• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of two new boron nitride structures:C12-BN and O16-BN

    2022-02-24 08:58:58HaoWang王皓YaruYin殷亞茹XiongYang楊雄YanruiGuo郭艷蕊YingZhang張穎HuiyuYan嚴慧羽YingWang王瑩andPingHuai懷平
    Chinese Physics B 2022年2期
    關(guān)鍵詞:楊雄張穎王皓

    Hao Wang(王皓) Yaru Yin(殷亞茹) Xiong Yang(楊雄) Yanrui Guo(郭艷蕊)Ying Zhang(張穎) Huiyu Yan(嚴慧羽) Ying Wang(王瑩) and Ping Huai(懷平)

    1College of Science,Civil Aviation University of China,Tianjin 300300,China2Center for Transformative Science,ShanghaiTech University,Shanghai 201210,China3Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China4Shanghai Synchrotron Radiation Facility,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China

    Based on the first-principles method,we predict two new stable BN allotropes: C12-BN and O16-BN,which belong to cubic and orthorhombic crystal systems,respectively. It is confirmed that both the phases are thermally and dynamically stable. The results of molecular dynamics simulations suggest that both the BN phases are highly stable even at high temperatures of 1000 K. In the case of mechanical properties, C12-BN has a bulk modulus of 359 GPa and a hardness of 43.4 GPa, making it a novel superhard material with potential technological and industrial applications. Electronic band calculations reveal that both C12-BN and O16-BN are insulators with direct band gaps of 3.02 eV and 3.54 eV,respectively. The XRD spectra of C12-BN and O16-BN are also simulated to provide more information for possible experimental observation. Our findings enrich the BN allotrope family and are expected to stimulate further experimental interest.

    Keywords: new boron nitride phase,first-principles calculations,mechanical properties,electric properties

    1. Introduction

    As the chemical analogue of carbon, novel boron nitride (BN) allotropes have attracted extensive theoretical and experimental attentions for their fascinating properties. BN shares similar structures with carbon from zero-dimensional(0D) buckyball,[1,2]one-dimensional (1D) nanotubes and nanoribbons,[3,4]two-dimensional (2D) nanosheets,[5]to three-dimensional (3D) crystalline or amorphous BN.[6]For the 3D crystalline structures,BN allotropes can be mainly divided into two groups. One group includes diamond-like c-BN and w-BN constituting the sp3bonding network,[7]while the other one is graphite-like h-BN and r-BN containing only sp2bonds. It is generally recognized that c-BN is a thermodynamically stable phase under ambient conditions and h-BN becomes stable at much higher temperature over 1200 K. In spite of the structural similarity between BN and carbon,their physical and chemical properties are thoroughly different because of the ionic character in B—N bonding.Due to the difference in electronegativity,N and B atoms form strongly polarized covalent bonds,leading their BN compounds to fascinating mechanical[8]and thermal[9]properties and excellent tolerance under extremely harsh environment such as high temperature and high pressures.

    The similarity in structure with diverse properties compared to carbon materials has attracted intensive experimental and theoretical attentions to explore more novel BN structures.Recently, based on the concept that all the carbon allotropes predicted previously may have one-to-one counterparts in BN allotropes, a lot of novel BN structures have been proposed and studied, such as bct-BN, Z-BN, M-BN, P-BN, H18-BN,Rh6-BN,O-BN,T-B3N3,and HCBN,[10—16]corresponding to Bct-C4,Z-carbon,M-carbon,P-carbon,H18carbon,Rh6 carbon,oC32 carbon,T6 carbon,and CHC,[17—25]respectively.In addition,there are some other novel carbon and BN structures,such astP40carbon, C48 carbon and B4N4.[26—28]Among those BN allotropes, Z-BN and O-BN are confirmed to be novel superhard materials owing to the high bulk modulus and Vickers hardness, based on the first-principles calculations.One of these materials, i.e., T-B3N3, proposed by Zhanget al., is the first reported 3D BN structure with intrinsic metallicity. It is a tetragonal phase consisting of a mixed sp2and sp3bonding network. Another BN structure, i.e., HCBN, a hexagonal phase containing only sp2bonds, is also predicted to exhibit intriguingly intrinsic metallicity in succession. In addition, Xionget al.proposed an sp2and sp3-hybridized metallic monoclinic 3D BN structure, which is confirmed to be the most energetically favorable structure among the previously predicted metallic BN structures.[29]However, to the best of our knowledge,most of the BN allotropes and their carbon counterparts have not been synthesized experimentally.

