• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber

    2022-02-24 08:58:16ZhigangGao高治剛XiliJing井西利YundongLiu劉云東HailiangChen陳海良andShuguangLi李曙光
    Chinese Physics B 2022年2期
    關(guān)鍵詞:曙光

    Zhigang Gao(高治剛), Xili Jing(井西利), Yundong Liu(劉云東), Hailiang Chen(陳海良), and Shuguang Li(李曙光)

    State Key Laboratory of Metastable Materials Science&Technology and Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    A high sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber is proposed in this work. In order to achieve high sensitivity and high stability,the gold layer is coated on the side-polished photonic crystal fiber to support surface plasmon resonance. The mixture of ethanol and chloroform is used as the thermosensitive liquid.The performances of the proposed temperature sensor were investigated by the finite element method(FEM).Simulation results indicate that the sensitivity of the temperature sensor is as high as 7.82 nm/°C.It has good linearity(R2=0.99803),the resolution of 1.1×10?3 °C,and the amplitude sensitivity of 0.1008 °C?1. In addition,the sizes of the small air hole and polishing depth have little influence on the sensitivity. Therefore, the proposed sensor shows a high structure tolerance. The excellent performance and high structure tolerance of the sensor make it an appropriate choice for temperature measurement.

    Keywords: photonic crystal fiber,sensors,surface plasmon

    1. Introduction

    Owing to the flexibility of photonic crystal fiber (PCF)structure design, many optical devices based on PCF have been developed, such as filters,[1–3]sensors,[4]and beam splitters.[5]The PCF-based sensors can measure a variety of environmental parameters including temperature,[6,7]refractive index,[8–10]and pressure.[11]Surface plasmon resonance(SPR) is an advanced optical sensing technology.[12]It provides a broad development space in the field of biosensing.[13]Because SPR is very sensitive to the change of the refractive index of the medium near the metal film,the PCF sensor based on SPR technology has many advantages,such as wide tunable range,[14]good temperature stability and high sensitivity.[15,16]

    In recent years, many SPR-based PCF temperature sensors have been reported. Penget al.studied a gold-coated PCF temperature sensor.[17]Its structure is relatively simple and the temperature sensitivity is 720 pm/°C. A temperature sensor filled with silver nanowires and liquid was proposed by Luet al.[18]Its sensitivity reaches 2.7 nm/°C within the temperature measuring range from 10°C to 40°C . Liuet al.proposed a temperature sensor,which is gold-coated inside the air hole and filled with liquid.[19]The temperature detection range of the sensor is 0°C–100°C, and the temperature sensitivity is 3080 pm/°C. In addition, Wenget al.designed a D-shaped hole double-cladding temperature sensor.[20]The D-shaped hole is coated with a gold film and liquid is injected into the hole to achieve high-sensitivity temperature sensing.The sensitivity of the sensor can reach to?3.65 nm/°C.However, these sensors need a plate gold on the inner wall of the air hole or filling the air hole with liquid. Such requirements pose a challenge to the fabrication of the sensors.

    In this paper, a gold-coated side-polished PCF temperature sensor based on SPR is designed and demonstrated. The structure of PCF is very simple, it has only two layers of air holes. The side-polished structure can reduce the difficulty in depositing metal film and avoid filling thermosensitive liquid into the air holes. The performance of the proposed temperature sensor was analyzed by the finite element method(FEM).We have studied the influence of structural parameters on the sensing performance, the resolution and amplitude sensitivity of the temperature sensor. Simulation results show that the sensitivity of the proposed sensor is higher than reported previously,[17–20]and it can become a strong competitor of temperature sensors.

    2. Sensor design and theoretical basis

    The two-dimension cross-section view of the temperature sensor is presented in Fig. 1. There are two small air holes and two large air holes near the fiber core, and their diameters ared1andd2, respectively. The diameter of the other air holes isd3. The distance between the air holes, the polishing depth, and the radius of the PCF are considered asΛ,h,andr, respectively. The gold layer is coated on the surface of the side polished PCF, and the thickness is depicted bytg.The thermosensitive liquid is placed outside of the gold-coated side-polished PCF.

