• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Darboux transformation and soliton solutions of a nonlocal Hirota equation

    2022-02-24 09:38:54YarongXia夏亞榮RuoxiaYao姚若俠andXiangpengXin辛祥鵬
    Chinese Physics B 2022年2期

    Yarong Xia(夏亞榮), Ruoxia Yao(姚若俠), and Xiangpeng Xin(辛祥鵬)

    1School of Computer Science,Shaanxi Normal University,Xi’an 710062,China

    2School of Information and Engineering,Xi’an University,Xi’an 710065,China

    3School of Mathematical Sciences,Liaocheng University,Liaocheng 252029,China

    Starting from local coupled Hirota equations,we provide a reverse space-time nonlocal Hirota equation by the symmetry reduction method known as the Ablowitz–Kaup–Newell–Segur scattering problem.The Lax integrability of the nonlocal Hirota equation is also guaranteed by existence of the Lax pair.By Lax pair,an n-fold Darboux transformation is constructed for the nonlocal Hirota equation by which some types of exact solutions are found.The solutions with specific properties are distinct from those of the local Hirota equation.In order to further describe the properties and the dynamic features of the solutions explicitly,several kinds of graphs are depicted.

    Keywords: nonlocal Hirota equation,Darboux transformation,Lax pair,soliton soultion

    1.Introduction

    Recently, research of nonlocal equations has become a hot topic in nonlinear sciences involving quantum theory,nonlinear optics, etc.[1–6]The research on integrability of nonlocal equations not only can enrich the theory of integrable systems, but also can be used to explain the complex phenomena that occur in multi-place systems,for example,establishing the relationship between the position(x,t)and(?x,t)through nonlocal models, and exploring physical phenomena such as quantum entanglement.[7–9]For the abundant nonlocal equations, the most important equation is nonlocal nonlinear Schrdinger(NNLS)equation[10]

    which was proposed by Ablowitz and Musslimani.Here,q?denotes the complex conjugation ofq.Equation(1)is nonlocal asqis a function of not only(x,t)but also(?x,t),which is the case of parity reversal.The Lax pair and conservation law of Eq.(1) have been given in Ref.[10], which indicates that Eq.(1) is an integrable system.These interesting results enrich the range of integrable systems and provide a method to find more integrable equations.What’s more, Eq.(1) has some special properties different from the classic NLS equation, so it has attracted great attention from the researchers.On the one hand,some researchers have been devoted to generalizing nonlocal Schrdinger Eq.(1),and proposed the nonlocal Schrdinger equation for time reversal, space-time reversal simultaneously and the discrete nonlocal Schrdinger equation.[11–15]On the other hand, some new nonlocal nonlinear equations have also been proposed by using symmetry reduction method.[16–20]For these new nonlocal equations,the integrability and exact solutions are studied with the method of inverse scattering, Darboux transformation and the Hirota bilinear transformation,etc.,and the results show that the nonlocal equation possesses new features which are different from the corresponding local equation.

    This paper,inspired by the study of nonlocal Schrdinger equation in Ref.[10],deduces the reverse space-time nonlocal Hirota equation

    by a symmetry reduction method.Furthermore, we construct a Darboux transformation and present several types of explict solutions for Eq.(2).

    The rest of the paper is organized as follows: In Section 2,the nonlocal Hirota equation is deduced by the method of symmetry reduction, and the lax integrability of the equation is guaranteed.In Section 3, the Darboux transformation of Eq.(2) is constructed, and then ann-fold Darboux transformation formula is provided.In Section 4,the soliton,kink,antikink and interaction solutions to Eq.(2) are acquired via the Darboux transformation.A short conclusion and discussion is included in Section 5.

    2.Integrable nonlocal Hirota equation

    The well-known Hirota equation has the following form:[22]

    where α and β are real constants.When α=1,β =0,Eq.(1)is transformed into a general NLS equation.