    Recent shock compression experiments of polycrystalline graphite produced obvious evidence of a new carbon phase.Liet al.have theoretically confirmed it to be a body-centeredcubic carbon phase termed BC12.[30]Wanget al.identified a novel topological semimetal carbon phase termed bco-C16in all sp2bonding networks byab initiocalculations.[31]The simulated x-ray diffraction spectrum matches well with the measured XRD spectra of detonation and chimney soot, indicating the presence of bco-C16in the specimen. Under the inspiration of BC12 and bco-C16carbon,we propose two new BN allotropes termed C12-BN and O16-BN, which are analogous to the recently reported BC12 and bco-C16carbon, respectively. In this paper, first-principles calculations are conducted to illustrate the physical properties of C12-BN and O16-BN.Firstly,the energetic and dynamical stability are confirmed with respect to the volume-dependence of total energy per atom, cohesive energy and phonon dispersion. Secondly,the mechanical properties are studied based on the calculations of the elastic constants. The Vickers hardness of C12-BN is obtained to be 43.4 GPa, indicating that it is a superhard material. The mechanical properties of O16-BN are relatively poor. However,O16-BN has low density and porous structure,which leads to potential applications in adsorption materials,e.g., hydrogen storage. In addition, the analysis of electronic properties reveals that both C12-BN and O16-BN are insulators with direct band gaps of 3.02 and 3.54 eV, respectively.Their XRD spectra are also provided for further experimental identification.

    2. Computational methods

    The structural optimization and properties of two new BN allotropes are calculated using the density functional theory(DFT)as implemented in the Viennaab initiosimulation package (VASP),[32]with projector augmented wave (PAW)potentials.[33]The exchange—correlation of electrons is treated within the generalized gradient approximation (GGA) in the form of Perdew—Burke—Enzelhof (PBE) functional.[34]Plane waves with kinetic energy cutoff of 600 eV are adopted to expand the wave function of valence electrons(2s22p1for B and 2s22p3for N). The crystal structures are optimized using the conjugate gradient method, in which the convergence criteria for the electronic and the ionic relaxation are set to 10?7eV and 10?5eV/for energy and force, respectively. These choices ensure that all the enthalpy calculations are well converged to less than 1 meV/atom. The Brillouin zone sample meshes for all mentioned systems are set to be dense enough(9×9×9 for c-BN, 19×19×9 for h-BN, 11×11×11 for BC8-BN,9×9×9 for C12-BN,and 7×11×17 for O16-BN).The energetic and thermodynamic stabilities of these BN allotropes can be evaluated by comparing their total energies and cohesive energies. Based on these optimized structures, we calculate their elastic constants using the strain-stress method.The bulk modulus, shear modulus and Vickers hardness are then derived from the Voigt—Reuss—Hill averaging scheme.[35]The phonon frequencies for C12-BN and O16-BN are calculated using the direct supercell method,which uses the forces obtained by the Hellmann—Feynman theorem implemented in the supercell. Phonon spectra calculations are then carried out by diagonalizing the dynamical matrix using the Phonopy package.[36]Electronic band structures are calculated using the Heyd—Scuseria—Ernzerhof hybrid functional(HSE06).[37]

    3. Results and discussion

    As shown in Table 1,we first present the structural characters of the two new BN phases.The crystal structure of C12-BN belongs to theIˉ43dspace group.

    Table 1. The calculated lattice parameters a,b,and c,density(ρ),cohesive energies(Ecoh),bulk modulus(B),shear modulus(G)and Vickers hardness(Hv)for C12-BN,O16-BN,BC8-BN,c-BN and h-BN.

    In cubic representation depicted in Fig. 1(a), its equilibrium lattice constant derived from GGA isa=5.238with N atoms occupying 12b(0.5, 0.25, 0.125) and B atoms occupying 12a(0.75, 0.125, 0) Wyckoff positions. Figure 1(b)shows the primitive unit cell of C12-BN, in which there are 12 atoms with lattice parameters optimized to bea=4.536,α=β=γ=109.47°. All the B—N bonds in C12-BN are sp3bonded and have equal length of 1.604, which is slightly larger than that of diamond-like c-BN (1.570). However,there are two kinds of bond angels, i.e., 131.81°and 99.59°in C12-BN, which are also found in a body centered cubic phase BC8-BN as 115.74°and 102.09°, respectively. The new orthorhombic phase O16-BN belongs to theIma2 space group. At zero pressure, its equilibrium lattice constants area= 4.939,b= 3.256andc= 8.040. There are 16 atoms in the orthorhombic unit cell of O16-BN,in which two nonequivalent N atoms occupy the 4a(0.0, 0.0,?0.4096)and 4b(0.25,?0.6259,?0.1757), and two nonequivalent B atoms occupy the 4a(0.0,0.0,?0.5882)and 4b(0.25,0.1256,?0.3265)Wyckoff positions. As shown in Fig.1(d),only sp2configuration exists in the O16-BN structure, which is different from the all sp3B—N bonding characters in C12-BN.There are four inequivalent bonds in O16-BN,with their bond lengths of 1.457, 1.463, 1.480, and 1.436, respectively. The average bond length is 1.459,which is comparable with the sp2bond length in h-BN(1.45).

    Fig.1.(a)The cubic crystal structure of C12-BN in Iˉ43d symmetry.(b)The primitive cell of C12-BN containing twelve atoms.(c)A hexagonal representation of C12-BN.(d)The orthorhombic unit cell of O16-BN.