    The proposed temperature sensor uses silica as the background material, and its dispersion relationship is demon-strated by the Sellmeier equation,which is expressed as[21]

    whereλis the incident wavelength,Tis the environment temperature,and their units areμm and°C,respectively. The dielectric constant of the gold attached to side-polished PCF can be calculated using the Drude–Lorentz model, which can be evaluated by[22]

    whereε∞=5.9673 is the permittivity in the high frequency.ωis the angular frequency of incident light.γD,ωD,ΩL,andΓLrepresent the damping frequency,plasma frequency,the oscillator strength of the Lorenz oscillator,and the frequency spectrum width of the Lorenz oscillator, respectively.γD/2π=15.92 THz,ΩL/2π=650.07 THz,ωD/2π=2113.6 THz,andΓL/2π=104.86 THz. In addition, the thermosensitive liquid of this temperature sensor is composed of alcohol and chloroform. Its refractive index can be expressed as[23]

    wherex%and(100?x)%are the ratios of ethanol and chloroform in the mixed thermosensitive liquid. dn/dTindicates the thermo–optical coefficient. The values of ethanol and chloroform are?3.94×10?4°C?1and?6.328×10?4°C?1,respectively.When the temperature is 20°C,the refractive indices of alcohol and chloroform are 1.36048 and 1.43136,respectively.The thermosensitive sensitive liquid is a mixture of 80%alcohol and 20%chloroform. It should be noted that the material dispersion of the mixed liquid is ignored in this work. The confinement loss and wavelength sensitivity are respectively determined by[24,25]

    where Im(neff)is the imaginary part of the effective refractive index,?λpeakindicates the change in resonance wavelength,and?Tis the change of temperature.

    The transmission relationship between different modes can be investigated by FEM. The real effective refractive index (neff) of the fundamental mode is an important parameter. It has a positive correlation with the plasmon mode.[26]The energy of the core mode will be transferred to the SPP mode in the form of surface plasmon waves(SPWs)when the phase matching condition is reached. The special wavelength at this time is called the resonance wavelength. Consequently,a propagation loss peak will be found at the resonance wavelength. The resonance wavelength will shift when the temperature changes. Therefore, the temperature measurement can be achieved by observing the movement of the resonance wavelength.

    Fig. 1. Cross-section of the gold-coated side-polished PCF of the proposed temperature sensor with d1 =0.6 μm, d2 =2.2 μm, d3 =1.6 μm,Λ =2.3μm,h=3.1μm,and tg=40 nm.

    Fig.2.(a)Dispersion relationship between core mode and SPP mode,energy relationship between core mode and SPP mode. Energy distribution of optical field: (b)core mode,(c)plasmonic mode,and(d)coupling of the core mode and the plasmonic mode at the temperature of 40 °C.

    3. Results and discussion

    3.1. Confinement loss and dispersion relationship

    Figure 2(a) shows the loss spectrum and the dispersion relationship between the core mode and the SPP mode at thetemperature of 40°C.The red line and the cyan line represent the loss of SPP mode and core mode, respectively. The resonance wavelength is 2170 nm. The effective refractive indexes of the core mode and SPP mode correspond to the purple line and the black line,respectively.Figures 2(b)–2(d)respectively indicate the optical field distributions of the core mode, SPP mode,and coupled mode in theypolarization direction.

    3.2. Optimization of structural parameters

    The temperature sensor with different structural parameters will shows different sensing characteristics. In order to achieve the excellent performance, the influences of air hole size, gold layer thickness and polishing depth on the sensor performance were analyzed.

    The loss spectrum and the linearity of the sensor with differentd1from 0°C to 60°C are illustrated in Fig. 3. With the increase ofd1, there is a slight blueshift of the resonance wavelength,and the sensitivity is slightly reduced. Moreover,we can see that the small change of thed1has little influence on the performance of the sensor,which increases the realistic manufacturing tolerance of the designed sensor to some extent. Figure 3(d) shows the linearity of the sensor from 0°C to 60°C for differentd1. Whend1=0.4 μm, 0.6 μm, and 0.8 μm, the linearity (R2) is 0.99641, 0.99803, and 0.99934,respectively. Although the sensitivity is not the highest whend1=0.6μm,the linearity is better,so we consider 0.6μm as the diameter of the small air hole.

    Figure 4 represents the influence of different gold layer thickness on sensor performance. It can be seen that the thickness of the gold layer has a greater impact on the loss spectrum of the sensor. When the thickness of the gold layer is 30 nm,the spectrum is not good at temperature of 0°C and 10°C.With the increase of temperature,the loss peak appears to increase first and then decrease when the thickness of the gold layer is 50 nm. This is due to the strongest coupling between the core mode and the SPP mode at temperature of 30°C,and the coupling strength becomes weaker as the temperature increases. It can be seen from Fig. 4(d) that the spectrum at 40 nm is better and the sensitivity is higher, so we are more inclined to choose the gold layer thickness of 40 nm.