    According to the ideas given by Ablowitz, if we want to construct a nonlocal equation,we must start from a pair of coupled equations.Therefore,we consider the following coupled Hirota equation:

    which can be reduced to Eq.(1)whenu=?v?,andv?denotes the complex conjugate ofv.The linear spectral problem(i.e.,Lax pair)of Eqs.(4)is expressed by[23]

    with

    where

    Using the following condition:

    Ut?Vx+[U,V]=0,

    we can transform Eqs.(5)and(6)to Eq.(4).Through observation,we find that the structures of the two equations(4)are very similar.Then, using the idea of Ablowitz, we adopt the following symmetry transformation,

    and substitute Eq.(8)into the system(4)to derive the nonlocal Hirota equation

    Lax pair of the nonlocal Hirota equation is then obtained from Eqs.(4)with the help of Eq.(8),which implies that the nonlocal Hirota equation is Lax integrable.Then,we can construct Darboux transformation for Eq.(2)by Lax pair.

    3.Darboux transformation of the nonlocal Hirota equation

    Darboux transformation (DT) is one of the important method to construct exact solutions of local equations.[18]Of course,this method has also been widely employed to find exact solutions of nonlocal equations.[19,24–26]This section will be devoted to the study of DT of the newly obtained nonlocal equation(2).

    3.1.One-fold DT

    The basic idea of DT is to construct a transformation that can keep the spectrum problem unchanged.Consider the following gauge transformation:

    and require ψ[1]satisfying the following equations:

    Considering the transformation(9)and the conditions(10),the spectral problem (5) and (6) can be transformed into the following new forms:

    From the expressions(11), it is essential to construct the matrixD[1]to makeU[1]andU,V[1]andVin same forms,except the difference between the old and new potential functions.

    In order to get the concrete form of the gauge transformation,it is necessary to make an appropriate assumption

    withC[1]=,andIis two-order identity matrix.The following work is to construct the form ofC[1].By substituting Eq.(12)into Eq.(11), and making a comparison with coefficients of λm,we get the following relationships between the new and the old potential functions:

    Using the symmetry transformation(8),we derive the following constraint condition:

    To proceed, we need to determine the concrete form ofD[1].Let

    be eigenfunctions of the lax pair(5)and(6)with λ=λj(j=1,2).From the gauge transformation(9),we obtain the following equations:

    whereμj(j=1,2)are constants.Equations(15)can be transformed into the following linear algebraic system:

    Choose suitable constants λj,μjto ensure the coefficients of the determinant of Eq.(16)to be nonzero, thencan be uniquely determined.From Eq.(12), we can derive the following matrixD[1]:

    where σ1and σ2satisfy the following identities:

    andv(x,t)=?u(?x,?t).

    Next,U[1]andU,V[1]andVwill be proved with the same forms.

    As

    after direct but tedious calculations, we know thatpij(λ) (i,j=1,2)are polynomials of λ,and the highest power of them are quadratic or cubic.The spectral parameters λj(j=1, 2)can be proved to be the roots ofpi j(λ) (i,j=1, 2) with the help of Eqs.(14).Because λj(j=1, 2)are also the roots of detD[1],we obtain the following identities:

    The comparison of the coefficients of the same powers of λ in Eq.(21)leads to the following equations:

    By solving the overdetermined system (22) with the help of Eqs.(13),we obtain

    That is to say,

    Similarly,we can also illustrate thatV[1]andVare in the same form as

    where the relationships ofuandu[1],vandv[1]are determined by Eq.(13).

    3.2.Two-fold DT

    To discuss the 2-fold DT of Eq.(2),we suppose that

    are solutions of Eqs.(5) and (6) at λ =λ3, λ =λ4withu[0].Employing the one-fold DT,we derive

    Next,similar to 1-fold DT,2-fold DT can be established as

    and

    3.3.N-fold DT

    Furthermore,ann-fold DT for the nonlocal Hirota Eq.(2)can be derived by the above iteration process,and

    with

    the matrixC[k]satisfies

    The above results show that the construction process of the DT for local and nonlocal Hirota equation is similar, and the higher order DT formula of them can be obtained through multiple iterations.However, the existence of the constraint condition leads to big difference for these two cases.