    To understand the energetic stabilities of C12-BN and O16-BN, we calculated their total energies as a function of volume using the GGA scheme. Figure 2 shows the calculated total energy per atom versus its volume for C12-BN and O16-BN, together with those of other reported BN allotropes. It is interesting to see that theE—Vcurve of C12-BN is very close to that of BC8-BN,and the equilibrium volume per atom is comparable with that of sp3bonded c-BN and BC8-BN.Further,we can see that C12-BN is more stable than M-BN.Therefore,the C12-BN phase is almost as stable as BC8-BN. However, it can be obviously found that O16-BN is less stable than the most three stable phases of c-BN,h-BN and Z-BN, but more stable than other BN structures.The equilibrium volume is larger than that of c-BN and closer to that of h-BN, which is reasonable due to the sp2bonding characters in O16-BN. To further investigate the thermodynamic stabilities of C12-BN and O16-BN, we calculate their cohesive energies, which are the main parameters to measure thermodynamic stability. The cohesive energy is defined asEcoh=[E(BN)?nBE(B)?nNE(N)]/nTotal, whereE(BN) is the total energy of the unit cell of BN structure,n(B/N)is the number of B/N atoms in the unit cell, andE(B/N) is the energy of a single pure B/N atom. The results are summarized in Table 1,with those of c-BN,h-BN and BC8-BN also provided for comparison. The cohesive energy of C12-BN is obtained to be 6.23 eV,being only 0.08 eV slightly less than BC8-BN.For O16-BN,the cohesive energy is 0.47 eV larger than BC8-BN and 0.15 eV less than c-BN.Therefore,both the results of total energy and the cohesive energy indicate that C12-BN and O16-BN have similar stabilities as other stable BN allotropes reported before.

    Fig.2. Total energies as a function of volume per atom for C12-BN and O16-BN in comparison with other reported BN structures.

    The phonon dispersion plays an important role in examining the dynamical stability of a structure. The appearance of imaginary frequencies in the phonon dispersion spectra leads to unstable structures. Therefore,we examined the dynamical stability of C12-BN and O16-BN by calculating their phonon dispersion curves at zero pressure. As shown in Fig. 3, no imaginary frequencies were observed throughout the whole Brillouin zone, confirming the dynamical stabilities of both C12-BN and O16-BN.

    Fig.3. Calculated phonon band structures of C12-BN(a)and O16-BN(b)at zero pressure.

    In order to investigate the mechanical stabilities and properties of C12-BN and O16-BN,we calculate their elastic constantsCij. To ensure mechanical stability, all elastic constants should satisfy the well-known Born—Huang stabilitycriteria. As a cubic crystal, the three independent elastic constants (C11= 725.4 GPa,C12= 176.7 GPa andC44=322.8 GPa) of C12-BN satisfy the stability criteria (C11>0,C44>0,C11> |C12|andC11+2C12>0), suggesting that the C12-BN phase is mechanically stable. For orthorhombic phase structures, the mechanical stability criteria is given byC11>0,C22>0,C33>0,C44>0,C55>0,C66>0,C11+C22+C33+2(C12+C13+C23)>0,C11+C22?2C12>0,C11+C33?2C13>0,C22+C33?2C23>0. In our results,the calculated nine independent elastic constants for O16-BN are given asC11=624.7 GPa,C22=789.4 GPa,C33=107.0 GPa,C44=71.5 GPa,C55=73.1 GPa,C66=277.7 GPa,C12=231.6 GPa,C13= 131.2 GPa, andC23= 61.9 GPa. Obviously, they satisfy the mechanical stability criteria. Based on the elastic constants, we can also evaluate the bulk modulus(B),shear modulus(G)and Vickers hardness(Hv),whereHv=2(G3/B2)0.585?3. As for the C12-BN phase, it is obtained thatB=359 GPa,which is slightly lower than that of c-BN(376 GPa)and higher than that of BC8-BN and h-BN.The value of Vickers hardness is 43.4 GPa, indicating that C12-BN is a potential superhard material(Hv>40 GPa). Although the bulk modulus and Vickers hardness of O16-BN are lower than those BN allotropes consisting of sp3bonds,they are still higher than that of h-BN. Due to the low density and porous structure,O16-BN may have potential applications in adsorption materials.

    Fig.4. MD simulations on the potential energy fluctuations of(a)C12-BN and (b) O16-BN at 1000 K. Insets show the crystal structures at certain time steps.

    The thermal stabilities of C12-BN and O16-BN are examined by means of MD(molecular dynamics)simulations with the NVT ensemble. The temperature is set as 1000 K. The simulated system is 2×2×2 supercell and the time step is chosen to be 1 fs. The MD simulations are carried out on the supercell of both C12-BN and O16-BN for 3000 time steps,which is long enough to reach steady state.As shown in Fig.4,the structures of C12-BN and O16-BN are still kept intact at 1000 K with 3000 time steps. There is also no drastic transformation in the potential energy fluctuation curves,indicating that no structure transformation happens. The results suggesting that both C12-BN and O16-BN are highly stable even at high temperatures of 1000 K.Therefore,the thermal stabilities of C12-BN and O16-BN are confirmed.