    The loss spectrum at different polishing depths from 0°C to 60°C is shown in Fig.5. As the polishing depth increases,the resonance wavelength has a slight blue shift. The confinement loss decreases when temperature changes from 0°C to 50°C. This is because the effective mode area of the proposed temperature sensor will decrease as the polishing depth increases, which will result in less core mode energy being transferred to the SPP mode.Therefore the confinement loss is reduced. Whenh=2.9μm,the loss peak does not always increase with the increase of temperature,but decreases at 60°C.That happens because the coupling between core mode and SPP mode is weakened,and the energy of the core mode cannot be transferred to the SPP mode in a large amount. Although this data changes, the sensitivity of the temperature sensor hardly changes. It can be seen from Fig. 5(d) that the linearity with the deeper polishing depth is better, so the polishing depth is considered to 3.1μm.

    Fig.3.Loss spectrum from 0°C to 60°C:(a)d1=0.4μm,(b)d1=0.6μm,(c)d1=0.8μm.(d)The linear fitting of the resonance wavelength in the case with three different d1.

    Fig.4. Loss spectrum from 0 °C to 60 °C:(a)tg=30 nm,(b)tg=40 nm,(c)tg=50 nm. (d)The linear fitting of the resonance wavelength in the case of three different tg.

    Fig.5. Loss spectrum from 0 °C to 60 °C:(a)h=2.9μm,(b)h=3.0μm,(c)h=3.1μm. (d)The linear fitting of the resonance wavelength in the case of three different h.

    3.3. Sensing performance of the proposed temperature sensor

    The loss spectrum of the proposed sensor at different temperatures is illustrated in Fig.6(a).It can be seen that the spectrum is particularly good and the resonance wavelengths are 1840 nm, 1930 nm, 2010 nm, 2090 nm, 2170 nm, 2240 nm,and 2310 nm, respectively. Since the thermosensitive liquid we used corresponds to different refractive indexes at different temperatures, and the SPR is very sensitive to the change in refractive index near the metal film. So the change in refractive index of thermosensitive liquid corresponds to the change in temperature, and the corresponding resonance wavelength will also change. In this chart,as the temperature increases,a red shift of the resonance wavelength is observed. Figure 6(b)shows the linear fitting of the relation between the resonance wavelength and temperature. The results show that the proposed sensor has high linearity (R2=0.99803), and the sensitivity is 7.82 nm/°C. These results indicate that the performance of the proposed temperature sensor is better than the reported previously.[17–20]

    The resolution of a temperature sensor describes that the smallest variation of the temperature can be detected by this sensor. The resolution of the proposed temperature sensor can be calculated as[27]

    where?Tis the change of temperature,?λpeakrefers to the wavelength of the loss peak difference, and?λminindicates the minimum wavelength resolution. From Eq. (6), the resolution at 0°C and 50°C is 1.1×10?3°C and 1.4×10?3°C,respectively. Therefore, the proposed sensor has the ability to response to a small variation of temperature at the order of 10?3.

    Fig.6. (a)The loss spectrum of the sensor from 0 ° to 60 °. (b)Linear fitting of sensor resonance wavelength.

    Fig.7. Amplitude sensitivity of the temperature sensor from 0 °C to 50 °C.

    Amplitude sensitivity is an important parameter,it can be expressed as

    whereαis defined as the loss value for anyT,and?α(λ,T)is the loss difference for two adjacent thermosensitive liquid temperature. The amplitude sensitivity obtained by Eq.(7)is shown in Fig. 7. It can be seen that the amplitude sensitivity becomes higher as the temperature rises. Higher temperature reveals the stronger loss and,as a consequence,amplitude sensitivity increases. Amplitude sensitivities are expressed about 0.0674,0.0720,0.0774,0.0841,0.0918,and 0.1008°C?1,respectively,with the temperature of 0,10,20,30,40,and 50°C,respectively.

    There are some other important parameters to investigate the performance of the sensor, which is closely related to the full width at half maxima (FWHM) of the loss curve. These parameters are signal-to-noise ratio (SNR), figure of merit(FOM), and detection limit (δn), respectively. They can be expressed as[28]

    In Eqs. (8)–(10),?λ1/2represents FWHM of the loss curve for respective temperature. And the computed results are tabulated in Table 1.

    Table 1. Sensing performance of the proposed SPR sensor.