    4.Soliton solutions of the nonlocal Hirota equation

    Soliton solutions have been studied well for various nonlinear systems.[27–29,31–36]This section aims to construct exact solutions to nonlocal Hirota Eq.(2) by Darboux transformation.

    4.1.One soliton solutions

    We can obtain one-soliton solutions to Eq.(2)from a seed solutionu=v=0.By solving the spectral problem(5)and(6),we obtain the following eigenfunctions about λ =λj,(j=1,2,...,n):

    and by the expression(17),we have

    Case 1μ1=?1,μ2=1.

    Through Eq.(32),the following new solution is obtained

    To ensure that there do not exist singular points in the solution,we require that the expression

    is nonzero, here λj=κj+iωj, κj,ωjare are real numbers,and

    In order to make equation(38)unequal to zero,the λj(j=1,2)must satisfy the following two conditions:

    (a) (ω1+ω2)α+2β[ω1(2κ1+κ2)+ω2(κ1+2κ2)]=0,(b) ω1=ω2and

    Next,we discuss some special one-soliton solutions according to Eq.(37)and conditions(39).

    (1)Take κ1=κ2and ω1=?ω2,then ξ1R+ξ2R=0 holds for all(x,t)∈R2, and satisfies the conditions(39).A typical soliton solution can be derived as follows:

    Fig.1.(a)Evolutionary graph of Eq.(40)with parameter κ1=,ω1=,α =1,β =?1 and ?ακ1>0.(b)The images of the real part of the solution.(c)The imaginary part of the solution.

    Fig.2.(a)Evolutionary graph of Eq.(40)with parameter κ1 =,ω1 =,α =?1,β =1,and ?ακ1 <0.(b)The images of the real part of the solution.(c)The imaginary part of the solution.

    Fig.3.(a)Stationary graph of Eq.(40)withμ1=,v1=,α =?1,β =?1,and ?ακ1=0.(b)The images of the real part of the solution.(c)The imaginary part of the solution.

    (2)Take ω2=0,κ2=?2κ1,then ξ2R=0 holds for all(x,t)∈R2,and the complexiton solution can be derived.From the solution (41), we find that if ω1<0, the complexiton travels like a kink wave, and it presents the antikink shape if ω1>0.Similarly,the soliton propagates to the right of thex-axes when?ακ1>0,and to the left if?ακ1<0.While as?ακ1=0,the soliton is stationary.,ω1=?3,α =,β =?2.(b)The images of the real part of the solution.(c)The imaginary part of the solution.,ω1=3,α =,β =?2.(b)The images of the real part of the solution.(c)The imaginary part of the solution.

    Fig.4.(a)Structure of solution(41)with parameter κ1=

    Fig.5.(a)Structure of solution(41)with parameter κ1=

    Case 2μ1=μ2=1 orμ1=μ2=?1.

    Similar to the analysis of Case 1,we derive the following solution

    from the expression(42).It shows that when(x,t)satisfies the following equation:

    that is,

    cosh(ξ1R?ξ2R)?cos(ξ1I?ξ2I)=0,

    i.e., ξ1R?ξ2R=0, ξ1I?ξ2I=2kπ, the solution (42) has infinitely many singular points.

    Likewise,one can also discuss the following three cases:μ1=1,μ2=?1;μ1=i,μ2=?i;andμ1=?i,μ2=i.

    4.2.Two-soliton solutions

    This section gives two-soliton solutions of the nonlocal Hirota equation with the 2-fold DT.Firstly, using Eq.(26)with the help of Eq.(30), we can determine.Considering the condition, we obtain the relationships=1,=1.To meet the above condition, we take μ1=?1, μ2=1, μ3=?1, μ4=1.Next,the following two different types of interaction solutions will be considered through taking different eigenvalues.

