• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of detection and scattering of sound waves by the lateral line of a fish

    2022-02-24 08:58:28AdamyanPopovBlinovaandZavalniuk
    Chinese Physics B 2022年2期

    V M Adamyan I Y Popov I V Blinova and V V Zavalniuk

    1Odessa I.I.Mechnikov National University,Dvoryanskaya Str. 2,Odesa,65082,Ukraine

    2ITMO University,Kronverkskiy,49,Saint Petersburg,197101,Russia

    3Odessa Military Academy,10 Fontanska Road,Odesa 65009,Ukraine

    A solvable model of lateral line of a fish based on a wave equation with additional boundary conditions on a set of isolated points is proposed. Within the framework of this model it is shown that the ratio of pressures on lateral lines on different fish flanks, as well as the cross section of sound scattering on both the lines, strongly depends on angles of incidence of incoming sound waves. The strong angular dependence of the pressure ratio seems to be sufficient for the fish to determine the directions from which the sound is coming.

    Keywords: acoustic equation,point self-adjoint perturbations of Laplace operator,scattering,lateral line

    1. Introduction

    Sound detection capabilities of fishes are mainly based on two sensory systems,the inner ears and small receptor organs called “neuromasts” with sizes in order of 100 μm; in some fish species a gas filled swim bladder is also involved in sound detection.[1,2]There are two types of neuromasts,i.e.,superficial and canal. Superficial neuromasts are scattered on surface of a fish and mainly responsible for detection of surrounding flows,while the canal neuromasts are found in special subdermal canals and percept a pressure gradient of the flow.[3–6]It was shown that fishes are able to localize the direction to the sound source and that the amount of data gathered by the auditory organs is quite sufficient for some species to navigate and hunt in complex dark environments.[7–11]However,full understanding of exact mechanisms of fish sound-based navigation and the details of interactions between fish auditory systems have not been achieved yet.

    Sound perception is a multi-stage event that requires four components to occur: a source of vibration, a transmitting medium,a receiving detector,and an interpreting nervous system. Sound energy is carried by motion of the particles that make up the transmitting medium. For inhabitants of aquatic environment,the carrier of sound is water in which they are located. Most fish species and amphibians,among other natural tools,have a special organ known as the lateral line that detects and interprets water vibrations.Visually,as a rule,it represents two dark or light stripes, one on each side of the body trunk of the fish, stretching from the head to the end of the caudal peduncle. In fact, each of the stripes is a single fluid-filled longitudinal canal buried in the skin which contains arrays of equidistant neuromasts (this structure is shown in Fig. 1).The canal is connected to the external environment via secondary fluid-filled tubules that branch off from the main tube and penetrate the skin at regular intervals. Water vibrations are transmitted from the secondary tubules to the canal by sequential compression and expansion of fluid. These vibrations then jiggle the gelatinous domes of hair cells lining the canal.The neuromasts usually alternate with external openings of the canal.

    Various aspects of fish hearing(acoustical parameters of lateral line and swim bladder, description of sound receiver,etc.) are described in Refs.[12–19].

    In Refs.[20,21]a physical explanation(based on the resonance scattering of incoming sound wave)is given for a mechanism of the detection of a sound source by means of the lateral line organ. In a few words, a system of neuromasts can be approximately considered as a periodic system of identical acoustic resonators with small opening. It was shown that a monochromatic wave falling on such a system can excite edge waves in the vicinity of resonators. The intensity of such a wave drastically depends on the angle between the directions of the incident wave and the lateral line. The fish picks up incoming waves(through neuromasts due to pressure surges)and tunes in to them, changing the orientation of their body in order to achieve the maximum tactile sensation, and thus somehow determines the direction to the sound source.

    In this paper, using these considerations as a starting point, we develop a simplified solvable model of the acoustic field in the vicinity of the lateral line, which allows us to compare the overpressure on opposite sides of the fish caused by a distant sound source and to describe the angular distribution of the resulting scattered sound waves.

    The proposed approach is based on the perturbation theory for the wave equation in the form of the system of additional boundary conditions at the points of location of neuromasts. In other words, we model the influence of the lateral line on the wave field in the immediate vicinity of the line as a perturbation induced by a system of identical zero-radius potentials[22]sitting in the places of neuromasts. In this way,one can easily supplement recent studies,[23–28]which have used physical instrumentation and mathematical modeling to show that the lateral line of fish is a subtle analyzer of the gradients of the surrounding hydrodynamic fields.

