• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network

    2022-02-24 09:39:06AiXueQi齊愛學BinDaZhu朱斌達andGuangYiWang王光義
    Chinese Physics B 2022年2期
    關(guān)鍵詞:朱斌

    Ai-Xue Qi(齊愛學), Bin-Da Zhu(朱斌達), and Guang-Yi Wang(王光義),?

    1Faculty of Aerospace Engineering,Binzhou University,Binzhou 256603,China

    2Institute of Modern Circuits and Intelligent Information,Hangzhou Dianzi University,Hangzhou 310018,China

    This paper presents a new hyperbolic-type memristor model, whose frequency-dependent pinched hysteresis loops and equivalent circuit are tested by numerical simulations and analog integrated operational amplifier circuits.Based on the hyperbolic-type memristor model, we design a cellular neural network (CNN) with 3-neurons, whose characteristics are analyzed by bifurcations,basins of attraction,complexity analysis,and circuit simulations.We find that the memristive CNN can exhibit some complex dynamic behaviors,including multi-equilibrium points,state-dependent bifurcations,various coexisting chaotic and periodic attractors,and offset of the positions of attractors.By calculating the complexity of the memristor-based CNN system through the spectral entropy(SE)analysis,it can be seen that the complexity curve is consistent with the Lyapunov exponent spectrum,i.e.,when the system is in the chaotic state,its SE complexity is higher,while when the system is in the periodic state,its SE complexity is lower.Finally,the realizability and chaotic characteristics of the memristive CNN system are verified by an analog circuit simulation experiment.

    Keywords: memristor,cellular neural network,chaos

    1.Introduction

    In 1971, Chua introduced the concept of memristor through using the basic circuit variables charge and magnetic flux.[1]It was not until 2008 that HP Labs proved for the first time the existence of the actual memristive devices with titanium dioxide thin films.[2]The memristor is a nonlinear resistor on a nanometer scale and has non-volatility,and can be used to memorize and store information without using any external power supply.It has important potential applications in nonvolatile memories,[3]nonlinear chaotic circuits, neural network,[4]digital logic circuits,etc.

    Cellular neural network (CNN) proposed by Chua and Yang is a nonlinear processing unit with locally interconnected, multi-input and single-output.[5,6]The CNN processor to receive and generate analog signals has become a strict structure for complex systems to display their specific behaviors and various forms of computations.In fact, many artificial, physical, chemical, and biological systems can be modeled using the CNN.

    In Ref.[7], the properties of the 3-cells CNN attractor were discussed and some new results for the adaptive biological control of the 3-cells CNN attractor were acquired.All the main results are proved by using Lyapunov stability theory.In Ref.[8], an image encryption algorithm based on the six-dimensional chaotic cellular neural network (CNN) was proposed,which is robust to noise/missing pixels in the cryptographic image.In Ref.[9] the implementation of a chaotic CNN-based true random number generator on a field programmable gate array(FPGA)board were presented.

    As a fundamental component unit of brain,a neuron is capable of generating intricate dynamical behaviors[10]and the CNN is a significant model in artificial neurology.Based on the analysis of the mathematical model of CNN,some properties of a CNN,including uniqueness and boundedness,global stability, fault tolerance, bifurcation, and chaotic characteristics,are further studied.[11–13]The activation function(output function)in the original Chua–Yang CNN is a piecewise linear function,which cannot sufficiently imitate other types of nonlinear functions.Therefore,it is necessary and meaningful to propose nonlinear dynamic CNN systems with more complex functions.The introduction of chaotic dynamics enables neuron networks to possess more complex dynamics and various attractors.The synapses and the axons are the basic computing and information processing units in the brain.As a perfect element to simulate neural synapse and axons,the memristors can be introduced into chaotic neural networks,which can not only emulate memory and learnings,but also resemble the pattern of human brain information processing mode.

    By introducing memristive synaptic weight instead of resistive synaptic weight,some researches have reported the research results about the complex dynamic behaviors of memristive neural networks.[14,15]In Ref.[16] a new memristive CNN model was proposed, which proved that the memristive CNN has both short-term(volatile)storage functions and long-term (non-volatile) storage functions, and can also display the interesting two-dimensional(2D)waves.In Ref.[17],a discrete memristor-based CNN was introduced, which can perform logic operations, image processing, complex behaviors, and advanced brain functions by changing the characteristics of the memristors.Very recently, in Ref.[18] it was proved that using memory-based CNNs for associative memory will greatly increase storage capacity.In Ref.[19]a new multi-layer RTD-M-CNN model was proposed,which can improve the density and resolution of multi-layer CNN circuits,thereby increasing the feasibility of implementing VLSI circuits.In Refs.[20,21], two kinds of memristive neural networks were proposed, which can exhibit complex dynamical behaviors,including self-exited quasi-periodic limit cycle,chaotic attractor, and hyperchaotic attractor.In Ref.[22], a fractional-order quaternion neural network was put forward,in which the aperiodic, chaotic, and hyperchaotic dynamical behaviors are found by numerical simulations.The memristor has become one of the best candidates for artificial neural networks.[23–26]

    In Ref.[27],a novel hyperbolic-type memristor-based 3-neuron Hopfield neural network(HNN)was proposed,which is achieved through substituting one coupling-connection weight with a memristive synaptic weight.Unlike Ref.[27],the present paper introduces a new hyperbolic-tangent memristor model, based on which a new memristor-based CNN with 3-neurons[28]is constructed.We show that for different system parameters,the asymmetric coexistence behaviors of different types of attractors and the offsets of the positions of attractors can be formed under different initial conditions.Finally,the complexities of different types of attractors are analyzed and validated by Pspice circuit simulations.

    2.Hyperbolic-type memristor-based CNN

    2.1.Cellular neural network-CNN

    The basic circuit unit of a CNN is called a cell, which consists of linear and nonlinear circuit elements.Consider anM×NCNN,which hasM×Ncells arranged inMrows andNcolumns.A 2D 3×3 CNN is shown in Fig.1.

