• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    X-ray focusing using an x-ray lens composed of multi-square polycapillary slices

    2022-02-24 09:39:28KaiPan潘凱TianChengYi易天成ZhaoWang王瞾MoZhou周末YuDeLi李玉德ZhiGuoLiu劉志國XiaoYanLin林曉燕andTianXiSun孫天希
    Chinese Physics B 2022年2期
    關(guān)鍵詞:天成

    Kai Pan(潘凱), Tian-Cheng Yi(易天成), Zhao Wang(王瞾), Mo Zhou(周末), Yu-De Li(李玉德),?,Zhi-Guo Liu(劉志國), Xiao-Yan Lin(林曉燕)1,, and Tian-Xi Sun(孫天希)

    1College of Nuclear Science and Technology,Beijing Normal University,Beijing 100875,China

    2Beijing Key Laboratory of Applied Optics,Beijing 100875,China

    3Key Laboratory of Beam Technology,Ministry of Education,Beijing 100875,China

    4Spallation Neutron Source Science Center,Dongguan 523803,China

    5Institute of Applied Electronics,China Academy of Engineering Physics,Mianyang 621900,China

    A new type of x-ray lens composed of multi-square polycapillary slices (ASPXRL) used in focusing parallel x-ray beam was presented in this paper.Compared with conventional x-ray polycapillary lens,ASPXRL can provide smaller and brighter focus.The effects of the manufacturing imperfections on focusing quality of ASPXRL were evaluated with the values of transmission efficiency and discussed.It is suggested that ASPXRL has application prospects as a condenser lens for x-ray microscopy and flux collectors for x-ray analytical instruments.

    Keywords: x-ray optics,polycapillary x-ray lens with square channels

    1.Introduction

    The x-ray optics has grown rapidly in recent years to satisfy numerous actual applications.As an important branch of x-ray optics, different kinds of optical elements have been developed to transport radiation from source to sample.These optical elements include K–B mirror optics,[1]lobster-eye lens,[2]x-ray multilayer mirrors,[3]polycapillary lens,[4]and so on.They can provide more powerful, highly concentrated or approximately monochromatic beams through different controlling mechanisms.As one kind of widely used optical elements for all types of x-ray analysis, x-ray polycapillary lenses illustrated their utility in x-ray lithography,[5]x-ray astronomy,[6]x-ray diffraction analysis,[7]x-ray fluorescence,[8]medicine,[9]and other scientific fields.

    Polycapillary x-ray lenses have been used cooperatively with conventional x-ray sources successfully.These lenses are fabricated with bundles of hollow glass capillary tubes.They focus, collimate and filter x-ray radiation based on the principle of total external reflection (TR).Collimating polycapillary optics (CPO) can convert a highly divergent beam into a quasi-parallel beam with small divergence angle.When used in large area diffraction,quasi-parallel beam increases the diffraction intensity of a crystal.[10]In addition,CPO provides nearly complete scatter rejection when implemented in x-ray medicine imaging.It can be used to magnify or demagnify the x-ray imaging with improved contrast and resolution.[11]For conventional CPO,arrangement of circular channels leaves the problems of triangular-shaped nonfunctional spaces between the capillaries.This structural flaw leads the lower flux gain when it is used in x-ray diffraction analysis.Moreover,especially in x-ray medical imaging,lacks of the feature points of the images will make important diagnostic information missing.To overcome these shortcomings, a new type of x-ray lens composed of multi-square polycapillary slices was proposed.In our previous papers, we studied the transmission of x-ray in an ideal 84-mm long CPO and discussed its potential applications for spatial image.[12]However, as further investigations,[13]it is hard to manufacture such a long monolithic polycapillary with square channel due to the limitation of technological level at present.Therefore,we assembled an xray lens with multi-square polycapillary slices.The structural support was obtained through three-dimensional(3D)printing technique and the printing material was polylactic acid(PLA).

    In this paper, we presented an x-ray lens composed of multi-square polycapillary slices (ASPXRL).ASPXRL was arranged with a stack form in a 3D printing skeleton.We corrected previous numerical model to comply with the actual situation of this lens.In experimental part,ASPXRL was used for x-ray focusing.The primary parallel beam was obtained by a polycapillary parallel x-ray lens with circular channels.Compared with conventional polycapillary x-ray lens,ASPXRL produced much higher quality focusing.In addition,errors including displacement and axis deviation were considered to explain the imperfections of the focus.