    In Section 2, we briefly outline the proposed model and find the explicit expression of Green’s function for the associated Helmholtz equation. Using the obtained expression for Green’s function, in Section 3 we calculate the pressure on each neuromast in the field of a plane monochromatic wave.Meanwhile, considering the neuromasts of the lateral line as a scattering system,we determine the scattering amplitude of a plane monochromatic sound wave incident on this system at an arbitrary angle. Finally, in Section 4, the results obtained are illustrated by calculations based on them,which show that at certain not very low frequencies the ratio of pressures on mirror-symmetric neuromasts from both sides of the fish body,due to phase delay, can vary by many orders of magnitude,depending on the direction of the sound source and the body orientation of the fish. In this case,the resonance dependence of the total and differential scattering cross sections on the incidence angle of the incoming plane monochromatic wave and the orientation of the fish body is also manifested.

    Fig. 1. The structure of the lateral line: (a) lateral line position, (b)lateral line structure,(c)neuromast structure.

    2. Model description and Green’s function

    To construct a model to be solved, we replace small resonators (neuromasts) with point potentials and consider two parallel periodic chains of such potentials as a model of lateral lines on the sides of a fish. The mathematical basis for the development of such models is the theory of extensions of selfadjoint operators(see,e.g.,Refs.[22,29–33]).

    To explain the concept of an extension,let us consider the wave equation

    for the velocity potentialψ(r,t). Here,Ais the Laplace differential operator?c2Δandcis the speed of sound. To add correctly a single zero-range potential located at the pointr0into Eq.(1)one can start from the standard defined self-adjoint Laplace operator?c2Δ inL2(R3) with the domainH2(R3),whereH2is the Sobolev spaceand we restrict this operator on the set of smooth functions vanishing together with its derivatives at the pointr0=0. The closure of this restricted operator is a symmetric operatorA0with the deficiency indices(1,1). The domain of the corresponding adjoint operatorconsists,for any fixedIms>0,of all the functions in the form of sum

    whereψ0∈H2(R3), andis any complex number. The boundary form for anyψ,υfrom the domain ofadmits the representation

    All selfadjoint extensions ofA0are minimal restrictions ofon linear subsets of functions from the domain of,for which the above boundary form equals zero. Each such restriction has the form of an additional linear relation

    with a certain real parameterβ, ?∞<β ≤∞, which is superimposed on the functions from the domain ofA?0.

    The linear relation(2)takes the form of a boundary condition at the origin:

    It is worth mentioning that the indicated self-adjoint operators,which are formally defined as Laplace differential operators on the set of functions satisfying the boundary condition (3), in three-dimensional problems legalize the heuristic expressions(see Ref.[22])

    From now on we will assume thatβ ≥0,since the selfadjoint extensions ofA0related to the acoustic problems should be non-negative operators.

    Further, for simplicity, we will neglect the curvature of the lateral canals on the sides of the fish, and as a model of these canals,together with their openings and neuromasts,wewill consider two parallel chains of equal equidistant potentials of zero radius of the form (3) with the distance between the nearest neighbors in each of the chains equal toa. We will assume that the second chain is shifted relative to the first by the vectorg=g1e1+g2e2,wheree1ande2are unit vectors along the axesXandY, respectively, and that the indicated zero-range potentials are located along the first and second chains at points=na=nae1and=na+g,n= 0,±1,±2,...,±[N/2] (Fig. 2). HereNais the length of each chain and [x] is the integer part ofx. Accepting that the length of the fish body trunk is much greater than the distance between the nearest canal neuromasts and for many fish speciesNreaches and even exceeds 100,[34]in what follows we will assume thatN ?1. It worth mentioning that results of calculations using deduced below explicit asymptotic expression and corresponding numerical calculation cease to differ significantly forN ≥100.

    Fig. 2. Schematic of the model setup. Neuromasts (green squares) of the lateral line are on both sides of the fish’s body.

    As in the previous case, starting from the selfadjoint Laplacian inL2(R3)with the domainH2(R3),one can restrict this operator on the set of smooth functions vanishing at the indicated points of two chains. The closure of this restricted operator is a symmetric operator with infinite deficiency indices.It has rich family of self-adjoint extensions. To construct a suitable self-adjoint extension,one can take the corresponding adjoint operator. An element from its domain has the following form:

    whereψ0belongs to the domain of the initial selfadjoint Laplacian,are some constants,such that the series (4)converges to aL2(R3)function and Ims>0. Choosing the extension corresponding to the sum of the same zerorange potentials,as described above,at pointsna,na+g,n=0,±1,±2,...,that is,the extension determined by the boundary conditions

    yields a self-adjoint operatorA, as required for the model in question. For simplicity,we set furtherg=ge2.