    (1) Interaction solutions between bright and bright solitons.

    The eigenvalues are conjugate complex numbers, λ1==κ1+iω1, λ3==κ2+iω2, then through Eq.(32),u[2]is derived as follows:

    where

    Fig.6.(a)The interaction of bright-bright soliton(43)with parameter

    The corresponding graphs for soliton(43)are given in Fig.6..(b)The images of the real part of the solution.(c)The imaginary part of the solution.

    From Fig.6, we find that the propagation velocities and directions of two solitons have not changed while the phase shift of every soliton is accompanied with each other,and the interaction solution shows the elastic collision quality.

    (2)Interaction solutions between kink and bright solitons.

    where

    Fig.7.(a)The interaction of kink and soliton solution(29)with parameter

    The corresponding graphs for Eq.(44)are given in Fig.7..(b)The images of the real part of the solution.(c)The imaginary part of the solution.

    From Fig.7,we find that before and after interaction,the kink is still kink only with phase shifts and the soliton remains the same.However, the background wave of the soliton changes from zero background wave before the collision to nonzero background wave after the collision.

    5.Summary and discussion

    This paper presents a reverse space-time integral nonlocal Hirota equation by the symmetry reduction method and constructs the Darboux transformations of the equation.Next,we investigate special exact solutions from the corresponding one and two-fold DT, including soliton, kink, antikink and interaction solutions.Furthermore,we depict the graphs of soliton solutions,and illustrate the dynamical behavior of the obtained solutions.

    In many aspects of research on nonlocal equations, constructing exact solutions for nonlocal equations is a very meaningful work.There are many methods for studying exact solutions of nonlocal equations, and each method has its own advantages and disadvantages.The DT is a valid approach to construct multi-soliton solution of nonlocal equations,but the premise is that equation must have lax pairs.However, there are some methods that do not need to consider the Lax pair,and can also give birth to rich exact solutions of the nonlocal equation,such as inverse scattering method,Riemann–Hilbert approach, and bilinear method.In the future work, we will consider to use more methods to study nonlocal equations and expect to get some more interesting results.

    Acknowledgements

    The project was supported by the National Natural Science Foundation of China (Grant Nos.12001424, 11471004,and 11775047), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No.2021JZ-21), the Chinese Post doctoral Science Foundation (Grant No.2020M673332), the Research Award Foundation for Outstanding Young Scientists of Shandong Province, China(Grant No.BS2015SF009), and the Three-Year Action Plan Project of Xi’an University(Grant No.21XJZZ0001-01).