    2.Materials and methods

    2.1.Geometric structure

    As introduced in previous work,[13]manufacturing of square polycapillary slices has four main procedures: drawing,arraying,slicing,and corroding.Because the square channels are bended,smooth internal surface cannot be guaranteed while corroding the square core rod.Hence, considering machining efficiency as well, the thickness of final product of these slices are controlled between 0.5 mm to 3.0 mm.To realize a long length x-ray polycapillary lens,we selected a simple assembled manner.As shown in Fig.1, the geometric structure is constituted of two parts: structural support and square polycapillary slices.The holding structure was machined using 3D printing technique and the material is PLA.0.5-mm width and 1.0-mm depth slots were cut along the transverse direction in the inner bottom surface of the groove.Different sizes of polycapillary slices were imbedded in the center of the 3D printing blocks.Then, these blocks were inserted into the slots.The centers of the slices should be kept in a unitive optic axis in standard.Through this stack-like arrangement,shape of the external walls of ASPXRL can be perceived as a quadratic curve.Each slice contributed a discrete arc in the curve, as illustrated in Fig.2(a).Figure 2(b) shows the scanning curve of the square cone multi-fiber bar before being sliced.Because of tiny mechanical vibration and temperature control in the process of drawing rods, here exists a fluctuation.We selected a segment of the fitted quadratic curve based on the scanning data.The parts with big relative fluctuation in either two scanning directions (vertical and horizontal) were dropped when manufacturing the slices.In fact,limited by the precision of 3D printing technology,ASPXRL was assembled after some practice to make sure each slice placed in the right position.

    Fig.1.(a)Idealized structure of ASPXRL.(b)Actual device for experiment.(c) Individual square slice No.43 imbedded in the center of ASPXRL.(d)Microphotography of the square polycapillary slices.

    Fig.2.(a)Schematic diagram of the arrangement of ASPXRL.(b)Scanning curve of the square cone multi-fiber bar before being sliced, S1–S5 correspond to the five slices used in assembly, and other parts of the rod will be dropped due to obvious fluctuations in either two scanning directions(horizontal and vertical).

    2.2.Simulation model

    Based on our previous works,[12–15]the simulation model is illustrated in Fig.3.Entire assembled lens was positioned in a Cartesian coordinate system.Thezaxis passed through the central channel and served as an optical axis.The center of an extended Gaussian area source was placed with coordinate(0,0,ls).The source function is denoted by

    whereN0is the primary number of x-ray photons emitted per second from the source,rsis the radius of the source, andr=corresponds to the emission position of the photons.

    Five slices S1–S5 were placed in order of sizes,S1 has the smallest cross section area while S5 has the largest.The intervals between two adjacent slices are determined by the width of the dropped parts,which have been illustrated by Fig.2(b)before.The intervals are denoted bytaij.For example, the interval between S1 and S2 ista12.The incident plane of S5 coincides with planeXOYand served as the lens entrance.Its edge length is 2Din.The output plane of S1 served as the lens exit and its edge length is 2Dout.For the shape curve of ASPXRL is quadratic,it has a simple expression

    wherea0andb0can be obtained from the scanning data of Fig.2(b).

    Fig.3.Schematic diagram of the simulation model.Rays emitted from an extended source S at a distance ls from the center of slices.Then,guided by ASPXRL and projected to the detector plane at a distance li from the output plane.

    Assumed that the assembled lens has(2n+1)×(2n+1)channels.For an individual square channel in row m,column n, its internal width isdinand wall thickness is t in the input plane.Equations of the four internal walls(the upper,the lower,the left and the right)can be expressed as follows:

    wheretsiis the thickness of the slices andkdenotes the label number of the slices.

    Put this model into the field of geometric optics.Rays leaving the source reflected off the interior walls of the channels of the slices and transmitted through the air intervals alternately.The detector plane was divided into(2n+1)×(2n+1)square blocks with edge length resdμm.And the pixels of the detectors have a one-to-one correspondence with the square channels of ASPXRL.The value of resdwas determined by the resolution of the CMOS camera in practice.By recording counts in each pixel,many optical properties such as output intensity distribution, divergence angle, transmission efficiency and gain can be calculated.

    2.3.Experimental arrangement

    Figure 4(a) shows the schematic diagram of the experimental setup and figure 4(b) is a photography of the experimental setup.The x-ray beam was generated by an x-ray tube with a Cu target[MCBM 50-0.6B,RTW,Germany].The focal spot was ~50μm in diameter.The ASPXRL was placed between a quasiparallel polycapillary x-ray lens with circle channels (PPXRL1) and a CMOS camera.PPXRL1 was used to obtain parallel x-ray beams.The slices used in assembly was designed and manufactured by the College of Nuclear Science and Technology of Beijing Normal University.Detailed parameter of individual slices and the entire assembled lens are listed in Table 1.At the end of the setup was an x-ray imaging system[C11440-42U30,Hamamatsu,Japan]which was used to detect the output counts of the detected x-ray.The resolution of the x-ray imaging system was 6.5 μm.For comparison,the ASPXRL was then replaced by another conventional polycapillary x-ray lens (PPXRL2).Detailed parameters of PPXRL1 and PPXRL2 are listed in Table 2.

    Table 2.Detailed parameters of PPXRL1 and PPXRL2.

    Fig.4.(a)Schematic diagram of the experimental arrangements.(b)Photograph of the experimental setup.