    Green’s function forA(the kernel of the integral operator(A?s2·I)?1,Ims>0, I-unity operator) in general has the form

    The system of boundary conditions (5) gives us a sufficient number of equations to uniquely determine the numerical values of the coefficients. At the same time forN ?1,repeating the same considerations that are used in solid state theory to describe vibrational or electronic excitations of crystal structures, one can easily obtain approximate expressions for the same coefficients, the more accurate the moreN. To obtain in this way an explicit expression for Green’s functionG(r,r′,s)we put

    Using the boundary conditions (5) one can easily check that the functionssatisfy the following system of algebraic equations:

    Taking into account expressions (7), Eq. (8) and the inversion formula yields

    We can conclude that the following version of Krein’s formula for Green’s function forAis valid:

    3. Remote source detection and sound scattering

    If the complex amplitude of steady-state sound vibrations caused by a point source

    at a pointRcreates an excess variable pressurep0e?iωtat a short distancer0, qr0?1 from the source, then at arbitrary pointrthe complex amplitude of the excess pressurep(r)e?iωtwill be determined by the expression

    From now on we will assume that the distance from the origin to the remote source reads|R|=R ?Na.

    Within the framework of the model under consideration,the expression(11)is singular at the points mimicking neuromasts’ positions on the lateral line. To get around this difficulty, assuming thatr0in(11) is significantly smaller thana,we will define the pressure at pointsn=0,±1,±2,...as the average

    Krein’s formula (10) and explicit expressions (7) and (8) for its entries yield

    Taking into account that the sound absorption in water increases with frequency, we restrict ourselves also to cases in which the frequency of incoming sound satisfies the condition

    Remember that

    whereθXandφare polar and azimuthal angles, respectively(see Fig.3),and

    The expressions for excess pressuresP(1)(t) andP(2)(t)on two parallel parts of the lateral line can be deduced from Eq. (13) with the account of the asymptotic expression (15),formula (16) and the restriction (13). Assuming thatR ?L,i.e., the distance between the fish and a remote point source significantly exceeds the length of the lateral line,the expressions forP(1)(t),P(2)(t)can be written in the following form:

    These expressions make it possible in principle to determine the direction of the radius vector drawn from the fish to a remote source.

    For the scattering of a plane sound wave

    by the considered system of point potentials the corresponding solution of the wave equation (1) is determined according to the Lippmann–Schwinger equation

    (details can be found in Ref.[35]).

    Note that

    Therefore,referring to the functions in(7),in the limitN →∞we have

    Hence,by virtue of Eqs.(10)and(19)–(21)we have

    Remembering again the asymptotic expression (15) we also see that

    Using relations(22)and(23)we find that the scattering amplitudefω(d,b),

    forN ?1 has the form

    As followed from(24),scattering from the lateral line can be observed only when the projections of the wave vectors of the waves incident on this line and reflected from it satisfy the Bragg-type condition

    Fig. 3. Angles of incidence of the incoming sound wave on the fish body.

    If the sound wavelength is larger than 2a, thenbX=dXand

    Thus,for sound wavelengths greater than 2a,that is,if the condition(14)holds,sound scattering will occur while maintaining the projection of the wave vector on the direction parallel to the lateral line.Given the conservation of this component of the wave vector,the scattering amplitude in the plane perpendicular to the lateral line as a function of,angleθXand the scattering angleφin the plane perpendicular to the lateral line,

    is determined by the expressions

    These expressions can be further simplified,given that thex-component of the vectorgis negligibly small or can be neglecteddue to other reasons(for example,ifa ?|g|andqa ?1). In such cases due to the equalityQ(k,s)=Q(?k,s)the expression(27)takes the form

    4. Discussion

    The starting point for the development of the considered model was the mechanism of a sound detection by the lateral line of fishes proposed in Refs.[20,21],where the corresponding analysis was generally qualitative. In the present paper we develop a quantitative approach, which allows to distinguish the pressures caused by an external source on the lateral lines on the different sides of the fish body trunk and to calculate the differential cross section of sound scattering on the lateral line.