    Fig. 5. Calculated electronic band structures and density of states(DOS) in arbitrary units for C12-BN (a) and O16-BN (b). The Fermi level is set to zero and denoted by the dashed line. The valence band maximum and conduction band minimum of C12-BN and O16-BN are both located at the Γ point with a direct band gap of 3.02 and 3.54 eV,respectively.

    In addition, to explore the electronic properties of C12-BN and O16-BN,we calculate their electronic band structures and densities of states. As shown in Fig. 5, the calculated energy gaps for C12-BN and O16-BN are 3.02 and 3.54 eV,respectively,indicating that both C12-BN and O16-BN are insulators. Interestingly, the insulating character of C12-BN is different from the semiconducting property of BC12 carbon,which has the structure similar to C12-BN.Also,O16-BN andbco-C16 carbon, with similar crystal structures, show different electronic properties. The bco-C16 has been reported to be a topological node-line semimetal before. Moreover,from the DOSs of C12-BN and O16-BN, it is seen that the conduction band minimum(CBM)is mainly originated from the B atoms, while the valence band maximum(VBM)is mostly contributed by the N atoms.

    To provide more characterization and information for further experimental observation in future, the x-ray diffraction(XRD) spectra are calculated for C12-BN and O16-BN with a wavelength of 1.54,together with those of existing c-BN,h-BN and BC8-BN phases. As shown in Fig. 6, each phase has its own characteristic peaks. Specifically,the characteristic peaks of c-BN are located at 2θ=43.4°and 74.3°,consistent with both experimental values and other simulated results.The strongest peak of h-BN is located at 2θ=26.7°.For BC8-BN, four main XRD peaks are located at 39.7°, 44.6°, 49.0°and 78.8°, respectively. The most intense peak of C12-BN is located at 2θ=42.3°,together with other characteristic peaks at 49.3°, 66.8°and 82.5°, respectively. However, there are much more peaks for O16-BN,i.e.,29.6°,32.9°,40.1°,42.9°,43.7°,45.1°and 47.6°. The simulated XRD spectra predicted here are expected to be helpful in distinguishing C12-BN and O16-BN phases in future experiments.

    Fig.6. Simulated XRD spectra of c-BN,h-BN,BC8-BN,C12-BN and O16-BN.The x-ray wavelength is set as 1.54 .

    To synthesize this new phase of C12-BN experimentally,it is interesting to note that C12-BN can be viewed as a polymerized form of BN nanotubes, as shown in Fig.1(c), which is similar to the case of BC12 carbon that can be viewed as a polymerized form of(3,0)carbon nanotube. The structural relations suggest that C12-BN may be synthesized by the polymerization of selected BN nanotubes. For the synthesis of O16-BN, it is worth referring to a recently reported Cco-C8carbon,[41]which can be obtained by (4,4) carbon nanotube under nonhydrostatic pressure. Since borazine(B3N3H6)has been recently used in the synthesis of BN nanotubes and BN nanosheets,[42]we anticipate that borazine will be a potential starting material to synthesize both C12-BN and O16-BN.Moreover,the synthetic procedure for molecular structures has been recently reported by Aymeet al.[43]

    4. Conclusion

    In summary, we have predicted two new BN allotropes C12-BN and O16-BN by means of first-principles calculations. C12-BN is a cubic BN structure inIˉ43dsymmetry containing purely sp3hybridized six-membered rings. O16-BN,belonging toIma2 space group,is an orthorhombic phase containing only sp2bonds. Based on the results of total energy and cohesive energies,the energetic stabilities of both C12-BN and O16-BN are confirmed as well as their dynamical stabilities,since no imaginary phonon frequencies appear throughout the whole Brillouin zone.Molecular dynamics simulations are carried out to verify the thermal stabilities of C12-BN and O16-BN.Further electronic band structure calculations reveal that C12-BN and O16-BN are insulators with direct band gaps of 3.02 and 3.54 eV,respectively. The C12-BN structure possesses excellent bulk modulus and Vickers hardness, making it a potential incompressible and superhard material. The mechanical properties of O16-BN are relatively poor. However,O16-BN has low density and porous structure, which leads to potential applications in adsorption materials, e.g., hydrogen storage. The XRD spectra of C12-BN and O16-BN are also provided for possible experimental observation. Therefore,our findings not only enrich the existing allotropes family of BN-based material,but also stimulate further experimental research.

    Acknowledgement

    Project supported by PhD research startup foundation of Civil Aviation University of China(Grant No.2020KYQD94).