    3.Results and discussion

    Based on the simulation model, we used a Monte-Carlo raytracing program to do the numerical calculations.Because of the limitation of output area of PPXRL1, ASPXRL was partly illuminated by the quasi-parallel beam.Because open area ratio and irradiated area of PPXRL2 and ASPXRL are the same,the input flux of these lens were the same.Figure 5 shows the simulation results.The focal length was 30.00 mm in all cases.The incident photon numbers used in simulations is 2×107.For conventional polycapillary lens with circular channels, the shape of its focal spot is a circle.A halo exists at the edge of the spot for divergency.Figures 5(b) and 5(c)are the cases of the ideal and real conditions of ASPXRL.In Fig.5(b), ASPXRL was a monolithic lens with no intervals.In Fig.5(c),the lens was assembled with five slices and there existed air intervals.Both in the two cases,the shape of the focal spot was a cross.In the process of multiple total reflection,in real condition,the rays cannot be guided rightly because of the existence of the air intervals.This caused intensity loss in the central part of the focal cross and some dark stripes that had no recorded photons in the cross arm.Meanwhile, misguided rays contributed to the background that are useless for focus.This problem can be overcome by decreasing the length of the intervals which rely on the development of the corrosion technology.

    Fig.5.Simulation results of focal spot: (a) conventional polycapillary lens PPXRL2;(b)ASPXRL without air intervals;(c)ASPXRL with air intervals.

    Figure 6 shows the experimental results.The voltage and currents of the x-ray tube were set to 30 kV and 400μA.The exposure time of the camera was set to 2 seconds.The focal length of PPXRL2 and ASPXRL were 35.0 mm and 36.0 mm,respectively.In good agreement with the simulation results,using ASPXRL for focusing, the focal spot was a cross with bright center and twodimensional cross arms.Here existed some dark stripes that have no recorded photons for the photon loss in the air intervals.And the background caused by the misguided rays was obvious.The full width of the crosslike focal spot was 600μm,while the full width of the circular focal spot was 400μm.Figure 7(a)is the intensity profile in one dimension(orange line marked in Fig.6)of the focal spot for PPXRL2 and ASPXRL.The profiles showed similar Gaussian distributions.The full width at half maxima(FWHM)of the fitted curves was 156 μm for PPXRL2 and 104 μm for ASPXRL.In the range of FWHM,the integrated intensity for ASPXRL was about 1.5 times as PPXRL2.Compared with conventional polycapillary x-ray lens,using ASPXRL can obtain smaller and brighter focal spot.Due to the existence of the background caused by misguided rays, the full width of ASPXRL is larger than PPXRL2.Figure 7(b)shows the measurement results of divergence of PPXRL2 and ASPXRL.The x-ray camera was moved with a step of 1 mm.As distance between the lens exit and the camera increases, the FWHM of the transverse beam size first decreases and then increases.The value reaches the minimum in the position of focal length.The measured divergence of PPXRL2 was 8.4 mrad and of ASPXRL was 8.0 mrad.The depth of focus was shorter for ASPXRL compared with PPXRL2.In theory,the depth of focus is same for the two lenses because of the same geometric structure in longitude.The difference mainly comes from the fluctuation in the curve shape during manufacturing.

    Fig.6.Experimental results of focal spot using ASPXRL and PPXRL2 for focusing.

    Similar divergence and depth of focus suggested that ASPXRL could be used in the same field as that of the conventional polycapillary x-ray lens.The advance of this new type lens is that it can provide smaller and brighter focal spot as mentioned above.This owes to the “corner cube” effect of square channels.[16]With circular channels,there exists a central line along the cylindrical channel.Rays parallel to the central line will reflected back to the optic axis.If the hit point of TR is away from the central line, the rays will divert away from the optic axis and cause severe focusing errors.Figure 8 is the simulated results of the photon distribution in the exit plane of these two lenses.The photon distribution in ASPXRL is square-like while in PPXRL2 is crescent.With “corner cube” effect, the photons guided by ASPXRL contributes to the cross-like focal spot with a magnitude depends on the channel width.As shown in Fig.8(b),with layer number increasing,more photons hit on the circular channels with a position away from the central line.It leads to significant focusing errors.Thus,it can be explained that using ASPXRL produces higher quality focusing compared with lens with circular channels.

    Fig.7.(a)Intensity profiles in one dimension of the focal spot for PPXRL2 and ASPXRL.(b)Divergence of PPXRL2 and ASPXRL.

    Fig.8.Simulated results of the photon distribution in the exit plane of (a)ASPXRL and(b)PPXRL2.

    Fig.9.(a) Diagram of displacement error.(b) Diagram of axis deviation error(transverse and longitudinal).

    Fig.10.Focal spot effected by manufacturing imperfections: (a) 5.00-μm random displacement error; (b) 0.1-rad transverse axis deviation error; (c)0.01-rad longitudinal axis deviation error.