    Fig. 4. The ratio of the pressure amplitudes and the phase difference for pressures P(1)(t),P(2)(t)on the flanks of the fish,calculated by formula(17)for the frequency corresponding to qa=π/6:(a)as a function of φ for different values of θX;(b)as a function of θX for different values of φ;(c)argas a function of φ for different values of θX;(d)arg as a function of θX for different values of φ.In images(a)and(c),solid,dashed and dash-dotted lines correspond to , respectively. In images(b)and(d), solid, dashed and dash-dotted lines correspond to φ =0, ,respectively.

    Fig. 5. The ratio for different qa and θX (φ =0 (blue) and φ = (green)).

    The expressions obtained for the excess pressures on the lateral line on opposite flanks of the fish caused by a remote point source demonstrate a pronounced dependence of those pressures both on the sound frequency and source position relative to the fish body in terms of the anglesθXandφ(see Figs.4 and 5).

    Dependence on the angles becomes stronger with increasing sound frequency and manifests itself strongly for the phase shift and amplitudes quotient for fluctuations of excess pressures on both sides of the lateral line along sides of the fish.

    In the case of sound scattering on a lateral line within the framework of the considered model, the projections of wave vectors of the incident and scattered sound waves onto the lateral line,as expected from symmetry considerations,are preserved. Note that in this case the dependence of the scattering amplitude on anglesθXandφbecomes more pronounced with the increasing frequency(Fig.6).

    Fig.6. The differential scattering cross section|fω(θX,φ)|2 calculated by formula(28)for the frequency of the sound wave corresponding to qa= (a)and qa= (b).

    Of course, due to the excessive sketchiness of the proposed model and insignificant simplifications in the calculations, the results obtained do not reveal the entire functionality of the lateral line of fishes. However, the model can be improved. Instead of point potentials, one can use resonators with a point window approximation(see Refs.[30,31])or point potentials with an internal structure.[36]For fisheswith lateral lines of the “surface” type, Green’s function for free space might be replaced by Green’s function for two halfspaces with different speeds of sound,[37,38]and for fishes with lateral lines of the“cannel type”,i.e.,by Green’s function for three-dimensional space with a potential with periodic internal structure,concentrated on two parallel lines.All these changes make it possible to expand the scope of the model under consideration. However,these improvements are unlikely to substantially change the pronounced binaural effect (see Figs. 4 and 5), which, in our opinion, allow fishes to determine the bearing of sound sources.

    Note that even in the present form the model and its results can be useful for the rapidly developing field of the development and application of an artificial later line and different later-line-inspired sensors.[39,40]Such sensors find their use in aeroacoustic measurements,[41]hydrodynamic sensing,[42–45]as a navigational instrument for robotic fishes,[46–49]etc.

    Acknowledgements

    This work was supported by the Ministry of Education and Science of Ukraine (Grant No. 0115U003208). The authors thank Dr. R.Fricke for useful advice.