    Fig.1.2D 3×3 CNN.

    In Fig.1, it is supposed that the cellC(i,j) is only connected to the cells in the range ofr, andNr(i,j) is the set of cellC(i,j)and its neighboring cells,which is defined as

    whereris a positive integer number.The equivalent circuit diagram of a cellular neuron,consisting of capacitance,resistances,controlled sources,and independent sources,is shown in Fig.2, whereIxu(i,j;k,l)=B(i,j;k,l)ukl,Ixy(i,j;k,l)=

    A(i,j;k,l)ykl, whereu,x, andydenote the input, state, and output,respectively.

    Fig.2.Equivalent circuit of cell C(i, j).

    The state equation of cellC(i,j)can be described by

    And the corresponding activation functionykl(t)is given by

    wherexij(t) denotes the state of cell unitC(i,j), andukl(t)is the input ofC(i,j).As an activation function,yi j(t)is the output,B(i,j;k,l)andA(i,j;k,l)are a control operator and a feedback operator,respectively,Iis the input bias current,andRxis the output impedance.

    By settingC=1,Rx=1, andI=0 in Eq.(2), a simple CNN model is described by

    The system function can be determined by 21 parameters inA,B,andI,which are defined as follows:[29]

    The activation function is an abstract concept in biology,which represents the potential discharge rate of a neuron.Normally,the neuron’s discharge rate stays at zero.When an input current is received,the discharge rate starts to increase rapidly and gradually approaches to an asymptote.Mathematically,this asymptote looks like a hyperbolic tangent function.Because the hyperbolic tangent function is smooth, it is convenient for theoretical analysis.So,we take

    as an activation function.[19]

    2.2.Hyperbolic-type memristor

    A neuron activation function is a monotonic differentiable function which is bounded above and below.Therefore,a hyperbolic tangent function is usually utilized as the neuron activation function.For this reason,a new hyperbolic-type memristor is proposed and its constitutive relation between current and voltage is modeled as

    wherevandirepresent the voltage and current of the memristor, respectively;wis the internal state variable; τ is integral time constant;a,b, andcare constants of the memristor wherec>0.In the case ofa<0, the memristor is active.Whena=?1,b=?6,c=0.1,and a sinusoidal voltagev=Vmsin(2πft)is applied to the memristor,we can derive an instantaneous power diagram and a memductance diagram as shown in Fig.3.Observe that when memductanceW(x)<0,there is alwaysp(t)<0,which corresponds to the activity of the memristor as show in Fig.3(b).

    Fig.3.(a)Instantaneous power p(t)and(b)memductance W(x).

    Whena=?1,b=?6, andc=0.1, under the excitation of the sinusoidal voltage with frequencyf=3 Hz,5 Hz,10 Hz,30 Hz,and 150 Hz,and amplitudeVm=5 V,4 V,and 3 V,the frequency-and amplitude-dependent pinched hysteresis curves are plotted in Fig.4,which shows that each lobe area decreases with the increase of the frequency while increases with the increase of the amplitude, and that the hyperbolictype memristor can behave three essential characteristics of memristors.Since thev–icharacteristic curves exist in the second and fourth quadrant, the proposed memristor is an active memristor.

    Fig.4.Numerically simulated pinched hysteresis loops of the hyperbolictype memristor.(a) Vm = 4 V with different stimulus frequencies; (b)f =5 Hz with different stimulus amplitudes.

    The corresponding equivalent circuit of the proposed memristor is designed as shown in Fig.5.The input voltagevis sent to the integral circuit consisting of U0 and C1 via inverting proportional amplifier U1, where the output of U0 is the statew.Through the inversing hyperbolic tangent function circuit and the inverting amplifier U2, the memductanceWtransforms into the multiplier,whose output is described as

    The equivalent circuit of ?tanh in the solid wire box is shown in Fig.5(b).It is easy to see that the inverting tangent hyperbolic function can be achieved by a pair of transistorsT1andT2,a constant current sourceI0and two controllable gain operation amplifier circuits.

    When the excitation voltage isv1=?1 V,the simulated pinched hysteresis curve is shown in Fig.6(a),where the horizontal axis represents the excitation voltagevand the vertical axis denotes the currenti.The transfer characteristics of the inversing hyperbolic tangent function are shown in Fig.6(b).The hysteresis curve of the memristor obtained by the Matlab numerical simulation is shown in Fig.6(c).

    Fig.5.Equivalent circuit of hyperbolic-type memristor characterized by Eq.(7): (a) circuit realization schematic diagram; (b) schematic diagram of the inverting tangent hyperbolic function circuit.

    Fig.6.(a) Hysteresis curve of memristor obtained by Pspice circuit simulation, (b) transfer characteristic of “?tanh(·)” block, and (c)hysteresis curve obtained by Matlab numerical simulation.

    2.3.Chaotic behavior of memristor-based CNN

    Now, the proposed memristor-based CNN cell is shown in Fig.7.

    Fig.7.Memristor-based CNN cell.

    The connection matrix of the CNN consisting of three cells has the following form:

    The autonomous ordinary differential equations describing the proposed memristive neural network can be derived in a dimensionless form as follows:

    wherex,y,andzrepresent the state variables of each cell,wis the internal state variable of the memristor,dis the system parameter,W(w)is the memristance andW(w)=a?btanh(w)denoting the synaptic weighta31connecting the first and third neurons.Thus, the hyperbolic-type memristor-based CNN can be modeled by Eq.(10), which is a four-dimensional autonomous nonlinear dynamical system.

    Whena=?1,b=?2,c=0.9,d=?3, and the initial condition is taken as(0,0,0.1,0),the system exhibits chaotic behavior,whose attractors are shown in Fig.8.

    Fig.8.Phase portraits of proposed chaotic CNN in(a)x–y plane,(b)x–z plane,(c)y–z plane,and(d)x–w plane.