    Fig.11.Transmission efficiency versus incident beam energy with:(a)0.00-,2.00-, 5.00-, and 10.00-μm random displacement errors; (b) 0.00-, 0.10-,0.20-, and 0.50-rad transverse axis deviation errors; (c) 0.00-, 0.01-, 0.10-,and 0.50-rad longitudinal axis deviation errors.

    As figure 6(a)shows,the focusing quality using ASPXRL was not satisfactory due to the existence of air intervals and manufacturing imperfections.Air intervals leads to the generation of dark stripes and useless background.And manufacturing imperfections would cause distortion of the shape of the focal spot.Figure 9 is a diagram of the two common imperfections:displacement error and axis deviation error.It should be noted that the imperfections of ASPXRL is hard to be measured experimentally.Therefore,simulations were conducted to analyze the cause of the distortion of the focus shape qualitatively.Figure 10 shows the simulation results of the focal spot when different types of imperfections were taken into accounts individually.From Fig.10(a), it can be seen that random displacement error caused shift of the cross arm of the focal spot.Figures 10(b) and 10(c) show that transverse axis deviation errors caused rotation of the cross and longitudinal axis deviation errors caused defocusing directly.These simulated distortions could also be observed in Fig.6(a).The experimental measurement result of the transmission efficiency of ASPXRL is 15% while the design value is 21% at 8.04 keV.To evaluate the effects of the imperfections on focusing capability of ASPXRL, we calculated its transmission efficiency in different conditions.As figure 11 shows, the transmission efficiency of ASPXRL decreases with increasing incident energy in general.At a given incident energy,the decline quantity increases observably with increasing error values.In these three conditions, the effect of the longitude axis deviation error is the most significant.To avoid the potential disadvantages these manufacturing imperfections would bring in,the manufacturing technique should be improved to avoid their generation.This is our next research goal including producing longer square hollow channels which was mentioned above.

    4.Conclusion and perspectives

    A new type of x-ray lens composed of multi-square polycapillary slices (ASPXRL) used in focusing parallel x-ray beam was presented in this paper.The simulation of the focusing process was based on an improved Monte-Carlo raytracing method.The theory was in good agreement with experiments.Both in simulations and experiments,it suggested that ASPXRL can provide higher focusing quality compared with conventional polycapillary x-ray lens.This is credited to the “cube corner” effect that benefits the family of arrays composed of square channels appears to offer the best focusing performance out of all possible channel cross sections.

    However, the current ASPXRL is not perfect.The limitation of manufacturing technique makes the thickness of the slices could not be greater than 3.0 mm.This leads to the existence of air intervals between the slices when assembled.Owing to these intervals,primary incident rays would be misguided and cause the dark stripes and useless background.In addition, manufacturing imperfections such as displacement and axis deviation errors could also affect the focusing quality and make the focal spot aberrated.This is also considered in this work.For difficulty in measurement of ASPXRL in experiments,simulations were conducted to analyze these effects and evaluated using the transmission efficiency.It shows that these imperfections will cause the decrease of the transmission efficiency in general and the effect of longitudinal axis deviation error is the most significant.Thus,our next research goals are longer hollow square channel and less manufacturing imperfections.In summary, it is suggested that ASPXRL can be used to replace conventional polycapillary lens for better focusing performance.This type of lens has application prospects as a condenser lens for x-ray microscopy and flux collectors for x-ray analytical instruments.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.11875087).