    男女边吃奶边做爰视频| 男女边吃奶边做爰视频| 99riav亚洲国产免费| 欧美色欧美亚洲另类二区| 真实男女啪啪啪动态图| 小说图片视频综合网站| 婷婷色综合大香蕉| av视频在线观看入口| 麻豆国产av国片精品| 久久午夜福利片| a级毛色黄片| 麻豆精品久久久久久蜜桃| 青春草视频在线免费观看| 精品不卡国产一区二区三区| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 中文字幕精品亚洲无线码一区| 国产又黄又爽又无遮挡在线| 人人妻人人澡人人爽人人夜夜 | 99九九线精品视频在线观看视频| 热99re8久久精品国产| 国产乱人偷精品视频| 国产成人freesex在线 | av在线老鸭窝| 欧美日韩综合久久久久久| 91久久精品电影网| 成年女人看的毛片在线观看| 美女高潮的动态| 亚洲av电影不卡..在线观看| 国产单亲对白刺激| 老司机影院成人| 亚洲欧美精品综合久久99| 欧美性猛交╳xxx乱大交人| 99久久无色码亚洲精品果冻| 国产精品久久久久久av不卡| 成人特级av手机在线观看| 亚洲国产欧美人成| 国产午夜福利久久久久久| 国产精品国产高清国产av| 日韩在线高清观看一区二区三区| 国产色爽女视频免费观看| 色av中文字幕| 狠狠狠狠99中文字幕| 亚洲va在线va天堂va国产| 嫩草影院新地址| 美女内射精品一级片tv| 欧美在线一区亚洲| 精品乱码久久久久久99久播| 国产成年人精品一区二区| 国产精品久久久久久精品电影| 亚洲欧美成人综合另类久久久 | 九九热线精品视视频播放| 精品一区二区免费观看| 欧美日韩精品成人综合77777| 22中文网久久字幕| 国产免费一级a男人的天堂| 中文在线观看免费www的网站| 1024手机看黄色片| 97人妻精品一区二区三区麻豆| 婷婷精品国产亚洲av在线| 亚洲中文字幕日韩| 亚洲专区国产一区二区| 国产一级毛片七仙女欲春2| 成人高潮视频无遮挡免费网站| 内地一区二区视频在线| 搡老岳熟女国产| 三级国产精品欧美在线观看| 亚洲,欧美,日韩| 看黄色毛片网站| 成年女人毛片免费观看观看9| 少妇裸体淫交视频免费看高清| 免费看a级黄色片| 此物有八面人人有两片| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线观看免费| 欧美最新免费一区二区三区| 免费无遮挡裸体视频| 搞女人的毛片| 久久精品国产亚洲av涩爱 | 日本黄色片子视频| 日本三级黄在线观看| 中国美白少妇内射xxxbb| 国产探花极品一区二区| 寂寞人妻少妇视频99o| 国产亚洲欧美98| 欧美又色又爽又黄视频| 成人美女网站在线观看视频| 99热这里只有是精品50| 老师上课跳d突然被开到最大视频| 内地一区二区视频在线| 天堂影院成人在线观看| 国产亚洲精品综合一区在线观看| 日韩欧美在线乱码| 精品久久久噜噜| 成人一区二区视频在线观看| 欧美高清成人免费视频www| 国产av麻豆久久久久久久| 成人欧美大片| 欧美日韩国产亚洲二区| 亚洲成人久久性| 一a级毛片在线观看| 亚洲国产精品成人综合色| 熟女人妻精品中文字幕| 内地一区二区视频在线| 波野结衣二区三区在线| 日本 av在线| 毛片一级片免费看久久久久| 老司机影院成人| 少妇的逼水好多| 国内精品美女久久久久久| 日本五十路高清| 偷拍熟女少妇极品色| 久久国内精品自在自线图片| 久久久久久久久中文| 亚洲中文字幕一区二区三区有码在线看| 欧美+亚洲+日韩+国产| 亚洲av免费在线观看| 免费人成视频x8x8入口观看| 午夜精品一区二区三区免费看| 日韩精品中文字幕看吧| 波多野结衣高清作品| 亚洲高清免费不卡视频| 久99久视频精品免费| 久久久久久久久中文| 你懂的网址亚洲精品在线观看 | 久久精品国产99精品国产亚洲性色| 免费一级毛片在线播放高清视频| 永久网站在线| 成年女人永久免费观看视频| 亚洲国产精品成人久久小说 | 国产免费男女视频| 亚洲av中文av极速乱| 