    Using the Jacobian method we can obtain the Lyapunov exponents of Eq.(10)as(0.4796,0,?0.9082,?1.7535),and the corresponding Lyapunov dimension isDL=2.7558.Figure 9 shows the Poincare mapping aty=0 and the time domain wave-forms ofx,y,andz,which is aperiodic and pseudorandom.

    Fig.9.(a)CNN Poincare map at y=0(projection in x–z plane), (b)CNN time domain waveform of x,y,and z components.

    3.Equilibrium points and stability

    By solving equations ˙x= ˙y=˙z= ˙w=0,three equilibrium points are determined asP0=(0,0,0,0),P1=(x1,y1,z1,w1),andP2=(x2,y2,z2,w2),where the nonzero equilibrium pointsP1andP2can be calculated by solving the following equations:

    The values ofx1andx2can be determined through graphic method as shown in Fig.10.Then the values ofyi,zi, andwi(i= 1, 2) can be obtained by substitutingx1andx2into Eq.(11).[17]Takinga= ?1,b= ?2,c=0.1, andd= ?3 for example, the function curve given in Eq.(11) is plotted in Fig.10, from which the solutions are obtained asx1= 0.3948 andx2= ?0.3945.Correspondingly, the two nonzero equilibrium points can be easily obtained from Eq.(11):P1=(0.3948,0.0416,1.5243,3.7549)andP2=(?0.3945,0.1250,?1.3567,?3.7523).

    Fig.10.Function curve and its intersections with the x axis,where a=?1,b=?2,c=0.1,and d=?3.

    For the zero-equilibrium pointP0=(0,0,0,0), the characteristic equation is yielded as

    where

    According to the Routh–Hurwitz criterion,when

    the real parts of the eigenvalues are negative,implying that the CNN is stable.So, if the CNN is chaotic, there should be at least one positive real part of the eigenvalue, which leads to the consequence that not all the expressions of Eq.(15) are positive.[30]For example, whena= ?1,b= ?2,c= 0.1,andd=?3, the zero equilibrium point has Δ1=1.1, Δ2=87.1, Δ3=?5749.7, and Δ4=39154; the equilibrium pointP1= (0.3948,0.0416,1.5243,3.7549) has Δ1= 1.5, Δ2=?41.6, Δ3= ?2890.8, and Δ4= ?19336.1; and the equilibrium pointP2=(?0.3945,0.1250,?1.3567,?3.7523)has Δ1=1.5, Δ2=?42.3, Δ3=?2543.8, and Δ4=?14832.3.Under this condition, all the equilibrium points are unstable,thus creating the possibility of chaos.The eigenvalues of the three equilibrium points are listed in Table 1.

    Table 1.Characteristic roots of equilibrium points and their stability where a=?1,b=?2,c=0.1,and d=?3.

    4.Dynamic behavior of the system

    4.1.Bifurcation with parameter d

    As the system parameters change, the system can exhibit various dynamical behaviors.Leta=?1,b=?2, andc=0.9, the bifurcation diagram and the corresponding Lyapunov exponents with respect to parameterdover the range?4

    Fig.11.(a)Bifurcation and(b)Lyapunov exponent(LE)with respect to d.

    Fig.12.Projections on w–y phase plane of attractors observed for d=?3.8(a),?3.2(b),?2(c),1.6(d),2.1(e),and 4.2(f).

    4.2.Asymmetric coexisting attractors varying with parameter b

    Coexisting attractors refer to different types of attractors in a nonlinear system when the initial values change but the system parameters remain unchanged.Now, we investigate the bifurcations of the system with respect to both initial values and system parameters, where the initial conditions are selected as(0,0,0.1,0),(0,0,?0.1,0),and(0.5,0,0,1),and the parameterdis set to be ?4, ?2.5, and 3.For each fixed parameterd,the coexisting behaviors of the memristor-based CNN can be revealed by the bifurcation diagrams with both parameterband the initial conditions.

    4.2.1.Case 1 for d=?4

    Whena=?1,c=0.1, andd=?4, the bifurcation diagrams of state variablexand the corresponding first three Lyapunov exponents with respect to both parameterband the three initial conditions over the range ?10

    Figure 13 shows that there are three different bifurcation diagrams, which correspond to the three different conditions and multiple coexisting attractors, including stable point attractor,periodic and chaotic attractors,as shown in Fig.14.

    Fig.13.Coexisting behaviors of asymmetric attractors with b increasing,where a=?1,c=0.1,and d=?4.((a),(c))Bifurcation diagrams of the state variable x,with red,blue,and black orbits corresponding to initial values(0,0,0.1,0),(0,0,–0.1,0),and(0.5,0,0,1);((b),(d)).

    Fig.14.Phase portraits of asymmetrical coexisting attractors with different initial conditions and different values of parameter b in x–z plane.(a)Coexistence of left-stable point attractor(marked with five-pointed star)and right-period-1 limit cycle(red)at b=?10;(b)coexistence of left-period-1 limit cycle(blue)and right-chaotic spiral attractors at b=?4;(c)coexistence of period-1 limit cycle,left-period-2 limit cycle,and right-period-3 limit cycle at b=?2;(d)coexistence of period-1 limit cycle,left-chaotic spiral attractor,and right-period-3 limit cycle at b=?1.

    Fig.15.Basin of attraction with x(0)and z(0).

    It follows that the dynamic behavior depends on initial conditions of the system, which reflects the sensitive dependence of the system state on the initial conditions.Figure 15 describes the basin of attraction with respect to initial conditionsx(0) andz(0), where the red regions indicate the rightperiod-3 limit cycles,the blue regions refer to the left-chaotic spiral attractors,and the sky blue regions represent the period-1 limit cycles.

    4.2.2.Case 2 for d=?2.5

    Whena=?1,c=0.1 andd=?2.5,the bifurcation diagrams and the corresponding Lyapunov spectrumsversusparameterbfor the initial conditions (0, 0, 0.1, 0) (red bifurcation diagram) and (0, 0, ?0.1, 0) (blue bifurcation diagram)are shown in Fig.16, in which double-scroll chaotic attractors,periodic limit cycles and other dynamic behaviors can be observed as shown in Fig.17.