    猜你喜歡
    天成
    長橋黃昏
    北京國控天成科技有限公司
    運(yùn)河古通衢 水韻本天成
    煙臺天成制針有限公司
    北京浩瀚天成科技有限責(zé)任公司
    簡單最優(yōu)的alpha策略選擇與風(fēng)險(xiǎn)預(yù)算
    慧眼獨(dú)具 神韻天成
    —— 九龍璧(華安玉)鑒賞心得
    寶藏(2018年6期)2018-07-10 02:26:56
    俱天成,極奇妙!——閑聊畫面石的獨(dú)特筆法
    寶藏(2018年1期)2018-04-18 07:39:34
    清風(fēng)明月本無價(jià),近水遙山皆有情——天成集句類
    中國三峽(2017年3期)2017-06-09 08:14:59
    知識經(jīng)濟(jì)·中國直銷(2016年10期)2016-02-27 16:16:46
    亚洲精品粉嫩美女一区| 国产精品自产拍在线观看55亚洲| 18美女黄网站色大片免费观看| 99热6这里只有精品| 日本一本二区三区精品| 国产毛片a区久久久久| 精品电影一区二区在线| 国产精品久久久久久亚洲av鲁大| 精品一区二区三区视频在线观看免费| 在线观看免费视频日本深夜| 亚洲片人在线观看| 国产成人精品无人区| 最新在线观看一区二区三区| 韩国av一区二区三区四区| 国产精品亚洲一级av第二区| 不卡一级毛片| 国产精品久久久久久久电影 | 麻豆一二三区av精品| 国产精品亚洲一级av第二区| 丰满人妻一区二区三区视频av | 久9热在线精品视频| 午夜成年电影在线免费观看| 色综合欧美亚洲国产小说| 无人区码免费观看不卡| 欧美色视频一区免费| 很黄的视频免费| 丁香六月欧美| av中文乱码字幕在线| 波多野结衣高清作品| 性色avwww在线观看| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 一级毛片高清免费大全| 天堂av国产一区二区熟女人妻| 可以在线观看毛片的网站| 亚洲国产日韩欧美精品在线观看 | 久久香蕉国产精品| 99久久精品国产亚洲精品| 中文字幕av在线有码专区| 12—13女人毛片做爰片一| 国产一区在线观看成人免费| 在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| www日本黄色视频网| 久久精品国产清高在天天线| 麻豆成人午夜福利视频| 日韩欧美在线乱码| 精华霜和精华液先用哪个| 制服丝袜大香蕉在线| 首页视频小说图片口味搜索| 亚洲欧美日韩东京热| 国语自产精品视频在线第100页| 久久久久久久久中文| 日日夜夜操网爽| 国产激情偷乱视频一区二区| 999精品在线视频| 黄片小视频在线播放| 十八禁人妻一区二区| 国产精品永久免费网站| 麻豆成人av在线观看| 在线视频色国产色| 亚洲美女视频黄频| 国产不卡一卡二| 国产精品一区二区三区四区久久| 久久中文字幕人妻熟女| 成熟少妇高潮喷水视频| 久久香蕉精品热| 香蕉av资源在线| 18禁裸乳无遮挡免费网站照片| 亚洲av电影不卡..在线观看| 国产探花在线观看一区二区| 免费在线观看日本一区| 黑人操中国人逼视频| 变态另类成人亚洲欧美熟女| 色综合亚洲欧美另类图片| 成人无遮挡网站| 国产成人啪精品午夜网站| 国产黄片美女视频| 99热只有精品国产| 一进一出抽搐动态| 脱女人内裤的视频| 亚洲一区二区三区不卡视频| 白带黄色成豆腐渣| 变态另类成人亚洲欧美熟女| 国产一区二区三区视频了| 十八禁网站免费在线| 国产亚洲精品久久久com| 九色国产91popny在线| 亚洲精品在线美女| 国产亚洲欧美在线一区二区| 99久国产av精品| 精品久久久久久久人妻蜜臀av| 午夜日韩欧美国产| 少妇熟女aⅴ在线视频| 国产高清视频在线播放一区| 搡老岳熟女国产| 少妇裸体淫交视频免费看高清| 成年女人毛片免费观看观看9| 成人高潮视频无遮挡免费网站| 中文字幕人成人乱码亚洲影| 丝袜人妻中文字幕| 九色国产91popny在线| 天天一区二区日本电影三级| 国产精品99久久久久久久久| 国产精品一区二区精品视频观看| 12—13女人毛片做爰片一| 亚洲av免费在线观看| 两性夫妻黄色片| 午夜精品一区二区三区免费看| 国产高清视频在线播放一区| 亚洲七黄色美女视频| 法律面前人人平等表现在哪些方面| 午夜影院日韩av| 欧美+亚洲+日韩+国产| 久久久成人免费电影| a在线观看视频网站| 久久久久久久久免费视频了| 午夜福利在线在线| 91久久精品国产一区二区成人 | 久久久精品大字幕| 精品国产亚洲在线| 亚洲国产看品久久| 亚洲精品美女久久久久99蜜臀| 两个人视频免费观看高清| 亚洲人成伊人成综合网2020| 一级黄色大片毛片| 成年女人永久免费观看视频| 午夜福利成人在线免费观看| 熟妇人妻久久中文字幕3abv| 色老头精品视频在线观看| ponron亚洲| 