    桃红色精品国产亚洲av| 久久亚洲精品不卡| www.999成人在线观看| 18禁在线播放成人免费| 一夜夜www| 可以在线观看的亚洲视频| 99热这里只有精品一区| 一个人看视频在线观看www免费 | 别揉我奶头~嗯~啊~动态视频| 欧洲精品卡2卡3卡4卡5卡区| 国产伦在线观看视频一区| 女同久久另类99精品国产91| 在线a可以看的网站| 精品电影一区二区在线| 亚洲av成人不卡在线观看播放网| 久久久精品欧美日韩精品| 国产真实乱freesex| 亚洲天堂国产精品一区在线| 久久精品91蜜桃| 黄色女人牲交| 国产精品 国内视频| 欧美中文日本在线观看视频| 欧美高清成人免费视频www| 1000部很黄的大片| 有码 亚洲区| 亚洲最大成人手机在线| 精品久久久久久久久久免费视频| 岛国在线观看网站| 又黄又粗又硬又大视频| 一个人看的www免费观看视频| 日本免费一区二区三区高清不卡| 久久精品综合一区二区三区| 51国产日韩欧美| 久久久久久久亚洲中文字幕 | 男女做爰动态图高潮gif福利片| 搡老妇女老女人老熟妇| 欧美极品一区二区三区四区| 国产午夜精品论理片| 又粗又爽又猛毛片免费看| 亚洲av成人av| 国产成人av教育| 可以在线观看毛片的网站| 精品一区二区三区人妻视频| 久久精品国产清高在天天线| 男人的好看免费观看在线视频| 日韩欧美国产在线观看| 身体一侧抽搐| 国产精品日韩av在线免费观看| 久久久国产成人免费| 亚洲av成人精品一区久久| 精品福利观看| 欧美午夜高清在线| 久久久久九九精品影院| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 极品教师在线免费播放| 亚洲久久久久久中文字幕| 欧美精品啪啪一区二区三区| 欧美日本亚洲视频在线播放| 亚洲av熟女| 老司机福利观看| 婷婷亚洲欧美| 国产高清激情床上av| 99久久无色码亚洲精品果冻| 观看免费一级毛片| 动漫黄色视频在线观看| 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 99久久成人亚洲精品观看| 国产黄片美女视频| 婷婷六月久久综合丁香| 最近最新免费中文字幕在线| 亚洲在线观看片| 亚洲电影在线观看av| 色吧在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲国产欧美网| 国产爱豆传媒在线观看| 露出奶头的视频| aaaaa片日本免费| 久久久久久久久中文| av中文乱码字幕在线| 久久久精品欧美日韩精品| av片东京热男人的天堂| 国产精品国产高清国产av| 久久亚洲精品不卡| 一级作爱视频免费观看| 国产av麻豆久久久久久久| 1000部很黄的大片| 少妇丰满av| 中文字幕熟女人妻在线| 久久精品91无色码中文字幕| aaaaa片日本免费| 99久久精品一区二区三区| 搡老熟女国产l中国老女人| 日本黄大片高清| 亚洲精品日韩av片在线观看 | 免费人成视频x8x8入口观看| 午夜精品在线福利| 亚洲av二区三区四区| 成人国产一区最新在线观看| 亚洲av美国av| 99国产综合亚洲精品| 熟女人妻精品中文字幕| 免费看日本二区| 一级毛片女人18水好多| 免费看光身美女| av在线蜜桃| 97人妻精品一区二区三区麻豆| 在线观看一区二区三区| 国产一区二区激情短视频| av视频在线观看入口| 99精品久久久久人妻精品| 熟女少妇亚洲综合色aaa.| 蜜桃久久精品国产亚洲av| svipshipincom国产片| 18+在线观看网站| 激情在线观看视频在线高清| 欧美三级亚洲精品| 美女大奶头视频| 长腿黑丝高跟| 母亲3免费完整高清在线观看| 午夜激情福利司机影院| xxx96com| 女人高潮潮喷娇喘18禁视频| 国模一区二区三区四区视频| 久久久久久久久中文| 亚洲成人精品中文字幕电影| 91在线精品国自产拍蜜月 | 国产欧美日韩精品亚洲av| 国产成人aa在线观看| 亚洲中文日韩欧美视频| 午夜福利18| 日韩av在线大香蕉| 观看免费一级毛片| 国产野战对白在线观看| 欧美成人一区二区免费高清观看| 中文字幕av在线有码专区| 97人妻精品一区二区三区麻豆| 18美女黄网站色大片免费观看| 九色国产91popny在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美日韩卡通动漫| 美女被艹到高潮喷水动态| 国产av在哪里看| 免费人成视频x8x8入口观看| 一级毛片高清免费大全| 五月伊人婷婷丁香| 好男人在线观看高清免费视频| 欧美高清成人免费视频www| 国产一区在线观看成人免费| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添小说| 亚洲自拍偷在线| 亚洲五月天丁香| 