    猜你喜歡
    楊雄張穎王皓
    張穎
    大江南北(2023年2期)2023-02-11 05:45:56
    張穎
    大江南北(2022年11期)2022-11-08 12:04:18
    張穎
    大江南北(2022年3期)2022-03-12 01:19:16
    我是小小繪畫家
    Limit Cycles by Perturbing a Piecewise Near-Hamiltonian System with 4 Switching Lines
    楊雄國畫作品欣賞
    金沙江文藝(2018年3期)2018-04-20 01:53:38
    百步穿“楊”
    On the Notion of Equivalence in Translation
    百步穿“楊”
    王皓國畫作品
    長江叢刊(2015年20期)2015-12-13 06:59:05
    一本大道久久a久久精品| 亚洲一级一片aⅴ在线观看| 久久久久久久久久成人| 亚洲欧美色中文字幕在线| 免费黄网站久久成人精品| 精品人妻熟女av久视频| 久久久久网色| 丰满迷人的少妇在线观看| 免费久久久久久久精品成人欧美视频 | 伦精品一区二区三区| 两个人免费观看高清视频| 男女无遮挡免费网站观看| 婷婷成人精品国产| 性色avwww在线观看| 91精品国产国语对白视频| 久久综合国产亚洲精品| 欧美少妇被猛烈插入视频| 亚洲av福利一区| 少妇人妻 视频| 日韩伦理黄色片| 国产精品一国产av| 这个男人来自地球电影免费观看 | 日韩成人伦理影院| 两个人免费观看高清视频| 久热这里只有精品99| 美女中出高潮动态图| 在线观看一区二区三区激情| 国产日韩欧美亚洲二区| 国产精品久久久久久久久免| 日本黄色片子视频| 热re99久久国产66热| 黑人高潮一二区| 亚州av有码| 欧美日韩成人在线一区二区| 免费av不卡在线播放| 乱码一卡2卡4卡精品| 久久久久久久大尺度免费视频| 51国产日韩欧美| 建设人人有责人人尽责人人享有的| 51国产日韩欧美| 国产精品一区www在线观看| 国产片特级美女逼逼视频| 亚洲av在线观看美女高潮| 久久韩国三级中文字幕| 久久午夜福利片| 国模一区二区三区四区视频| 国产免费视频播放在线视频| 国产黄片视频在线免费观看| 久久韩国三级中文字幕| 精品少妇内射三级| 亚洲精品av麻豆狂野| 在线观看免费高清a一片| 日韩欧美精品免费久久| 久久国内精品自在自线图片| 亚洲欧美清纯卡通| 国产精品久久久久久精品电影小说| 熟女人妻精品中文字幕| 亚洲五月色婷婷综合| 秋霞在线观看毛片| 热re99久久精品国产66热6| 成人二区视频| 久久精品国产亚洲av天美| 久久精品国产鲁丝片午夜精品| 中文字幕人妻熟人妻熟丝袜美| 涩涩av久久男人的天堂| 日本91视频免费播放| 国产一区有黄有色的免费视频| 午夜视频国产福利| 看免费成人av毛片| 黑丝袜美女国产一区| 中文字幕人妻丝袜制服| 男女啪啪激烈高潮av片| 成人手机av| 精品国产乱码久久久久久小说| 一级毛片 在线播放| 欧美精品国产亚洲| 男女边吃奶边做爰视频| 日产精品乱码卡一卡2卡三| 汤姆久久久久久久影院中文字幕| 国产黄频视频在线观看| 国产精品一国产av| 一区二区av电影网| 亚洲综合色网址| 国产精品一区二区在线不卡| xxxhd国产人妻xxx| 中文字幕av电影在线播放| av卡一久久| 中文字幕精品免费在线观看视频 | 观看美女的网站| 99久久综合免费| 欧美 亚洲 国产 日韩一| 久久人人爽人人片av| 纯流量卡能插随身wifi吗| 新久久久久国产一级毛片| 少妇精品久久久久久久| 国产午夜精品一二区理论片| 人妻制服诱惑在线中文字幕| 99视频精品全部免费 在线| 日本-黄色视频高清免费观看| 精品人妻偷拍中文字幕| 免费观看在线日韩| 三级国产精品欧美在线观看| 只有这里有精品99| 人人妻人人澡人人看| 色吧在线观看| 一本色道久久久久久精品综合| 91久久精品国产一区二区三区| 亚洲av男天堂| 黑人高潮一二区| 丰满迷人的少妇在线观看| 精品少妇内射三级| 国产黄色视频一区二区在线观看| 欧美3d第一页| 97在线人人人人妻| 赤兔流量卡办理| .国产精品久久| 亚洲av国产av综合av卡| 26uuu在线亚洲综合色| 在线观看三级黄色| 亚洲欧洲日产国产| 欧美日韩视频精品一区| 美女中出高潮动态图| 99久久精品一区二区三区| 久久久久久久久久成人| 成年美女黄网站色视频大全免费 | 午夜福利影视在线免费观看| 亚洲欧美一区二区三区国产| 中文字幕制服av| videos熟女内射| 97超碰精品成人国产| 亚洲中文av在线| 两个人的视频大全免费| 欧美bdsm另类| 男女国产视频网站| 18禁在线无遮挡免费观看视频| 久久精品夜色国产| 久久精品国产亚洲av天美| 欧美变态另类bdsm刘玥| 国产白丝娇喘喷水9色精品| 日产精品乱码卡一卡2卡三| 日韩大片免费观看网站| 男女边吃奶边做爰视频| 亚洲精品av麻豆狂野| 国产精品99久久99久久久不卡 | 欧美成人午夜免费资源| 午夜免费男女啪啪视频观看| 少妇高潮的动态图| 亚洲精品自拍成人| www.