    4. Generalized measurement setup

    The side polished PCF can be prepared by professional grinding machines. The PCF is connected to the laser and the optical power meter,the polishing depth can be accurately obtained by measuring the power of the received light during the polishing process.[29]Using commercial magnetron sputtering equipment,the gold layer can be coated on the PCF.[30]The experimental principle of the proposed temperature sensor is shown in Fig.8. First of all,a single-mode fiber is fused on both ends of the gold-coated side-polished PCF to facilitate the connection of the light source and the spectrometer,and then the PCF is put into the temperature chamber. At this time, the light source is turned on, and the incident light enters the PCF through the single-mode fiber. It interacts with the gold and causes surface plasmon excitation, and the energy of the core mode will be transferred to the SPP mode.Consequently,a trough will be displayed on the spectrometer.Finally, we change the temperature through the temperature control chamber,the movement of the trough will be displayed on the spectrometer, and sensing characteristics of the sensor can be measured by the movement of the trough.

    Fig.8. The experimental principle of the proposed temperature sensor.

    5. Conclusion

    A high sensitivity and high linearity SPR based PCF temperature sensor is proposed in this article.Both the thermosensitive liquid and the gold layer are deposited on the outer surface of the side-polished PCF to reduce the fabrication complexity. After we optimized the structure parameters, a high sensitive and high linear temperature sensor was obtained.The temperature detection range of the sensor is 0°C to 60°C,and the sensitivity is as high as 7.82 nm/°C.The sensor shows good linearity(R2=0.99803)and resolution of 1.1×10?3°C?1as well. The simulation results show that the size of the small air hole and the polishing depth have little influence on the sensitivity of the sensor. Therefore,the requirements for manufacturing accuracy of the sensor are reduced. Such excellent temperature sensing characteristics and low difficulty for fabrication make the proposed sensor have a distinctive advantage in temperature measurement.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 12074331), the Natural Science Foundation of Hebei Province, China (Grant No. F2020203050), and the Postdoctoral preferred funding research project of Hebei Province, China (Grant No.B2018003008).