国产精品久久久人人做人人爽| 亚洲性夜色夜夜综合| 久久久国产成人精品二区| 国产精品一区二区三区四区免费观看 | 国内少妇人妻偷人精品xxx网站 | 亚洲第一电影网av| 亚洲av片天天在线观看| 欧美日韩精品网址| 日韩成人在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| 黄色 视频免费看| 精品久久久久久久毛片微露脸| 成年女人毛片免费观看观看9| 一二三四在线观看免费中文在| 亚洲av免费在线观看| 欧美成人一区二区免费高清观看 | 99久久久亚洲精品蜜臀av| 此物有八面人人有两片| 国产私拍福利视频在线观看| 久久这里只有精品19| 欧美绝顶高潮抽搐喷水| 美女黄网站色视频| 又爽又黄无遮挡网站| 久久国产精品影院| 精品久久久久久久毛片微露脸| 午夜福利成人在线免费观看| 天天一区二区日本电影三级| 12—13女人毛片做爰片一| 国产免费av片在线观看野外av| 叶爱在线成人免费视频播放| 美女cb高潮喷水在线观看 | 国产精品久久久久久久电影 | 麻豆国产97在线/欧美| 两人在一起打扑克的视频| 白带黄色成豆腐渣| www日本黄色视频网| 国产精品精品国产色婷婷| 日韩高清综合在线| 一进一出抽搐动态| www.熟女人妻精品国产| 日本熟妇午夜| 少妇人妻一区二区三区视频| 精品乱码久久久久久99久播| 一个人免费在线观看电影 | 亚洲精品粉嫩美女一区| 欧洲精品卡2卡3卡4卡5卡区| 国产爱豆传媒在线观看| 国产精品久久视频播放| 天堂影院成人在线观看| 中文字幕av在线有码专区| 久久香蕉精品热| 色在线成人网| 国产精品爽爽va在线观看网站| 婷婷丁香在线五月| 亚洲熟女毛片儿| 国产精品一及| 少妇裸体淫交视频免费看高清| av女优亚洲男人天堂 | 国产主播在线观看一区二区| 好男人在线观看高清免费视频| 一本综合久久免费| 中文字幕人妻丝袜一区二区| 欧美日韩亚洲国产一区二区在线观看| 午夜福利在线在线| 午夜免费激情av| 欧美高清成人免费视频www| 亚洲国产精品sss在线观看| 一个人免费在线观看的高清视频| 性色avwww在线观看| 免费在线观看亚洲国产| 亚洲中文日韩欧美视频| 亚洲国产看品久久| av片东京热男人的天堂| 身体一侧抽搐| 狠狠狠狠99中文字幕| 黑人欧美特级aaaaaa片| 亚洲欧美日韩无卡精品| 一进一出抽搐动态| 在线观看免费视频日本深夜| 草草在线视频免费看| 国产精品精品国产色婷婷| 日韩有码中文字幕| 久久久精品大字幕| 欧美三级亚洲精品| 国产高清有码在线观看视频| 看黄色毛片网站| 国产主播在线观看一区二区| 美女 人体艺术 gogo| 国语自产精品视频在线第100页| 琪琪午夜伦伦电影理论片6080| 精品久久蜜臀av无| 中文亚洲av片在线观看爽| 久久精品aⅴ一区二区三区四区| or卡值多少钱| 日本一二三区视频观看| svipshipincom国产片| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 免费一级毛片在线播放高清视频| 他把我摸到了高潮在线观看| 欧美3d第一页| 久久久久久人人人人人| 毛片女人毛片| 国产精品98久久久久久宅男小说| 国产黄a三级三级三级人| 一本一本综合久久| 成熟少妇高潮喷水视频| 欧美最黄视频在线播放免费| 真人做人爱边吃奶动态| 国产精品一及| 色视频www国产| 亚洲国产精品合色在线| 日韩欧美国产一区二区入口| 岛国视频午夜一区免费看| 国产精品女同一区二区软件 | 一区福利在线观看| 亚洲一区高清亚洲精品| 999久久久国产精品视频| 51午夜福利影视在线观看| 久久久久国产一级毛片高清牌| 99久久精品一区二区三区| 999精品在线视频| 男人舔女人下体高潮全视频| 免费人成视频x8x8入口观看| 欧美日本视频| 岛国视频午夜一区免费看| 色综合欧美亚洲国产小说| 国产乱人视频| 久久性视频一级片| 一级黄色大片毛片| 欧美在线一区亚洲| 看片在线看免费视频| 男女午夜视频在线观看| 国产精品自产拍在线观看55亚洲| bbb黄色大片| 看免费av毛片| 日韩人妻高清精品专区| tocl精华| 女同久久另类99精品国产91| 制服丝袜大香蕉在线| 日日摸夜夜添夜夜添小说| 国产精品久久久久久精品电影| 97超级碰碰碰精品色视频在线观看| 国产极品精品免费视频能看的| 最近视频中文字幕2019在线8| 成年免费大片在线观看| 色综合婷婷激情| 又粗又爽又猛毛片免费看| 天堂√8在线中文| 无人区码免费观看不卡| ponron亚洲| 男人的好看免费观看在线视频| 色老头精品视频在线观看| 国产精品自产拍在线观看55亚洲| 在线国产一区二区在线| 久久精品综合一区二区三区| 免费观看精品视频网站| 91麻豆精品激情在线观看国产| 一级作爱视频免费观看| 成人精品一区二区免费| www.