色视频.com| 青青草视频在线视频观看| 久久国内精品自在自线图片| 麻豆乱淫一区二区| 欧美日韩亚洲高清精品| 国产av一区二区精品久久| 伦精品一区二区三区| 男女免费视频国产| 69精品国产乱码久久久| 国产成人精品婷婷| 一二三四中文在线观看免费高清| 九色亚洲精品在线播放| 欧美亚洲日本最大视频资源| 在线观看一区二区三区激情| 看十八女毛片水多多多| 日韩av不卡免费在线播放| 美女国产视频在线观看| 国产精品女同一区二区软件| 春色校园在线视频观看| 如何舔出高潮| 80岁老熟妇乱子伦牲交| 国产成人精品久久久久久| av福利片在线| xxx大片免费视频| 美女内射精品一级片tv| 欧美丝袜亚洲另类| 一级毛片aaaaaa免费看小| 亚洲国产日韩一区二区| 国产免费福利视频在线观看| 3wmmmm亚洲av在线观看| 满18在线观看网站| 成人黄色视频免费在线看| √禁漫天堂资源中文www| 一区二区三区免费毛片| 性色av一级| 亚洲丝袜综合中文字幕| 欧美日本中文国产一区发布| 人妻夜夜爽99麻豆av| 99久久中文字幕三级久久日本| 最近中文字幕高清免费大全6| 麻豆精品久久久久久蜜桃| 在线观看一区二区三区激情| 免费av不卡在线播放| 欧美人与性动交α欧美精品济南到 | 你懂的网址亚洲精品在线观看| 日韩在线高清观看一区二区三区| 国产成人精品一,二区| 亚洲精品一二三| 夫妻性生交免费视频一级片| 中文天堂在线官网| 国产一区二区在线观看av| 少妇的逼好多水| 国产av国产精品国产| 老司机亚洲免费影院| 成人二区视频| 日本欧美视频一区| 永久网站在线| 国产 一区精品| 精品久久蜜臀av无| 久久人人爽av亚洲精品天堂| 久久国产亚洲av麻豆专区| 九色亚洲精品在线播放| 亚洲国产精品国产精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇人妻 视频| 黄片播放在线免费| 狂野欧美激情性bbbbbb| 日本91视频免费播放| 国产亚洲精品第一综合不卡 | 97超碰精品成人国产| 边亲边吃奶的免费视频| 桃花免费在线播放| 观看美女的网站| 简卡轻食公司| 涩涩av久久男人的天堂| 国产在线视频一区二区| 18在线观看网站| 国产精品欧美亚洲77777| av不卡在线播放| 亚洲av在线观看美女高潮| 99国产精品免费福利视频| 交换朋友夫妻互换小说| 街头女战士在线观看网站| 有码 亚洲区| 99久国产av精品国产电影| 如何舔出高潮| 久久av网站| 亚洲精品亚洲一区二区| 日韩中文字幕视频在线看片| 国产av国产精品国产| 国产精品蜜桃在线观看| 一区二区日韩欧美中文字幕 | 狠狠精品人妻久久久久久综合| 80岁老熟妇乱子伦牲交| 高清午夜精品一区二区三区| 婷婷色综合大香蕉| av一本久久久久| 成年人午夜在线观看视频| 涩涩av久久男人的天堂| 老司机影院毛片| 国产伦精品一区二区三区视频9| 久久综合国产亚洲精品| 久久久久国产精品人妻一区二区| 丝袜喷水一区| 中国美白少妇内射xxxbb| 久久这里有精品视频免费| 天堂中文最新版在线下载| 久久久久久久久大av| 国产免费一区二区三区四区乱码| 女的被弄到高潮叫床怎么办| 人妻 亚洲 视频| 交换朋友夫妻互换小说| 国产一区亚洲一区在线观看| 99久久综合免费| 三上悠亚av全集在线观看| 99国产精品免费福利视频| 亚洲av国产av综合av卡| 高清av免费在线| 女性被躁到高潮视频| 欧美3d第一页| 国产精品人妻久久久久久| 国产精品国产三级专区第一集| 丰满乱子伦码专区| 在线 av 中文字幕| 久久久国产欧美日韩av| 熟女电影av网| 亚洲欧洲国产日韩| 黄色毛片三级朝国网站| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| 亚洲美女黄色视频免费看| 久久综合国产亚洲精品| 嘟嘟电影网在线观看| 在线观看免费视频网站a站| 22中文网久久字幕| 午夜激情久久久久久久| 国产黄色视频一区二区在线观看| 日日啪夜夜爽| 色94色欧美一区二区| 少妇被粗大猛烈的视频| 久久精品久久精品一区二区三区| 亚洲国产欧美日韩在线播放| 五月开心婷婷网| 亚洲精品,欧美精品| 黄片无遮挡物在线观看| 国产一区二区在线观看日韩| 国精品久久久久久国模美| 91精品国产九色| av有码第一页| 国产国语露脸激情在线看| av在线播放精品| 亚洲精品乱码久久久v下载方式| 国产在线免费精品| 亚洲熟女精品中文字幕| 