    Fig.16.Coexisting bifurcation with respect to parameter b,where a=?1,c=0.1,d=?2.5.(a)Bifurcation diagrams of state variable x with respect to initial congditions(0,0,0.1,0)(red),and(0,0,?0.1,0)(blue);(b)Lyapunov exponent spectra under the two different initial conditions.

    Figure 17(a)shows the multiple coexisting attractors with the initial conditions(0,0,?0.1,0)and(0,0,0.1,0)forb=?9,b=?7.7,b=?6.7, andb=?5.54, including the existence of a chaotic attractor and a limit cycle, and the existence of two limit cycles.

    Fig.17.Coexisting attractors with two initial conditions (0, 0, ?0.1, 0) and (0, 0, 0.1, 0) for different values of parameter b in x–z plane.(a)Coexistence of two limit cycles at b=?9; (b)coexistence of left-period-5 chaotic attrator and right-period-1 limit cycle at b=?7.7; (c)coexistence of left-double-scroll chaotic attractor and right-period-2 limit cycle at b=?6.7;(d)coexistence of left-chaotic spiral attractor and right-period-3 limit cycle at b=?5.54.

    Figure 18 displays the basin of attraction with respect to initial conditionsx(0)andz(0)under the parametersa=?1,b=?6.7,c=0.1,andd=?2.5,where the red regions indicate the chaotic spiral attractor,the blue regions represent the double-scroll chaotic attractor, and the sky blue regions refer to the period-1 limit cycle.

    Fig.18.Basin of attraction versus initial conditions x(0)and z(0).

    4.2.3.Case 3 for d=3

    Whena=?1,c=0.1, andd=3, the bifurcation diagrams of the state variablexand the corresponding Lyapunov exponent spectrumsversusparameterbfor different initial conditions are shown in Fig.19,where chaotic attractors,periodic limit cycles and other dynamic behaviors can be observed.The red and blue bifurcation diagrams correspond to initial conditions(0,0,0.1,0)and(0,0,?0.1,0),respectively,showing a coexisting bifurcation phenomenon.

    Fig.19.Coexisting behaviors of asymmetric attractors with b increasing,where a=?1,c=0.1,and d=3.(a)Bifurcation diagram of the state variable x, where the red and blue orbits correspond to initial conditions(0, 0,0.1,0)and(0,0,?0.1,0),respectively;(b)Lyapunov exponent spectra with the two initial conditions.

    Figure 20 shows several typical coexisting attractors, including coexisting period-2 limit cycle and double-scroll chaotic attractor as shown in Fig.20(a),coexisting period-4 limit cycle and period-3 limit cycle as shown in Fig.20(b),and coexisting spiral chaotic attractor and double-scroll chaotic attractor as shown in Figs.20(c)and 20(d).

    Fig.20.Phase portraits of asymmetrically coexisting attractors with different values of b in x–z plane.(a)Coexistence of left-period-2 limit cycle and right-double-scroll chaotic attractor transition for b=?8.5;(b)coexistence of left-period-4 limit cycle and right-period-3 limit cycle for b=?7; (c)coexistence of left-chaotic spiral attractor and right-double-scroll chaotic attractor transition for b=?6.1; (d)coexistence of left-chaotic spiral attractor and right-double-scroll chaotic attractor for b=?5.4.

    Fig.21.Basin of attraction with respect to x(0)and z(0.

    Figure 21 shows the basin of attraction of the system with respect to the initial valuesx(0) andz(0) under the fixed parameters:a=?1,b=?6,c=0.1,d=3,where the red(resp.blue) region describes the case that the trajectories starting from the region eventually evolve into a double-scroll attractor(a spiral attractor).It can be seen from Fig.21 that for the two types of attractors,the attraction domain of each one occupies half of the area of the attractor basin.

    4.3.Influence of parameter c on position of the attractor

    4.3.1.Case 1 for d=?3.8

    By settinga=?1,b=?2,andd=?3.8,we can obtain the bifurcation diagram and the corresponding Lyapunov spectrum with respect to parametercas shown in Fig.22.It can be observed that with the change of parameterc,the amplitude ofwchanges but the Lyapunov exponents of the system are basically unchanged,so we call parametercthe chaotic amplitude modulation coefficient.[31]

    It is observed from Fig.22(a)that the amplitude of variablewapproaches to zero with the increase of parameterc,which corresponds to the attractor migrating in thex–wplane plotted in Fig.23(a), where the points with different colors represent the equilibrium points of the system corresponding to the same color attractors.It can also be seen that the attractor positions are caused to migrate by the change of parameterc, which changes the position of the corresponding the equilibrium point of the system.Several attractors are selected to show the bifurcation process in Fig.23(b).

    Fig.22.(a)Bifurcation diagram and(b)Lyapunov spectrum with respect to c.

    Fig.23.Migration of attractors with the increase of c, where a = ?1,b=?2, and d =?3.8.(a) Phase portraits of the attractors in x–w plane,and(b)bifurcation process of the attractor.

    4.3.2.Case 2 for d=2.5

    By fixing the parameters:a=?1,b=?2,andd=2.5,the bifurcation diagram of variablewand the Lyapunov exponent spectrum with respect to parametercover the range 0.1

    Fig.24.(a)Bifurcation diagram and(b)Lyapunov spectrum with respect to c.

    Fig.25.Migration of attractor with c increasing, where a=?1, b=?2,and d =2.5.(a) The phase portraits of attractors in x–w plane, and(b) bifurcation process of attractor.

    In particular, when the parameterc≥1, the chaotic attractor evolves from a single scroll into a double scroll.Several attractors are selected to show the bifurcation process as depicted in Fig.25(b).

    5.Complexity analysis of system

    In theSEalgorithm the energy distribution in the Fourier transform domain is used to obtain the spectral entropy based on the Shannon entropy algorithm, which can directly reflect the complexity of chaotic pseudo-random sequences.[28]The algorithm is as follows.