自偷自拍.com| 国产一区二区在线av高清观看| 在线看三级毛片| 国产成+人综合+亚洲专区| 哪里可以看免费的av片| 精品一区二区三区av网在线观看| 久久久成人免费电影| 精品午夜福利视频在线观看一区| 伊人久久大香线蕉亚洲五| 国产亚洲av嫩草精品影院| 国产精品一区二区精品视频观看| 天天躁日日操中文字幕| 天堂av国产一区二区熟女人妻| 人人妻人人澡欧美一区二区| 欧美日韩乱码在线| 久久这里只有精品19| 757午夜福利合集在线观看| 精品国产美女av久久久久小说| 亚洲欧美精品综合久久99| 嫩草影视91久久| 精品一区二区三区视频在线 | 久久久成人免费电影| 精品日产1卡2卡| 精品人妻1区二区| 给我免费播放毛片高清在线观看| 看片在线看免费视频| 日韩欧美国产一区二区入口| 黄色视频,在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 伊人久久大香线蕉亚洲五| 1024手机看黄色片| 99久久久亚洲精品蜜臀av| 国产亚洲精品久久久com| 又紧又爽又黄一区二区| 母亲3免费完整高清在线观看| 亚洲最大成人中文| 国产成人精品久久二区二区91| 91老司机精品| 午夜免费成人在线视频| 国产精品日韩av在线免费观看| 精品一区二区三区四区五区乱码| 日韩精品中文字幕看吧| 久久香蕉国产精品| 麻豆一二三区av精品| 哪里可以看免费的av片| 中文字幕久久专区| 亚洲精品美女久久av网站| 午夜精品一区二区三区免费看| 精品乱码久久久久久99久播| 夜夜躁狠狠躁天天躁| 国产精品,欧美在线| 欧美中文综合在线视频| 亚洲 国产 在线| 精品免费久久久久久久清纯| 亚洲av电影不卡..在线观看| 国产亚洲av高清不卡| 我要搜黄色片| 亚洲欧洲精品一区二区精品久久久| 五月伊人婷婷丁香| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 人妻久久中文字幕网| 亚洲国产精品999在线| xxxwww97欧美| 97人妻精品一区二区三区麻豆| 夜夜夜夜夜久久久久| 久久久久亚洲av毛片大全| 嫁个100分男人电影在线观看| netflix在线观看网站| 男女下面进入的视频免费午夜| 后天国语完整版免费观看| 99久久99久久久精品蜜桃| 国产伦精品一区二区三区视频9 | 日韩欧美国产在线观看| 欧美黑人欧美精品刺激| 欧美最黄视频在线播放免费| 久久久国产精品麻豆| 中文字幕高清在线视频| 女生性感内裤真人,穿戴方法视频| 亚洲 欧美一区二区三区| 国产成年人精品一区二区| 中出人妻视频一区二区| 熟女电影av网| 久久久久久大精品| 99久国产av精品| ponron亚洲| 日韩av在线大香蕉| 在线观看66精品国产| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久久久毛片| 黄片大片在线免费观看| 1000部很黄的大片| 精品一区二区三区四区五区乱码| 日韩欧美精品v在线| 又爽又黄无遮挡网站| 国产精品久久久av美女十八| www国产在线视频色| 午夜福利高清视频| 69av精品久久久久久| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| а√天堂www在线а√下载| 在线国产一区二区在线| 国产精品av久久久久免费| 国产野战对白在线观看| 无人区码免费观看不卡| 亚洲欧美日韩无卡精品| 法律面前人人平等表现在哪些方面| 国产免费av片在线观看野外av| 国产成人一区二区三区免费视频网站| 久久国产精品影院| 国产精品精品国产色婷婷| 最近最新中文字幕大全电影3| 久久久国产欧美日韩av| 久久久色成人| 成人国产一区最新在线观看| 欧美黄色淫秽网站| 午夜福利欧美成人| 制服人妻中文乱码| 亚洲精品国产精品久久久不卡| 日韩欧美在线乱码| av视频在线观看入口| 亚洲国产日韩欧美精品在线观看 | 亚洲人成网站在线播放欧美日韩| 亚洲中文av在线| 国产真实乱freesex| 丁香六月欧美| 久久久久久国产a免费观看| 午夜日韩欧美国产| 成人午夜高清在线视频| 中文亚洲av片在线观看爽| 欧美色视频一区免费| 好男人电影高清在线观看| aaaaa片日本免费| 18禁黄网站禁片免费观看直播| 久久久久久久午夜电影| 麻豆av在线久日| 国产亚洲精品综合一区在线观看| 婷婷六月久久综合丁香| 欧美黄色淫秽网站| 此物有八面人人有两片| 最新在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| 国产精品永久免费网站| 亚洲精品美女久久av网站| 日韩欧美在线乱码| 久久久久久久精品吃奶| 国产99白浆流出| 国产成人av教育| 免费看a级黄色片| 成熟少妇高潮喷水视频| 久久天堂一区二区三区四区| 亚洲精品乱码久久久v下载方式 | 此物有八面人人有两片| 夜夜爽天天搞| 香蕉久久夜色| 国产午夜精品久久久久久| 