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放| 色94色欧美一区二区| 一区二区av电影网| 亚洲精品国产av成人精品| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 18禁裸乳无遮挡动漫免费视频| 中文乱码字字幕精品一区二区三区| 大又大粗又爽又黄少妇毛片口| 亚洲第一区二区三区不卡| 2018国产大陆天天弄谢| 午夜激情av网站| 丁香六月天网| 满18在线观看网站| 一级毛片 在线播放| 亚洲av免费高清在线观看| 国产日韩欧美在线精品| 午夜福利在线观看免费完整高清在| 最近最新中文字幕免费大全7| 国产精品熟女久久久久浪| 九九爱精品视频在线观看| 欧美日韩亚洲高清精品| 精品酒店卫生间| 亚洲av.av天堂| 一区二区三区乱码不卡18| 九九爱精品视频在线观看| av有码第一页| 极品人妻少妇av视频| 老司机亚洲免费影院| 80岁老熟妇乱子伦牲交| 男人操女人黄网站| 在线观看免费高清a一片| 乱码一卡2卡4卡精品| 中文天堂在线官网| 大码成人一级视频| 三级国产精品片| 女性生殖器流出的白浆| 亚洲一级一片aⅴ在线观看| 国产片特级美女逼逼视频| 午夜免费观看性视频| 日本av免费视频播放| 成人漫画全彩无遮挡| 狠狠精品人妻久久久久久综合| 九九在线视频观看精品| 亚洲av福利一区| 免费看av在线观看网站| 99国产综合亚洲精品| 日韩av免费高清视频| a 毛片基地| 国产成人一区二区在线| 欧美bdsm另类| 成人无遮挡网站| 国产亚洲av片在线观看秒播厂| 天天操日日干夜夜撸| 国产综合精华液| 高清毛片免费看| 精品人妻偷拍中文字幕| 黄色怎么调成土黄色| 精品亚洲成a人片在线观看| 一级,二级,三级黄色视频| 欧美日韩视频高清一区二区三区二| 一级黄片播放器| 99re6热这里在线精品视频| av免费在线看不卡| 午夜激情av网站| 九草在线视频观看| 自拍欧美九色日韩亚洲蝌蚪91| 少妇人妻精品综合一区二区| 性高湖久久久久久久久免费观看| 爱豆传媒免费全集在线观看| 亚洲人与动物交配视频| 看免费成人av毛片| 一本—道久久a久久精品蜜桃钙片| 九色亚洲精品在线播放| 成人免费观看视频高清| 亚洲内射少妇av| 亚洲不卡免费看| 欧美精品一区二区大全| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 满18在线观看网站| 亚洲国产精品一区三区| 丁香六月天网| 亚洲精品乱码久久久久久按摩| 久久国产亚洲av麻豆专区| 午夜福利影视在线免费观看| 热99久久久久精品小说推荐| 亚洲美女视频黄频| 欧美精品亚洲一区二区| 黄色一级大片看看| 国产成人精品婷婷| 三上悠亚av全集在线观看| 亚洲欧美精品自产自拍| 校园人妻丝袜中文字幕| 久久狼人影院| 美女主播在线视频| 欧美 亚洲 国产 日韩一| 亚洲精品久久成人aⅴ小说 | 97超视频在线观看视频| 三级国产精品片| 欧美三级亚洲精品| 黄片播放在线免费| 国产日韩欧美在线精品| 欧美人与性动交α欧美精品济南到 | 久久青草综合色| 天天影视国产精品| 如日韩欧美国产精品一区二区三区 | 大片免费播放器 马上看| 免费看不卡的av| 色吧在线观看| 国产精品久久久久久精品古装| 国产成人精品福利久久| 久久久久人妻精品一区果冻| 精品亚洲成a人片在线观看| 免费人妻精品一区二区三区视频| 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 极品人妻少妇av视频| 性色av一级| 久久99一区二区三区| 丝袜美足系列| 两个人免费观看高清视频| 十分钟在线观看高清视频www| 999精品在线视频| 久久久久久久久久人人人人人人| 狂野欧美激情性xxxx在线观看| 极品少妇高潮喷水抽搐| 国产精品 国内视频| 伦理电影大哥的女人| a级毛片免费高清观看在线播放| 老熟女久久久| 只有这里有精品99| 老司机亚洲免费影院| 久久久国产精品麻豆| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的| 日韩,欧美,国产一区二区三区| 男女边吃奶边做爰视频| 十八禁高潮呻吟视频| 欧美亚洲 丝袜 人妻 在线| 久久久久网色| 亚洲成人av在线免费| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 亚洲国产av影院在线观看| 免费看av在线观看网站| 91久久精品电影网| 日本av手机在线免费观看| 国产高清三级在线| 欧美日韩在线观看h| 在线免费观看不下载黄p国产| 天堂中文最新版在线下载| 国产精品久久久久久av不卡| 精品人妻熟女毛片av久久网站| 国产亚洲一区二区精品| 在线观看免费高清a一片| 