久大精品| 黄色一级大片看看|