    猜你喜歡
    曙光
    核聚變能應(yīng)用前景現(xiàn)一絲曙光
    曙光
    興業(yè)路的曙光
    勝利曙光就在前方
    歌海(2020年1期)2020-03-23 06:05:32
    星城曙光:奔向光明前的無(wú)聲暗戰(zhàn)
    文史春秋(2020年1期)2020-03-16 13:13:34
    楊曙光作品
    曙光
    赤水源(2018年6期)2018-12-06 08:38:12
    曙光照耀
    充電樁行業(yè)扭虧曙光初現(xiàn)?
    能源(2018年7期)2018-09-21 07:56:22
    王路平:以曙光之名
    三级国产精品欧美在线观看| 国产白丝娇喘喷水9色精品| 国产视频一区二区在线看| 亚洲成人久久性| 日韩欧美精品v在线| 一进一出抽搐gif免费好疼| 久久久久久久久大av| 99国产极品粉嫩在线观看| 国产精品一区二区性色av| 国产精品亚洲一级av第二区| 麻豆久久精品国产亚洲av| 久久欧美精品欧美久久欧美| 亚洲欧美日韩无卡精品| 全区人妻精品视频| 久久久久久伊人网av| 欧美zozozo另类| 女人被狂操c到高潮| 国产在线男女| 我的老师免费观看完整版| 99久久中文字幕三级久久日本| a级毛片免费高清观看在线播放| 一本一本综合久久| 亚洲av中文字字幕乱码综合| 国产爱豆传媒在线观看| 免费高清视频大片| 好男人在线观看高清免费视频| 日韩欧美国产在线观看| 不卡一级毛片| 有码 亚洲区| 午夜福利在线观看吧| 午夜精品国产一区二区电影 | 精品无人区乱码1区二区| 一级毛片aaaaaa免费看小| 精品熟女少妇av免费看| 亚洲精品粉嫩美女一区| 别揉我奶头~嗯~啊~动态视频| 日本一本二区三区精品| 中文亚洲av片在线观看爽| 看非洲黑人一级黄片| 日本免费a在线| a级毛色黄片| 国产精品野战在线观看| 国产三级中文精品| 18禁在线播放成人免费| 午夜精品国产一区二区电影 | 97超视频在线观看视频| 欧美在线一区亚洲| 国产 一区 欧美 日韩| 黄色配什么色好看| 搡老岳熟女国产| 亚洲av一区综合| 97超级碰碰碰精品色视频在线观看| 真人做人爱边吃奶动态| 免费在线观看影片大全网站| 久久精品影院6| 欧美色视频一区免费| 亚洲在线自拍视频| 97碰自拍视频| 最近视频中文字幕2019在线8| 精品人妻熟女av久视频| 看片在线看免费视频| 老熟妇仑乱视频hdxx| 亚洲内射少妇av| 别揉我奶头~嗯~啊~动态视频| 成人一区二区视频在线观看| 男人舔奶头视频| 丰满乱子伦码专区| 久久精品国产99精品国产亚洲性色| 国产成人一区二区在线| 国内揄拍国产精品人妻在线| 亚洲四区av| 天堂网av新在线| 国产极品精品免费视频能看的| 99热只有精品国产| 成人性生交大片免费视频hd| 亚洲,欧美,日韩| 亚洲乱码一区二区免费版| 舔av片在线| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添av毛片| 2021天堂中文幕一二区在线观| 深爱激情五月婷婷| 极品教师在线视频| 国产精品1区2区在线观看.| 久久久成人免费电影| 亚洲高清免费不卡视频| 免费观看精品视频网站| 在线观看av片永久免费下载| 我要搜黄色片| 久久精品国产鲁丝片午夜精品| 女同久久另类99精品国产91| 精品乱码久久久久久99久播| 熟女人妻精品中文字幕| 久久久欧美国产精品| 亚洲精品在线观看二区| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 综合色丁香网| 色av中文字幕| 日本成人三级电影网站| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 国产在线男女| 精华霜和精华液先用哪个| 毛片一级片免费看久久久久| 尤物成人国产欧美一区二区三区| av在线蜜桃| 久久久久久久午夜电影| 欧美极品一区二区三区四区| 亚洲电影在线观看av| 亚洲内射少妇av| 日本撒尿小便嘘嘘汇集6| 伦精品一区二区三区| 亚洲精品成人久久久久久| 免费搜索国产男女视频| 99精品在免费线老司机午夜| 国产 一区精品| 免费观看人在逋| 精品日产1卡2卡| 免费无遮挡裸体视频| 久久久久久久久大av| 在现免费观看毛片| 中文字幕久久专区| 精华霜和精华液先用哪个| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品50| av在线观看视频网站免费| 狠狠狠狠99中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美 国产精品| 男女边吃奶边做爰视频| 99热这里只有精品一区| 午夜福利在线观看免费完整高清在 | 