18+在线观看网站| 亚洲综合色网址| 熟妇人妻不卡中文字幕| 天天操日日干夜夜撸| 热re99久久国产66热| 国产成人精品一,二区| 国产成人免费观看mmmm| 内地一区二区视频在线| 日本色播在线视频| 丰满饥渴人妻一区二区三| 免费观看av网站的网址| 国产成人a∨麻豆精品| 久久久久久久久久成人| 一级a做视频免费观看| 国产精品麻豆人妻色哟哟久久| 视频在线观看一区二区三区| 亚洲四区av| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 国产精品不卡视频一区二区| 2018国产大陆天天弄谢| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 三级国产精品片| 亚洲激情五月婷婷啪啪| 一本大道久久a久久精品| 久久女婷五月综合色啪小说| 午夜免费鲁丝| 97超碰精品成人国产| 一级片'在线观看视频| 久久久a久久爽久久v久久| 亚洲欧洲国产日韩| 在线观看www视频免费| 午夜福利网站1000一区二区三区| 中文字幕av电影在线播放| 亚洲精品一二三| 国产高清国产精品国产三级| av专区在线播放| 亚洲内射少妇av| 美女中出高潮动态图| 色婷婷av一区二区三区视频| 在线亚洲精品国产二区图片欧美 | 99久久综合免费| 国产欧美亚洲国产| 黄片播放在线免费| 午夜福利,免费看| 精品久久国产蜜桃| 天天影视国产精品| 七月丁香在线播放| av黄色大香蕉| 少妇人妻 视频| 亚洲国产成人一精品久久久| 天天躁夜夜躁狠狠久久av| 五月天丁香电影| 亚洲欧美精品自产自拍| 高清欧美精品videossex| 成人亚洲精品一区在线观看| 久久精品久久精品一区二区三区| 中国美白少妇内射xxxbb| 久久影院123| 亚洲人成网站在线观看播放| 欧美少妇被猛烈插入视频| 黄色欧美视频在线观看| 日韩中文字幕视频在线看片| 精品亚洲成a人片在线观看| 少妇人妻久久综合中文| 亚洲精品国产av蜜桃| av福利片在线| 欧美 日韩 精品 国产| 男人操女人黄网站| 美女视频免费永久观看网站| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频| 国产一区二区三区av在线| 亚洲精品456在线播放app| 成人黄色视频免费在线看| 妹子高潮喷水视频| av播播在线观看一区| 建设人人有责人人尽责人人享有的| 国产精品国产三级专区第一集| 秋霞在线观看毛片| 久久99蜜桃精品久久| 另类精品久久| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 国产精品国产三级专区第一集| 国产乱来视频区| av播播在线观看一区| 国产精品久久久久久久久免| 看非洲黑人一级黄片| 特大巨黑吊av在线直播| 最黄视频免费看| 丝袜在线中文字幕| 老女人水多毛片| 亚洲欧美成人综合另类久久久| 狠狠精品人妻久久久久久综合| 日韩伦理黄色片| 亚洲精品一区蜜桃| 久久精品国产自在天天线| 女的被弄到高潮叫床怎么办| 69精品国产乱码久久久| 18禁观看日本| 精品久久久久久电影网| 国产色爽女视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一av免费看| 日韩中文字幕视频在线看片| 美女中出高潮动态图| 丰满乱子伦码专区| 精品人妻在线不人妻| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 一级a做视频免费观看| 两个人免费观看高清视频| 成人18禁高潮啪啪吃奶动态图 | 日韩av在线免费看完整版不卡| 久久人人爽人人片av| 大香蕉久久成人网| 在线亚洲精品国产二区图片欧美 | 日韩一区二区三区影片| 午夜av观看不卡| 蜜桃久久精品国产亚洲av| 亚洲国产精品专区欧美| 国产日韩欧美在线精品| 免费久久久久久久精品成人欧美视频 | 成人二区视频| 精品国产露脸久久av麻豆| 91精品伊人久久大香线蕉| 免费高清在线观看日韩| av电影中文网址| 高清黄色对白视频在线免费看| 午夜激情av网站| 免费高清在线观看视频在线观看| 国产69精品久久久久777片| 国产精品无大码| 国产爽快片一区二区三区| 最近最新中文字幕免费大全7| 亚洲欧美色中文字幕在线| 免费久久久久久久精品成人欧美视频 | 亚洲美女黄色视频免费看| 亚洲国产成人一精品久久久| 草草在线视频免费看| 日本91视频免费播放| 久久久国产一区二区| 热99久久久久精品小说推荐| 在线观看国产h片| 欧美激情国产日韩精品一区| 一二三四中文在线观看免费高清| 色网站视频免费| 午夜激情av网站| 国产精品一国产av| 中文字幕制服av| 黑人高潮一二区| 在线观看免费视频网站a站| 99九九线精品视频在线观看视频| 亚洲国产日韩一区二区|