亚洲在线自拍视频| 国产真人三级小视频在线观看| av视频在线观看入口| 性欧美人与动物交配| 国产精品爽爽va在线观看网站| 免费av毛片视频| 19禁男女啪啪无遮挡网站| 深爱激情五月婷婷| 国产精品美女特级片免费视频播放器| 亚洲精品乱码久久久v下载方式 | 午夜影院日韩av| 欧美一区二区国产精品久久精品| 国产成人影院久久av| 美女高潮的动态| 国产激情欧美一区二区| 欧美最新免费一区二区三区 | 精品不卡国产一区二区三区| 欧美bdsm另类| 在线免费观看的www视频| 99在线视频只有这里精品首页| 色综合婷婷激情| 中文字幕人成人乱码亚洲影| 精品欧美国产一区二区三| 亚洲av中文字字幕乱码综合| 国产一级毛片七仙女欲春2| 午夜a级毛片| 19禁男女啪啪无遮挡网站| 在线观看午夜福利视频| 老司机午夜福利在线观看视频| 国产在线精品亚洲第一网站| 岛国在线观看网站| 亚洲 国产 在线| 亚洲精品色激情综合| 99国产综合亚洲精品| 黄片大片在线免费观看| 国产精品久久电影中文字幕| 免费av观看视频| 中文亚洲av片在线观看爽| 在线观看一区二区三区| 叶爱在线成人免费视频播放| 午夜精品久久久久久毛片777| 精品人妻一区二区三区麻豆 | 国产高清三级在线| 成年女人看的毛片在线观看| 免费av毛片视频| 给我免费播放毛片高清在线观看| 欧美+日韩+精品| 国产私拍福利视频在线观看| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 91在线精品国自产拍蜜月 | 偷拍熟女少妇极品色| 91麻豆av在线| 婷婷精品国产亚洲av在线| 欧美黑人巨大hd| 一级毛片高清免费大全| 99热只有精品国产| 精品午夜福利视频在线观看一区| 欧美又色又爽又黄视频| 一本一本综合久久| 欧美日韩精品网址| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 五月伊人婷婷丁香| 日韩有码中文字幕| 熟女电影av网| 国产高清有码在线观看视频| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av香蕉五月| 久99久视频精品免费| 又黄又爽又免费观看的视频| 舔av片在线| 国产黄a三级三级三级人| 久久草成人影院| 色哟哟哟哟哟哟| 69人妻影院| 亚洲在线观看片| 久久精品国产自在天天线| 亚洲人成电影免费在线| 99视频精品全部免费 在线| 欧美一区二区亚洲| 一级毛片高清免费大全| 亚洲精品美女久久久久99蜜臀| 色av中文字幕| 午夜影院日韩av| 精品欧美国产一区二区三| 激情在线观看视频在线高清| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| 中文字幕人成人乱码亚洲影| 欧美黄色淫秽网站| 国产乱人视频| 真人一进一出gif抽搐免费| 欧美激情久久久久久爽电影| 久久久精品欧美日韩精品| 男女那种视频在线观看| 亚洲片人在线观看| 老司机午夜福利在线观看视频| 欧美一区二区精品小视频在线| 亚洲精品影视一区二区三区av| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 身体一侧抽搐| 黄色视频,在线免费观看| 美女高潮的动态| 特级一级黄色大片| 日韩欧美国产一区二区入口| 久久久久久大精品| 国产精品美女特级片免费视频播放器| 波多野结衣巨乳人妻| 久久久久亚洲av毛片大全| 最近视频中文字幕2019在线8| 国产成人av教育| 天天一区二区日本电影三级| 男女做爰动态图高潮gif福利片| 18禁裸乳无遮挡免费网站照片| 国产成人av激情在线播放| 国产99白浆流出| 亚洲国产精品999在线| 欧美性猛交黑人性爽| 99精品久久久久人妻精品| 麻豆一二三区av精品| 免费看a级黄色片| a级毛片a级免费在线| 国产成人aa在线观看| 国产精品亚洲美女久久久| www日本黄色视频网| 欧美成人a在线观看| 日本在线视频免费播放| 在线天堂最新版资源| 国产高清视频在线观看网站| 操出白浆在线播放| 亚洲最大成人中文| 一a级毛片在线观看| 毛片女人毛片| 美女被艹到高潮喷水动态| 日韩精品青青久久久久久| 99热只有精品国产| 女警被强在线播放| 99热这里只有精品一区| 波多野结衣巨乳人妻| 无遮挡黄片免费观看| 听说在线观看完整版免费高清| 国产69精品久久久久777片| 日本熟妇午夜| 欧美av亚洲av综合av国产av| 噜噜噜噜噜久久久久久91| 亚洲第一欧美日韩一区二区三区| 国语自产精品视频在线第100页| 男女下面进入的视频免费午夜| 一区二区三区免费毛片| 国产高清三级在线| 国产老妇女一区| 久久久久久国产a免费观看| 成人性生交大片免费视频hd| 国产成+人综合+亚洲专区| www.