    (i) For the reason that the spectrum can more accurately to show the signal capacity,the direct current(DC)part of the pseudo-random sequence of lengthNcan be removed by

    (ii)By applying the discrete Fourier transform to Eq.(16),we obtain

    wherek=0,1,2,...,N?1.

    (iii)Taking the first half of sequenceX(k)and using the Parseval algorithm,we obtain the power spectrum at a specific frequency

    wherek=0,1,2,...,(N/2)?1.

    The total power of the sequence can be defined as

    and the probability of the relative power spectrum can be expressed as

    (iv) By using Eqs.(18)–(20), and combining with Shannon entropy concept, the spectral entropyseof the signal is obtained from[32]

    IfPkis zero in Eq.(21), thenPklnPkis defined as zero.The spectral entropy converges to ln(N/2).For comparative analysis,the spectral entropy can be normalized as

    It can be observed from the above transformation that the more unstable the power spectrum variation, the simpler the structure composition is and the less obvious the sequence amplitude.Correspondingly,the measurements are also small.

    Fig.26.(a) Two-dimensional and (b) three-dimensional SE curve varying with parameters b and d.

    Fig.27.Lyapunov spectrum for(a)a=?1, c=0.5, and d =?2, and(b)a=?1,c=0.5,and d=?3.

    By fixinga=?1 andc=0.5 and changing parametersbandd, we can calculate the complexity of memristor-based CNN system through theSEanalysis.The two-dimensional curves and three-dimensional curves ofSEwith parametersbanddare shown in Fig.26.For comparison, we draw the Lyapunov exponent diagram of the system ford= ?2 andd=?3 as shown in Fig.27.By comparingSEcurve with the Lyapunov exponents,it can be seen that the complexity curve is consistent with the Lyapunov exponent spectrum,i.e.,when the system is in the chaotic state,itsSEcomplexity is higher,while when the system is in the periodic state, itsSEcomplexity is lower.Moreover,the complexity associated with the chaotic double-scroll attractor is greater than that associated with the chaotic single-scroll attractor.

    6.Simulation experiment

    The Pspice circuit diagram is shown in Fig.28 to verify the dynamic characteristics of the system.

    The circuit parameters of the resistances and the capacitances are marked as shown in Fig.28, where the internal parameters of the memristor are fixed.Thex–zphase portraits of the circuit in Pspice simulations are shown in Figs.29(a)–29(c)when the values of resistanceRdare 2.63 kΩ,3.12 kΩ,and 5 kΩ,respectively.And thex–zphase portraits of the system simulation circuit is shown in Figs.29(d)–29(f)when the values of resistanceRdare 6.25 kΩ, 4.76 kΩ, and 2.38 kΩ,respectively.The experimental results are shown to be in good agreement with the numerical simulation results.

    Fig.28.Circuit realization scheme of hyperbolic-type memristor based CNN.

    Fig.29.Phase portraits of chaotic attractor observed from Pspice circuit simulations for(a)Rd=2.63 kΩ,(b)3.12 kΩ,(c)5 kΩ,(d)6.25 kΩ,(e)4.76 kΩ,and(f)2.38 kΩ.

    7.Conclusions

    In this paper, a new hyperbolic-type memristor model is proposed.Its basic characteristics and state-dependent pinched hysteresis loops are verified by numerical simulations and theoretical analysis.A hyperbolic-type memristorbased CNN with 3 neurons is thereby constructed for generating complex chaotic behaviors in the CNN.It is found that the memristive CNN can show complex chaotic dynamics under the activation function tanh(·), including state-dependent bifurcations,coexisting attractors,chaotic amplitude modulation, etc.The proposed memristor model and the memristive CNN are tested by numerical simulations and the Pspice circuit experiments.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.61771176 and 62171173).