欧美区成人在线视频| 精品午夜福利在线看| 国产黄色视频一区二区在线观看 | 人妻丰满熟妇av一区二区三区| 日韩人妻高清精品专区| 夜夜爽天天搞| 波多野结衣巨乳人妻| 国产一区二区三区av在线 | 别揉我奶头 嗯啊视频| 国产精品久久久久久久电影| 18禁在线播放成人免费| 国产精品一区二区免费欧美| 国产免费一级a男人的天堂| 亚洲精品国产成人久久av| 女人被狂操c到高潮| 免费av不卡在线播放| 国产精品一区二区三区四区久久| 中出人妻视频一区二区| 国产老妇女一区| 床上黄色一级片| 久久久国产成人免费| 成人美女网站在线观看视频| 少妇高潮的动态图| 亚洲自拍偷在线| 综合色av麻豆| 18禁在线播放成人免费| 给我免费播放毛片高清在线观看| 99热这里只有是精品在线观看| 国产激情偷乱视频一区二区| 插逼视频在线观看| 欧美bdsm另类| 亚洲最大成人av| 99在线视频只有这里精品首页| 尤物成人国产欧美一区二区三区| 国内精品一区二区在线观看| 亚洲真实伦在线观看| 在线免费观看的www视频| 亚洲五月天丁香| 国产精品久久久久久久久免| 亚洲,欧美,日韩| 欧美日韩在线观看h| 亚洲18禁久久av| 18禁黄网站禁片免费观看直播| 久久久久国内视频| 午夜福利成人在线免费观看| 黄色配什么色好看| 亚洲综合色惰| 久久久色成人| 欧美最黄视频在线播放免费| 91久久精品电影网| 免费高清视频大片| 男人的好看免费观看在线视频| 午夜久久久久精精品| 永久网站在线| 日韩强制内射视频| 校园春色视频在线观看| 成人高潮视频无遮挡免费网站| av中文乱码字幕在线| 久久久久久久午夜电影| 午夜激情福利司机影院| 麻豆一二三区av精品| 麻豆久久精品国产亚洲av| av免费在线看不卡| 久久国内精品自在自线图片| 免费人成在线观看视频色| 男女啪啪激烈高潮av片| a级毛片a级免费在线| 国产精品一二三区在线看| 欧美日本视频| 深夜a级毛片| 国产精品久久视频播放| 亚洲第一电影网av| 九九在线视频观看精品| 国产男人的电影天堂91| 麻豆成人午夜福利视频| 99久久成人亚洲精品观看| 国产黄片美女视频| 草草在线视频免费看| 最近中文字幕高清免费大全6| 日本撒尿小便嘘嘘汇集6| 日韩一区二区视频免费看| 精品一区二区三区视频在线观看免费| 香蕉av资源在线| 一级毛片我不卡| 国产又黄又爽又无遮挡在线| 全区人妻精品视频| 国产欧美日韩精品亚洲av| 精品一区二区三区视频在线| 国内精品久久久久精免费| av.在线天堂| 精品乱码久久久久久99久播| 美女cb高潮喷水在线观看| 欧美最黄视频在线播放免费| 精品人妻偷拍中文字幕| 成年女人永久免费观看视频| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 五月玫瑰六月丁香| 国产久久久一区二区三区| 欧美一区二区精品小视频在线| 免费搜索国产男女视频| 亚洲成av人片在线播放无| 99热网站在线观看| 晚上一个人看的免费电影| 成人av一区二区三区在线看| 插阴视频在线观看视频| 国产毛片a区久久久久| 波多野结衣高清作品| 亚洲av电影不卡..在线观看| 久久人人精品亚洲av| 国产精品嫩草影院av在线观看| 久久久久久久久久成人| 免费高清视频大片| 又黄又爽又刺激的免费视频.| 亚洲真实伦在线观看| 久久国内精品自在自线图片| 一级黄色大片毛片| 亚洲av一区综合| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 久久精品国产99精品国产亚洲性色| 国产免费一级a男人的天堂| 日韩av在线大香蕉| 欧美+日韩+精品| 亚洲内射少妇av| 日本在线视频免费播放| 在线观看一区二区三区| 免费看av在线观看网站| 日韩精品青青久久久久久| 高清毛片免费观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 乱人视频在线观看| 久久久久久久久中文| 99久久精品热视频| 午夜精品国产一区二区电影 | 国产亚洲精品久久久久久毛片| 欧美性感艳星| 亚洲中文日韩欧美视频| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人精品中文字幕电影| 99热全是精品| 中文字幕av成人在线电影| 插阴视频在线观看视频| h日本视频在线播放| 乱人视频在线观看| 免费av观看视频| 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 男女做爰动态图高潮gif福利片| 美女高潮的动态| 老熟妇仑乱视频hdxx| 一本久久中文字幕| 女同久久另类99精品国产91| 欧美xxxx黑人xx丫x性爽| 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 