色视频.com| 男女之事视频高清在线观看| 99热这里只有精品一区| 欧美日韩瑟瑟在线播放| 国产主播在线观看一区二区| 亚洲五月天丁香| 国产高清三级在线| 此物有八面人人有两片| 少妇裸体淫交视频免费看高清| 色av中文字幕| 亚洲人成网站在线播放欧美日韩| АⅤ资源中文在线天堂| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品av在线| 欧美av亚洲av综合av国产av| 男插女下体视频免费在线播放| 中文字幕av在线有码专区| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 真人做人爱边吃奶动态| av天堂在线播放| 欧美成人性av电影在线观看| 级片在线观看| 国产一区二区三区视频了| 最近最新中文字幕大全免费视频| xxx96com| 男女午夜视频在线观看| 超碰av人人做人人爽久久 | 俺也久久电影网| 天堂网av新在线| www日本黄色视频网| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 亚洲av成人av| 可以在线观看的亚洲视频| 小说图片视频综合网站| а√天堂www在线а√下载| 精品久久久久久久久久免费视频| 国产一区在线观看成人免费| 非洲黑人性xxxx精品又粗又长| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 在线播放无遮挡| 免费高清视频大片| 国产精品 欧美亚洲| 欧美av亚洲av综合av国产av| 一级黄片播放器| 亚洲精品一卡2卡三卡4卡5卡| 观看美女的网站| 久久久精品大字幕| 国产野战对白在线观看| 精品欧美国产一区二区三| 757午夜福利合集在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久伊人香网站| 美女免费视频网站| 国产精华一区二区三区| 国产免费男女视频| 国产精品一区二区三区四区久久| 内地一区二区视频在线| 国产三级在线视频| 一本一本综合久久| 少妇高潮的动态图| 长腿黑丝高跟| 一进一出抽搐动态| 夜夜看夜夜爽夜夜摸| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| www.www免费av| 欧美乱色亚洲激情| 波多野结衣高清作品| 免费在线观看亚洲国产| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯| 啦啦啦韩国在线观看视频| 成人特级黄色片久久久久久久| 国产伦人伦偷精品视频| 一区二区三区国产精品乱码| 天堂动漫精品| 内地一区二区视频在线| 伊人久久大香线蕉亚洲五| 免费搜索国产男女视频| 国产亚洲精品av在线| 床上黄色一级片| 欧美国产日韩亚洲一区| 亚洲 国产 在线| 国产精华一区二区三区| 老司机在亚洲福利影院| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久免费视频| 女人高潮潮喷娇喘18禁视频| 亚洲最大成人手机在线| 婷婷亚洲欧美| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| 中文字幕av成人在线电影| 午夜老司机福利剧场| 国产精品亚洲美女久久久| 五月玫瑰六月丁香| 欧美日韩亚洲国产一区二区在线观看| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线观看免费完整高清在 | 国产真实乱freesex| 国产视频一区二区在线看| 狠狠狠狠99中文字幕| 久久久久免费精品人妻一区二区| 九色成人免费人妻av| 国产又黄又爽又无遮挡在线| 亚洲美女视频黄频| 老司机午夜福利在线观看视频| 国产精品久久久久久亚洲av鲁大| www.www免费av| 亚洲av二区三区四区| 男女之事视频高清在线观看| 18+在线观看网站| 天堂√8在线中文| 熟女少妇亚洲综合色aaa.| 亚洲自拍偷在线| 久久久久性生活片| 三级国产精品欧美在线观看| 亚洲国产精品成人综合色| 国内精品久久久久精免费| 国产精品香港三级国产av潘金莲| 免费在线观看亚洲国产| 国产成+人综合+亚洲专区| 91麻豆精品激情在线观看国产| 精品午夜福利视频在线观看一区| 亚洲专区中文字幕在线| 亚洲欧美日韩卡通动漫| 欧美日本视频| 岛国视频午夜一区免费看| 三级毛片av免费| 国产老妇女一区| 亚洲狠狠婷婷综合久久图片| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三| 狂野欧美激情性xxxx| 成人av一区二区三区在线看| 久久久久久久精品吃奶| 美女被艹到高潮喷水动态| 高清日韩中文字幕在线| 