    猜你喜歡
    朱斌
    憋住的屁到哪去了
    “愚公移山”新篇
    “斗雞眼”
    碎石神掌
    “愚公移山”新篇
    抓人眼球
    呆頭農(nóng)場
    呆頭農(nóng)場
    呆頭農(nóng)場
    呆頭農(nóng)場
    国产亚洲欧美精品永久| 一二三四中文在线观看免费高清| 国产综合精华液| 久久人人爽av亚洲精品天堂| 久久精品久久精品一区二区三区| 美女xxoo啪啪120秒动态图| 综合色丁香网| 久久青草综合色| 99九九在线精品视频| 一本大道久久a久久精品| 9热在线视频观看99| 亚洲精品第二区| 久久久久精品性色| 免费黄色在线免费观看| 超碰97精品在线观看| 国产深夜福利视频在线观看| 国产亚洲精品第一综合不卡| 国产成人精品一,二区| 在线观看免费视频网站a站| 久久这里有精品视频免费| 高清视频免费观看一区二区| 亚洲人成77777在线视频| 国产成人精品久久二区二区91 | 在线观看一区二区三区激情| 久久久精品免费免费高清| 国产精品二区激情视频| videosex国产| 男女下面插进去视频免费观看| 最新的欧美精品一区二区| 哪个播放器可以免费观看大片| 中文字幕人妻熟女乱码| 国产一区二区在线观看av| xxx大片免费视频| 制服人妻中文乱码| 啦啦啦视频在线资源免费观看| 我要看黄色一级片免费的| 下体分泌物呈黄色| 欧美日韩亚洲高清精品| 乱人伦中国视频| 精品人妻在线不人妻| 久久久久国产网址| 亚洲欧美精品自产自拍| 欧美亚洲 丝袜 人妻 在线| 欧美日韩视频精品一区| 亚洲av男天堂| 国产视频首页在线观看| 精品少妇内射三级| 国产 精品1| 中文字幕亚洲精品专区| 在线观看人妻少妇| 亚洲男人天堂网一区| 波野结衣二区三区在线| 纵有疾风起免费观看全集完整版| 国产 一区精品| 一本—道久久a久久精品蜜桃钙片| 国产视频首页在线观看| 精品久久久精品久久久| 国产亚洲一区二区精品| av在线app专区| 欧美+日韩+精品| 国产男女超爽视频在线观看| 一级片免费观看大全| 日韩中字成人| 一边亲一边摸免费视频| 一区二区三区四区激情视频| 老司机影院成人| 国产一级毛片在线| 新久久久久国产一级毛片| 高清av免费在线| 美女国产视频在线观看| 日韩中文字幕视频在线看片| 国产人伦9x9x在线观看 | 国产成人精品一,二区| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看日韩| 丝袜人妻中文字幕| 欧美bdsm另类| 一级片'在线观看视频| 一边亲一边摸免费视频| 免费久久久久久久精品成人欧美视频| 国产日韩一区二区三区精品不卡| 91精品伊人久久大香线蕉| 黄色视频在线播放观看不卡| 精品99又大又爽又粗少妇毛片| 欧美在线黄色| 黄色配什么色好看| 欧美精品人与动牲交sv欧美| 波多野结衣一区麻豆| 最近最新中文字幕免费大全7| 观看美女的网站| 成年人午夜在线观看视频| videos熟女内射| 亚洲成人av在线免费| 久久99蜜桃精品久久| 亚洲国产精品一区三区| 免费黄网站久久成人精品| 亚洲中文av在线| 精品久久久久久电影网| 97人妻天天添夜夜摸| 热99久久久久精品小说推荐| 波多野结衣一区麻豆| 国产精品久久久久久av不卡| 欧美在线黄色| 亚洲美女黄色视频免费看| 日本爱情动作片www.在线观看| 女人被躁到高潮嗷嗷叫费观| 最近中文字幕2019免费版| 亚洲综合色惰| 精品久久蜜臀av无| 亚洲图色成人| 国产精品久久久久久久久免| 秋霞在线观看毛片| 水蜜桃什么品种好| 亚洲精品第二区| 国产日韩欧美亚洲二区| 蜜桃在线观看..| 亚洲人成77777在线视频| 一区二区三区精品91| 一本—道久久a久久精品蜜桃钙片| 人人妻人人添人人爽欧美一区卜| 高清欧美精品videossex| 欧美 日韩 精品 国产| 精品一品国产午夜福利视频| 欧美最新免费一区二区三区| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品无大码| 日韩大片免费观看网站| 一边摸一边做爽爽视频免费| 九草在线视频观看| 可以免费在线观看a视频的电影网站 | 成人二区视频| 日韩熟女老妇一区二区性免费视频| 爱豆传媒免费全集在线观看| 777久久人妻少妇嫩草av网站| 国产精品不卡视频一区二区| 国产成人91sexporn| 热99国产精品久久久久久7| 久久这里有精品视频免费| 在线观看免费日韩欧美大片| 亚洲精品国产av成人精品| 久热这里只有精品99| av在线观看视频网站免费| 一二三四中文在线观看免费高清| 国产精品香港三级国产av潘金莲 | 最近最新中文字幕大全免费视频 | 国产精品免费大片| 亚洲三区欧美一区| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 啦啦啦啦在线视频资源| 久久精品人人爽人人爽视色| 国产精品三级大全| 午夜精品国产一区二区电影| 人成视频在线观看免费观看| 一区二区三区四区激情视频| 久久精品aⅴ一区二区三区四区 | 一级黄片播放器| 看免费成人av毛片| 亚洲精品国产一区二区精华液| 国产精品国产三级国产专区5o| 国产一区二区激情短视频 | 高清视频免费观看一区二区| 国产一区二区在线观看av| 亚洲国产精品成人久久小说| 美女高潮到喷水免费观看| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 在线天堂最新版资源| www.