亚洲美女搞黄在线观看 | 日本在线视频免费播放| 亚洲精品日韩av片在线观看| 99热这里只有是精品在线观看| 91久久精品电影网| 别揉我奶头~嗯~啊~动态视频| 国产老妇女一区| 亚洲av熟女| 欧美日本视频| 乱人视频在线观看| 日韩在线高清观看一区二区三区| 亚洲国产欧美人成| a级一级毛片免费在线观看| 亚洲av美国av| 99热这里只有是精品50| 日韩三级伦理在线观看| 男女那种视频在线观看| 国产蜜桃级精品一区二区三区| 99久国产av精品| 日韩精品青青久久久久久| 欧美色视频一区免费| 熟女电影av网| 在线观看午夜福利视频| 一级黄色大片毛片| 午夜老司机福利剧场| 国产毛片a区久久久久| 超碰av人人做人人爽久久| 成人精品一区二区免费| 欧美一区二区国产精品久久精品| 波多野结衣巨乳人妻| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 美女免费视频网站| 干丝袜人妻中文字幕| 国产精品综合久久久久久久免费| 久久6这里有精品| 国产精品电影一区二区三区| 内地一区二区视频在线| 国产精品电影一区二区三区| 18禁黄网站禁片免费观看直播| 午夜视频国产福利| av中文乱码字幕在线| 午夜福利视频1000在线观看| 国产免费男女视频| 天堂√8在线中文| 欧美另类亚洲清纯唯美| 日日摸夜夜添夜夜添av毛片| 九九久久精品国产亚洲av麻豆| 国产亚洲精品久久久com| 欧美最黄视频在线播放免费| 男女啪啪激烈高潮av片| 日日干狠狠操夜夜爽| 真实男女啪啪啪动态图| 99国产极品粉嫩在线观看| 卡戴珊不雅视频在线播放| 精品国内亚洲2022精品成人| 亚洲精品日韩av片在线观看| 久久国内精品自在自线图片| 搡老熟女国产l中国老女人| 丰满的人妻完整版| 国产精品一区www在线观看| 少妇高潮的动态图| 亚洲精品粉嫩美女一区| 人妻久久中文字幕网| 两个人的视频大全免费| 91在线精品国自产拍蜜月| 国产色爽女视频免费观看| 久久国产乱子免费精品| 干丝袜人妻中文字幕| 亚洲乱码一区二区免费版| a级毛色黄片| 婷婷精品国产亚洲av在线| 国产精品一区www在线观看| 99久久久亚洲精品蜜臀av| 久久久色成人| 在线观看av片永久免费下载| 久久精品国产亚洲网站| 日韩欧美精品v在线| 欧美丝袜亚洲另类| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| av中文乱码字幕在线| aaaaa片日本免费| 国产女主播在线喷水免费视频网站 | 欧美丝袜亚洲另类| 一级a爱片免费观看的视频| 久久草成人影院| 精华霜和精华液先用哪个| 中出人妻视频一区二区| 一a级毛片在线观看| 国产91av在线免费观看| 国产成人91sexporn| 午夜久久久久精精品| 99久久中文字幕三级久久日本| 国产大屁股一区二区在线视频| 色吧在线观看| 啦啦啦观看免费观看视频高清| 国产av不卡久久| 可以在线观看毛片的网站| 97在线视频观看| 午夜免费男女啪啪视频观看 | 亚洲av五月六月丁香网| 午夜福利在线观看吧| 国产老妇女一区| 午夜免费激情av| av.在线天堂| 好男人在线观看高清免费视频| 国产高潮美女av| 狂野欧美白嫩少妇大欣赏| 日日啪夜夜撸| 亚洲欧美精品综合久久99| eeuss影院久久| 校园春色视频在线观看| av免费在线看不卡| 精品国内亚洲2022精品成人| 狂野欧美激情性xxxx在线观看| 久久久久免费精品人妻一区二区| 国产黄色小视频在线观看| 久久久久国产网址| 精品久久久久久久末码| 在线观看66精品国产| 高清毛片免费观看视频网站| 日韩欧美 国产精品| 久久精品夜色国产| 蜜臀久久99精品久久宅男| 桃色一区二区三区在线观看| 深夜a级毛片| 亚洲av电影不卡..在线观看| 国产精品一及| 午夜精品一区二区三区免费看| 亚洲精品粉嫩美女一区| 亚洲人成网站在线观看播放| 国产精品精品国产色婷婷| 久久久久久久久久成人| 免费搜索国产男女视频| av.在线天堂| 国产真实乱freesex| 亚洲av中文av极速乱| 亚洲一区高清亚洲精品| 亚洲欧美成人综合另类久久久 | 成人鲁丝片一二三区免费| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆 | 欧美另类亚洲清纯唯美| 在线免费观看的www视频| 中文字幕久久专区| 麻豆国产97在线/欧美| 精品一区二区三区av网在线观看| 成人国产麻豆网| 麻豆乱淫一区二区| av在线亚洲专区| 波多野结衣高清无吗| 日韩高清综合在线| 日韩国内少妇激情av| 美女黄网站色视频| 一级黄片播放器| 三级经典国产精品| 免费大片18禁| 亚洲国产精品国产精品| 精品一区二区三区人妻视频| 俄罗斯特黄特色一大片| 亚洲精品乱码久久久v下载方式| 国内精品美女久久久久久| 亚洲av一区综合| 