99久久精品国产亚洲精品| 51午夜福利影视在线观看| x7x7x7水蜜桃| 身体一侧抽搐| 午夜免费激情av| 黄色成人免费大全| 男女之事视频高清在线观看| 亚洲国产日韩欧美精品在线观看 | 久久伊人香网站| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 两性午夜刺激爽爽歪歪视频在线观看| 宅男免费午夜| 国产亚洲欧美98| 999久久久精品免费观看国产| 一区二区三区免费毛片| 国产精品98久久久久久宅男小说| 丝袜美腿在线中文| 天天一区二区日本电影三级| 日本免费a在线| 天堂av国产一区二区熟女人妻| www.999成人在线观看| 尤物成人国产欧美一区二区三区| 午夜福利欧美成人| 亚洲欧美精品综合久久99| 亚洲精品日韩av片在线观看 | 久久精品国产综合久久久| 波多野结衣高清作品| 中文在线观看免费www的网站| 久久这里只有精品中国| 女人被狂操c到高潮| 伊人久久大香线蕉亚洲五| 国产淫片久久久久久久久 | 成人av在线播放网站| 熟女电影av网| 亚洲七黄色美女视频| 无限看片的www在线观看| 久久精品综合一区二区三区| 国产在视频线在精品| 日本 av在线| 国产v大片淫在线免费观看| 欧美区成人在线视频| 夜夜爽天天搞| 岛国在线观看网站| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 丰满乱子伦码专区| 波多野结衣巨乳人妻| 亚洲国产欧美人成| netflix在线观看网站| 日韩av在线大香蕉| 国产精品综合久久久久久久免费| 国产69精品久久久久777片| 欧美午夜高清在线| 9191精品国产免费久久| 成人无遮挡网站| 97碰自拍视频| 成人18禁在线播放| 久久久久久大精品| 免费av不卡在线播放| 午夜精品久久久久久毛片777| 美女大奶头视频| 国产高清三级在线| 在线观看美女被高潮喷水网站 | 欧美日韩黄片免| 亚洲欧美激情综合另类| 一进一出好大好爽视频| 99久久99久久久精品蜜桃| 中亚洲国语对白在线视频| 91字幕亚洲| 亚洲国产中文字幕在线视频| 女生性感内裤真人,穿戴方法视频| 欧美日韩瑟瑟在线播放| av女优亚洲男人天堂| 18禁黄网站禁片免费观看直播| 亚洲在线自拍视频| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三| 亚洲成a人片在线一区二区| 久久久久久久久久黄片| 91在线观看av| 一本久久中文字幕| 亚洲自拍偷在线| 精品久久久久久久久久免费视频| 午夜亚洲福利在线播放| 精品一区二区三区视频在线观看免费| 久久精品国产99精品国产亚洲性色| 午夜免费观看网址| 免费av观看视频| 亚洲精品久久国产高清桃花| 又粗又爽又猛毛片免费看| 人妻久久中文字幕网| 变态另类丝袜制服| 色综合婷婷激情| 一边摸一边抽搐一进一小说| 国产男靠女视频免费网站| 日韩欧美国产在线观看| 国产精品女同一区二区软件 | 欧美精品啪啪一区二区三区| 麻豆成人午夜福利视频| eeuss影院久久| 日日夜夜操网爽| 成人午夜高清在线视频| 一进一出抽搐gif免费好疼| 色综合欧美亚洲国产小说| 亚洲熟妇熟女久久| 精品福利观看| 免费在线观看亚洲国产| 精品乱码久久久久久99久播| 日韩国内少妇激情av| 一级作爱视频免费观看| 亚洲美女视频黄频| 9191精品国产免费久久| 免费观看的影片在线观看| 91av网一区二区| 免费人成在线观看视频色| 夜夜爽天天搞| 日本五十路高清| 成人18禁在线播放| 偷拍熟女少妇极品色| 国产一区二区三区视频了| 成人亚洲精品av一区二区| 丰满乱子伦码专区| 在线观看免费视频日本深夜| 日本黄色片子视频| 长腿黑丝高跟| 国产精品98久久久久久宅男小说| 国产日本99.免费观看| 高清日韩中文字幕在线| 久久精品国产亚洲av涩爱 | 国产成人av激情在线播放| 成人午夜高清在线视频| 国产高潮美女av| 在线播放国产精品三级| 国产精品自产拍在线观看55亚洲| 午夜福利在线观看免费完整高清在 | 97超级碰碰碰精品色视频在线观看| 亚洲,欧美精品.| www日本在线高清视频| 精品熟女少妇八av免费久了| 搡女人真爽免费视频火全软件 | 97超视频在线观看视频| 无限看片的www在线观看| 国产真实乱freesex| 国产蜜桃级精品一区二区三区| 亚洲国产日韩欧美精品在线观看 | 欧美日本亚洲视频在线播放| 人妻丰满熟妇av一区二区三区| 啪啪无遮挡十八禁网站| 99国产极品粉嫩在线观看| 欧美一级a爱片免费观看看| 69av精品久久久久久| 男人舔奶头视频| 精品久久久久久久久久免费视频| 日韩av在线大香蕉| 日本五十路高清| 怎么达到女性高潮| 国产精品久久视频播放| 亚洲欧美日韩无卡精品| 天堂av国产一区二区熟女人妻| 一本久久中文字幕|