精华液| 亚洲成人一二三区av| 丝袜美腿诱惑在线| 两个人看的免费小视频| 欧美av亚洲av综合av国产av | 欧美日韩视频高清一区二区三区二| 九九爱精品视频在线观看| 亚洲欧美一区二区三区黑人 | 免费高清在线观看日韩| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久| 亚洲人成电影观看| 99久久综合免费| 日韩电影二区| 国产一区二区在线观看av| 黄色视频在线播放观看不卡| 欧美日韩综合久久久久久| 99热国产这里只有精品6| 午夜91福利影院| 久热这里只有精品99| 99热国产这里只有精品6| 成年人午夜在线观看视频| 久久久久精品人妻al黑| 多毛熟女@视频| 精品99又大又爽又粗少妇毛片| 满18在线观看网站| av一本久久久久| 天堂俺去俺来也www色官网| 国产精品一区二区在线观看99| 有码 亚洲区| 晚上一个人看的免费电影| 天堂中文最新版在线下载| 人人澡人人妻人| 男女午夜视频在线观看| 国产熟女午夜一区二区三区| 少妇 在线观看| videosex国产| 丰满迷人的少妇在线观看| 午夜激情av网站| 黄片小视频在线播放| 国产精品一国产av| 美女xxoo啪啪120秒动态图| 国产日韩欧美亚洲二区| 26uuu在线亚洲综合色| a 毛片基地| 成人亚洲精品一区在线观看| 一级毛片电影观看| 国产日韩欧美在线精品| 精品久久久久久电影网| 国产成人欧美| 边亲边吃奶的免费视频| 性色avwww在线观看| 熟女av电影| 免费不卡的大黄色大毛片视频在线观看| 青春草国产在线视频| 黑丝袜美女国产一区| 91久久精品国产一区二区三区| 欧美成人午夜免费资源| 黄片无遮挡物在线观看| 我要看黄色一级片免费的| 十八禁网站网址无遮挡| 一级毛片电影观看| 青春草视频在线免费观看| 26uuu在线亚洲综合色| 黄色视频在线播放观看不卡| 欧美xxⅹ黑人| 9191精品国产免费久久| 精品人妻熟女毛片av久久网站| 久久久久国产一级毛片高清牌| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 不卡av一区二区三区| 黄色配什么色好看| 国产成人av激情在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 又大又黄又爽视频免费| 妹子高潮喷水视频| 91午夜精品亚洲一区二区三区| 热re99久久国产66热| 欧美老熟妇乱子伦牲交| 亚洲欧洲日产国产| 日本91视频免费播放| 69精品国产乱码久久久| a 毛片基地| 色网站视频免费| 久久久久人妻精品一区果冻| 日韩一区二区视频免费看| 看非洲黑人一级黄片| 丰满少妇做爰视频| 丁香六月天网| 精品人妻熟女毛片av久久网站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲天堂av无毛| 亚洲伊人久久精品综合| 在线观看美女被高潮喷水网站| 亚洲精品成人av观看孕妇| 午夜福利一区二区在线看| 汤姆久久久久久久影院中文字幕| 国产日韩一区二区三区精品不卡| 国产精品久久久久久久久免| 波野结衣二区三区在线| 日韩中文字幕视频在线看片| 欧美日韩精品网址| 国产精品不卡视频一区二区| 免费观看a级毛片全部| 色播在线永久视频| tube8黄色片| 日韩一本色道免费dvd| 亚洲国产精品一区三区| 免费黄网站久久成人精品| 亚洲人成电影观看| 亚洲欧美日韩另类电影网站| 边亲边吃奶的免费视频| 亚洲av免费高清在线观看| 女性生殖器流出的白浆| 中文字幕av电影在线播放| 热99久久久久精品小说推荐| 免费av中文字幕在线| 日本91视频免费播放| 国产极品粉嫩免费观看在线| 999精品在线视频| 美女大奶头黄色视频| 一本久久精品| 午夜福利在线免费观看网站| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| www.精华液| 亚洲国产毛片av蜜桃av| 女人精品久久久久毛片| av线在线观看网站| 亚洲国产av新网站| 乱人伦中国视频| 69精品国产乱码久久久| 女人被躁到高潮嗷嗷叫费观| 婷婷色综合大香蕉| 黄色 视频免费看| 这个男人来自地球电影免费观看 | 巨乳人妻的诱惑在线观看| av片东京热男人的天堂| 久久久久久人人人人人| 精品国产乱码久久久久久小说| 丰满饥渴人妻一区二区三| 亚洲精品aⅴ在线观看| av电影中文网址| 美女高潮到喷水免费观看| 色视频在线一区二区三区| 国产午夜精品一二区理论片| 国产亚洲午夜精品一区二区久久| 一区福利在线观看| 啦啦啦在线观看免费高清www| 乱人伦中国视频| 免费在线观看黄色视频的| 蜜桃国产av成人99| 哪个播放器可以免费观看大片| 国产日韩欧美视频二区| 免费人妻精品一区二区三区视频| 天堂俺去俺来也www色官网| 亚洲av中文av极速乱| 美女国产高潮福利片在线看| 中文天堂在线官网| 在线 av 中文字幕| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 91在线精品国自产拍蜜月| 亚洲,欧美精品.| 欧美国产精品一级二级三级| 久久久欧美国产精品| 国产精品欧美亚洲77777| 欧美97在线视频| 18禁裸乳无遮挡动漫免费视频| 精品人妻一区二区三区麻豆| 美女国产视频在线观看| 久久久a久久爽久久v久久| 性少妇av在线| 国产日韩欧美亚洲二区| 亚洲成国产人片在线观看| 久久精品国产鲁丝片午夜精品| 久久精品国产自在天天线| 飞空精品影院首页| 亚洲欧美成人综合另类久久久| 中文字幕制服av| 一区在线观看完整版| 999精品在线视频| 波多野结衣一区麻豆| 婷婷色av中文字幕| 国产成人精品久久二区二区91 | 三级国产精品片| 日韩av不卡免费在线播放| 中文乱码字字幕精品一区二区三区| 永久网站在线| a级毛片黄视频| 欧美xxⅹ黑人| 在线 av 中文字幕| a级毛片在线看网站| 777久久人妻少妇嫩草av网站| 中文天堂在线官网| 亚洲精品成人av观看孕妇| 91午夜精品亚洲一区二区三区| 日韩 亚洲 欧美在线| 午夜福利网站1000一区二区三区| 国产精品免费视频内射| 丝袜人妻中文字幕| 国产精品久久久久久精品古装| 一区二区三区精品91| 国产亚洲一区二区精品| 五月伊人婷婷丁香| 九九爱精品视频在线观看| 一区二区av电影网| 极品少妇高潮喷水抽搐| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 欧美另类一区| 黄片小视频在线播放| 9色porny在线观看| 不卡视频在线观看欧美| 久久国产亚洲av麻豆专区| 久久久久国产网址| av国产久精品久网站免费入址| 久久国产精品大桥未久av| 日韩欧美精品免费久久| 亚洲av日韩在线播放| a级毛片黄视频| 久久久久久久久久久久大奶| 精品少妇一区二区三区视频日本电影 | 亚洲精品美女久久久久99蜜臀 | 亚洲国产av新网站| 秋霞在线观看毛片| 成年美女黄网站色视频大全免费| 久久97久久精品| 免费看不卡的av| freevideosex欧美| 久久国内精品自在自线图片| 久久av网站| 熟女少妇亚洲综合色aaa.