看片在线看免费视频| 制服丝袜大香蕉在线| 一个人看的www免费观看视频| 久久性视频一级片| 午夜福利在线在线| 欧洲精品卡2卡3卡4卡5卡区| 老汉色av国产亚洲站长工具| 久久精品亚洲精品国产色婷小说| 一边摸一边抽搐一进一小说| 999久久久国产精品视频| e午夜精品久久久久久久| 又粗又爽又猛毛片免费看| 美女cb高潮喷水在线观看 | 日韩欧美免费精品| 日日夜夜操网爽| 在线免费观看的www视频| 国产精品永久免费网站| 哪里可以看免费的av片| 亚洲自偷自拍图片 自拍| 麻豆av在线久日| 一区二区三区高清视频在线| 亚洲精品456在线播放app | 亚洲av成人一区二区三| 啪啪无遮挡十八禁网站| 女同久久另类99精品国产91| 色精品久久人妻99蜜桃| 免费无遮挡裸体视频| 嫩草影院精品99| 免费观看精品视频网站| 午夜免费观看网址| 国产aⅴ精品一区二区三区波| 亚洲国产欧美人成| 成人国产综合亚洲| 久9热在线精品视频| 久久久国产欧美日韩av| 中文在线观看免费www的网站| 色综合站精品国产| 少妇熟女aⅴ在线视频| 老鸭窝网址在线观看| 超碰成人久久| 嫩草影院精品99| 成人欧美大片| 1024香蕉在线观看| 精品99又大又爽又粗少妇毛片 | 久久久久久久精品吃奶| 亚洲午夜精品一区,二区,三区| 岛国在线免费视频观看| 99视频精品全部免费 在线 | 国产蜜桃级精品一区二区三区| 亚洲 欧美一区二区三区| 搡老妇女老女人老熟妇| 亚洲成人免费电影在线观看| 亚洲五月天丁香| 网址你懂的国产日韩在线| 51午夜福利影视在线观看| 黑人操中国人逼视频| 久久香蕉国产精品| 国产精品野战在线观看| 日韩三级视频一区二区三区| 99国产精品一区二区三区| 日本 欧美在线| 大型黄色视频在线免费观看| 日韩欧美在线二视频| 国产精品九九99| 激情在线观看视频在线高清| 久99久视频精品免费| 色噜噜av男人的天堂激情| 免费在线观看日本一区| 亚洲欧美日韩卡通动漫| 午夜视频精品福利| 蜜桃久久精品国产亚洲av| 在线免费观看的www视频| 观看免费一级毛片| 国产精品一及| 天堂影院成人在线观看| 国产高清激情床上av| 老司机福利观看| 男女下面进入的视频免费午夜| svipshipincom国产片| 国产亚洲欧美在线一区二区| 国产精品98久久久久久宅男小说| 美女 人体艺术 gogo| 久久99热这里只有精品18| 看黄色毛片网站| 午夜福利在线观看吧| 亚洲 国产 在线| 久久伊人香网站| 国产精品爽爽va在线观看网站| 变态另类成人亚洲欧美熟女| 免费在线观看亚洲国产| 色吧在线观看| 好看av亚洲va欧美ⅴa在| 黄频高清免费视频| 国产精品99久久99久久久不卡| 欧美激情在线99| 国产精品一区二区三区四区免费观看 | 九九在线视频观看精品| 无人区码免费观看不卡| 在线永久观看黄色视频| 亚洲无线观看免费| 久久午夜亚洲精品久久| 天天躁狠狠躁夜夜躁狠狠躁| 99热这里只有是精品50| 91在线精品国自产拍蜜月 | 久久久久久国产a免费观看| 日韩国内少妇激情av| 久久亚洲真实| 九九在线视频观看精品| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 午夜两性在线视频| 一边摸一边抽搐一进一小说| 国产精品影院久久| 国产高清三级在线| 欧美成人性av电影在线观看| 国产高清视频在线播放一区| 色尼玛亚洲综合影院| 久久久久久大精品| 全区人妻精品视频| 91麻豆av在线| 色综合站精品国产| 熟女电影av网| 精品国产乱子伦一区二区三区| 亚洲熟妇熟女久久| 亚洲av片天天在线观看| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 国产成人精品久久二区二区91| 婷婷精品国产亚洲av| a级毛片在线看网站| 久久久久亚洲av毛片大全| 男女那种视频在线观看| 一夜夜www| 我的老师免费观看完整版| 午夜成年电影在线免费观看| 黄色视频,在线免费观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲色图av天堂| 亚洲成av人片免费观看| 成人国产一区最新在线观看| 很黄的视频免费| 五月伊人婷婷丁香| 99久久成人亚洲精品观看| 国产91精品成人一区二区三区| 精品国产乱子伦一区二区三区| 久久久精品欧美日韩精品| 午夜福利在线观看免费完整高清在 | 91在线精品国自产拍蜜月 | 俄罗斯特黄特色一大片| 999精品在线视频| 国产精品 欧美亚洲| 90打野战视频偷拍视频| 亚洲欧美日韩东京热| 日韩高清综合在线| 999精品在线视频| 免费在线观看成人毛片| 啦啦啦免费观看视频1| 亚洲男人的天堂狠狠| 波多野结衣高清作品| 欧美日本视频| 亚洲精品久久国产高清桃花| 一级a爱片免费观看的视频| 中文字幕av在线有码专区| 欧美乱妇无乱码| 午夜a级毛片|