男女那种视频在线观看| 亚洲精品在线观看二区| 亚洲五月天丁香| 午夜视频国产福利| 日本 av在线| 午夜爱爱视频在线播放| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久,| 成年免费大片在线观看| 国产精品亚洲一级av第二区| 噜噜噜噜噜久久久久久91| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 特大巨黑吊av在线直播| 成人三级黄色视频| 欧美丝袜亚洲另类| 国产男靠女视频免费网站| 久久久久性生活片| 日韩精品青青久久久久久| 亚洲人与动物交配视频| ponron亚洲| 国产片特级美女逼逼视频| 寂寞人妻少妇视频99o| 一本久久中文字幕| 亚洲中文字幕日韩| 性色avwww在线观看| 在线天堂最新版资源| 国产精华一区二区三区| 你懂的网址亚洲精品在线观看 | 搡老岳熟女国产| 精品日产1卡2卡| 日本 av在线| 国产大屁股一区二区在线视频| 亚洲自偷自拍三级| 成人欧美大片| 午夜福利高清视频| 一个人观看的视频www高清免费观看| 黄色配什么色好看| 狠狠狠狠99中文字幕| 国产精品国产高清国产av| 日韩av在线大香蕉| 国语自产精品视频在线第100页| 成人午夜高清在线视频| 大香蕉久久网| 欧美在线一区亚洲| 少妇高潮的动态图| 丝袜美腿在线中文| 黄色一级大片看看| 91在线精品国自产拍蜜月| 中文字幕av在线有码专区| 天堂√8在线中文| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 成年av动漫网址| www日本黄色视频网| 亚洲精品456在线播放app| 国产午夜精品久久久久久一区二区三区 | 在线观看午夜福利视频| 女同久久另类99精品国产91| 中国美女看黄片| 99视频精品全部免费 在线| 亚洲精品国产av成人精品 | 最近手机中文字幕大全| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕久久专区| 精品久久久久久久久av| 成人欧美大片| 搡老妇女老女人老熟妇| 国内精品美女久久久久久| 性欧美人与动物交配| 日韩欧美三级三区| 熟妇人妻久久中文字幕3abv| 免费观看的影片在线观看| 亚洲乱码一区二区免费版| 中文在线观看免费www的网站| 综合色av麻豆| 精品不卡国产一区二区三区| 国产日本99.免费观看| 搡女人真爽免费视频火全软件 | 国产精品,欧美在线| 久久亚洲国产成人精品v| 日韩欧美精品免费久久| 婷婷精品国产亚洲av在线| 尤物成人国产欧美一区二区三区| 中文字幕熟女人妻在线| 亚洲成人av在线免费| 麻豆乱淫一区二区| av免费在线看不卡| 成人永久免费在线观看视频| 国产亚洲精品久久久com| 日韩欧美精品v在线| 久久久精品大字幕| 精品免费久久久久久久清纯| 国产熟女欧美一区二区| 非洲黑人性xxxx精品又粗又长| 日韩制服骚丝袜av| 97超碰精品成人国产| 性色avwww在线观看| 午夜影院日韩av| 久久久久久久亚洲中文字幕| 嫩草影院新地址| 国产女主播在线喷水免费视频网站 | 少妇高潮的动态图| 亚洲欧美中文字幕日韩二区| avwww免费| 中文字幕av在线有码专区| 一区二区三区免费毛片| 久久欧美精品欧美久久欧美| 中文在线观看免费www的网站| 欧美一区二区亚洲| 国产午夜福利久久久久久| 少妇熟女欧美另类| 日韩欧美三级三区| 国产精品乱码一区二三区的特点| 国产真实乱freesex| 精品国产三级普通话版| 久久久欧美国产精品| 插阴视频在线观看视频| 2021天堂中文幕一二区在线观| 日本一本二区三区精品| 日日干狠狠操夜夜爽| 国内少妇人妻偷人精品xxx网站| 免费黄网站久久成人精品| 九色成人免费人妻av| 成人高潮视频无遮挡免费网站| 能在线免费观看的黄片| 国产成人91sexporn| 亚洲,欧美,日韩| 在线免费十八禁| 国产高清激情床上av| 久久亚洲国产成人精品v| 午夜精品在线福利| 欧美日韩精品成人综合77777| 亚洲av中文字字幕乱码综合| 最后的刺客免费高清国语| 欧美日本亚洲视频在线播放| 久久久精品大字幕| 欧美激情在线99| 久久欧美精品欧美久久欧美| 日本在线视频免费播放| 国产精品女同一区二区软件| 两个人的视频大全免费| 国产精品久久电影中文字幕| 我要看日韩黄色一级片| 国产成人精品久久久久久| 成年女人毛片免费观看观看9| 国产一区二区在线av高清观看| 国语自产精品视频在线第100页| 麻豆精品久久久久久蜜桃| 日韩三级伦理在线观看| 少妇高潮的动态图| 美女 人体艺术 gogo| 我的女老师完整版在线观看| 日韩,欧美,国产一区二区三区 | 六月丁香七月| 国产男靠女视频免费网站| 大又大粗又爽又黄少妇毛片口| 女人十人毛片免费观看3o分钟| 亚洲av中文av极速乱|