| 男人舔女人的私密视频| 国产精品 国内视频| 午夜日韩欧美国产| 深夜精品福利| 午夜激情久久久久久久| 伊人久久国产一区二区| 青草久久国产| 777久久人妻少妇嫩草av网站| 国产精品av久久久久免费| 亚洲精品久久午夜乱码| 国产精品香港三级国产av潘金莲 | 成人午夜精彩视频在线观看| 极品人妻少妇av视频| 老汉色∧v一级毛片| 日韩av不卡免费在线播放| 丰满少妇做爰视频| 看十八女毛片水多多多| 99久久精品国产国产毛片| 国产福利在线免费观看视频| 麻豆乱淫一区二区| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 日韩制服骚丝袜av| 亚洲第一av免费看| 久久午夜综合久久蜜桃| av有码第一页| 亚洲四区av| 日韩一本色道免费dvd| 久久精品久久久久久久性| 欧美人与性动交α欧美精品济南到 | 十八禁网站网址无遮挡| 欧美日韩国产mv在线观看视频| 亚洲成色77777| 色视频在线一区二区三区| av在线播放精品| 亚洲国产精品国产精品| 国产黄频视频在线观看| 99久国产av精品国产电影| 中文字幕人妻丝袜一区二区 | 亚洲av福利一区| 一区福利在线观看| 日韩av免费高清视频| 亚洲av综合色区一区| 男女啪啪激烈高潮av片| 亚洲国产色片| 成人亚洲欧美一区二区av| 免费观看无遮挡的男女| 黄色配什么色好看| 国产免费视频播放在线视频| 欧美黄色片欧美黄色片| 亚洲成av片中文字幕在线观看 | 亚洲成色77777| 午夜久久久在线观看| 久久狼人影院| 国产成人91sexporn| 777久久人妻少妇嫩草av网站| 精品人妻在线不人妻| 午夜久久久在线观看| 在线观看人妻少妇| 免费不卡的大黄色大毛片视频在线观看| 另类精品久久| 男女下面插进去视频免费观看| 丝袜美足系列| 老司机影院毛片| 精品国产国语对白av| 亚洲国产日韩一区二区| 久久 成人 亚洲| 91精品三级在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产97色在线日韩免费| 777久久人妻少妇嫩草av网站| 寂寞人妻少妇视频99o| 国产精品一区二区在线不卡| 另类亚洲欧美激情| 69精品国产乱码久久久| 中文字幕精品免费在线观看视频| 国产成人精品福利久久| 在线观看美女被高潮喷水网站| 午夜福利,免费看| 青春草亚洲视频在线观看| 成年女人在线观看亚洲视频| 大片电影免费在线观看免费| 亚洲欧美清纯卡通| 熟女av电影| 中文字幕最新亚洲高清| 亚洲成av片中文字幕在线观看 | 亚洲少妇的诱惑av| 一区二区三区乱码不卡18| 十八禁网站网址无遮挡| 日本爱情动作片www.在线观看| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂| 亚洲国产精品999| 制服人妻中文乱码| 亚洲男人天堂网一区| 久久热在线av| 亚洲成av片中文字幕在线观看 | 免费黄网站久久成人精品| 五月伊人婷婷丁香| 黑人巨大精品欧美一区二区蜜桃| 精品国产一区二区久久| 涩涩av久久男人的天堂| 美女国产视频在线观看| 一个人免费看片子| 日韩不卡一区二区三区视频在线| 中文字幕制服av| 日本wwww免费看| 国产野战对白在线观看| 亚洲av男天堂| 在线观看www视频免费| 日韩av不卡免费在线播放| 亚洲国产色片| 在线观看免费视频网站a站| 久久久精品国产亚洲av高清涩受| 久久久久久久国产电影| 成年美女黄网站色视频大全免费| 久久这里只有精品19| videos熟女内射| 中国三级夫妇交换| 久久国产精品男人的天堂亚洲| 爱豆传媒免费全集在线观看| 久久久久久久大尺度免费视频| 日本色播在线视频| 在线观看www视频免费| 婷婷色麻豆天堂久久| 天美传媒精品一区二区| 欧美老熟妇乱子伦牲交| 欧美另类一区| 久久亚洲国产成人精品v| 色视频在线一区二区三区| 岛国毛片在线播放| 91精品国产国语对白视频| 国产在线免费精品| 亚洲国产欧美网| av.在线天堂| 亚洲四区av| 99国产综合亚洲精品| 欧美人与性动交α欧美软件| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说| 中文天堂在线官网| 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 久久精品国产亚洲av天美| 成人国产av品久久久| 亚洲国产欧美在线一区| av在线app专区| 亚洲一级一片aⅴ在线观看| 一级爰片在线观看| 亚洲精品乱久久久久久| 欧美精品高潮呻吟av久久| 美女国产视频在线观看| 国产在线一区二区三区精| 精品久久久久久电影网| 久久人人97超碰香蕉20202| 色婷婷av一区二区三区视频| 午夜精品国产一区二区电影| 汤姆久久久久久久影院中文字幕| 一边摸一边做爽爽视频免费| 日韩一本色道免费dvd| 久久久精品区二区三区| 视频在线观看一区二区三区| 在现免费观看毛片| 纵有疾风起免费观看全集完整版| av女优亚洲男人天堂| 麻豆av在线久日| 亚洲成人一二三区av| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂| 少妇的丰满在线观看| 精品人妻在线不人妻| 久久人人爽av亚洲精品天堂| 五月开心婷婷网| 日本欧美国产在线视频| 欧美精品一区二区大全| 九色亚洲精品在线播放| 亚洲精品久久久久久婷婷小说| 在线观看www视频免费| 香蕉国产在线看| 妹子高潮喷水视频| 如日韩欧美国产精品一区二区三区| 成人二区视频| 又大又黄又爽视频免费| 国产深夜福利视频在线观看| 亚洲av.av天堂| 天天影视国产精品| 亚洲欧洲国产日韩| 日韩制服丝袜自拍偷拍| 观看av在线不卡| 久久精品国产a三级三级三级| 99久久中文字幕三级久久日本| 亚洲国产看品久久| 日韩av免费高清视频| 精品人妻在线不人妻| 国产精品女同一区二区软件| 久久久久国产网址| 王馨瑶露胸无遮挡在线观看| 丝袜美腿诱惑在线| 老司机亚洲免费影院| 丝袜人妻中文字幕| 狠狠精品人妻久久久久久综合| 少妇人妻 视频| 久久国产精品男人的天堂亚洲| 国产一区亚洲一区在线观看| 久热这里只有精品99| 欧美少妇被猛烈插入视频| 日韩电影二区| 国产成人av激情在线播放| 精品人妻熟女毛片av久久网站| 天天躁日日躁夜夜躁夜夜| 你懂的网址亚洲精品在线观看|