偷拍熟女少妇极品色| 一进一出抽搐动态| 欧美日韩国产亚洲二区| 最好的美女福利视频网| avwww免费| 国产精品久久视频播放| 国产精品一区二区免费欧美| 蜜臀久久99精品久久宅男| 美女黄网站色视频| 99热全是精品| 真人做人爱边吃奶动态| 在线a可以看的网站| 五月伊人婷婷丁香| 色哟哟·www| 日本撒尿小便嘘嘘汇集6| 九九久久精品国产亚洲av麻豆| 中文字幕熟女人妻在线| 久久午夜亚洲精品久久| 国产精品一区二区免费欧美| 欧美最新免费一区二区三区| 色综合亚洲欧美另类图片| 嫩草影院新地址| 精品人妻一区二区三区麻豆 | 国产毛片a区久久久久| 亚洲人成网站在线播放欧美日韩| 日日撸夜夜添| 国模一区二区三区四区视频| av在线亚洲专区| 日产精品乱码卡一卡2卡三| 久久久久久国产a免费观看| 男人狂女人下面高潮的视频| 国产亚洲精品综合一区在线观看| www.色视频.com| 卡戴珊不雅视频在线播放| 亚洲成人久久爱视频| 两性午夜刺激爽爽歪歪视频在线观看| 18禁黄网站禁片免费观看直播| eeuss影院久久| 99久久精品热视频| 亚洲欧美精品综合久久99| 乱系列少妇在线播放| av女优亚洲男人天堂| 一级黄片播放器| 老司机福利观看| 欧美国产日韩亚洲一区| 久久久久久久久久成人| 人妻制服诱惑在线中文字幕| 国产亚洲精品av在线| 午夜视频国产福利| 精品福利观看| 欧美日韩综合久久久久久| 日韩欧美 国产精品| 日韩人妻高清精品专区| 欧美日韩在线观看h| 久久6这里有精品| 麻豆av噜噜一区二区三区| 国产精品一二三区在线看| 亚洲美女视频黄频| 成人亚洲精品av一区二区| 简卡轻食公司| 久久久色成人| 国产精品一二三区在线看| 免费一级毛片在线播放高清视频| 国产精品电影一区二区三区| 国产探花极品一区二区| 国产乱人偷精品视频| 99热这里只有是精品在线观看| 特级一级黄色大片| 三级男女做爰猛烈吃奶摸视频| 99久久九九国产精品国产免费| 欧美三级亚洲精品| 1000部很黄的大片| eeuss影院久久| 亚洲熟妇中文字幕五十中出| а√天堂www在线а√下载| 在线观看午夜福利视频| 成人性生交大片免费视频hd| 天堂影院成人在线观看| 午夜视频国产福利| 亚洲av中文av极速乱| 国产 一区精品| av国产免费在线观看| 亚洲最大成人av| 少妇猛男粗大的猛烈进出视频 | 韩国av在线不卡| 久久人妻av系列| 性欧美人与动物交配| 国产视频内射| 亚洲人与动物交配视频| 色尼玛亚洲综合影院| 最近最新中文字幕大全电影3| 看免费成人av毛片| 中文字幕av成人在线电影| 少妇丰满av| 日韩av在线大香蕉| 欧美xxxx性猛交bbbb| 免费人成在线观看视频色| 丝袜喷水一区| 欧美最黄视频在线播放免费| 午夜福利高清视频| 寂寞人妻少妇视频99o| 看非洲黑人一级黄片| 少妇被粗大猛烈的视频| 99热只有精品国产| 久久久精品欧美日韩精品| 精品无人区乱码1区二区| 天堂影院成人在线观看| 99视频精品全部免费 在线| 国产三级中文精品| 一级毛片电影观看 | 欧美一区二区亚洲| 国产日本99.免费观看| 别揉我奶头 嗯啊视频| 国产激情偷乱视频一区二区| 少妇被粗大猛烈的视频| 18禁在线无遮挡免费观看视频 | 久久精品影院6| 特大巨黑吊av在线直播| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件| 蜜桃久久精品国产亚洲av| 久久欧美精品欧美久久欧美| av在线播放精品| 日韩大尺度精品在线看网址| 高清午夜精品一区二区三区 | 国产高清有码在线观看视频| 日韩欧美在线乱码| www.色视频.com| 国产亚洲欧美98| 少妇熟女aⅴ在线视频| 久久人人爽人人爽人人片va| 国产视频内射| 日本免费一区二区三区高清不卡| 狠狠狠狠99中文字幕| 欧美最黄视频在线播放免费| 精品久久久久久久久亚洲| 美女内射精品一级片tv| av专区在线播放| 久久精品国产亚洲av香蕉五月| 免费观看的影片在线观看| 国内精品一区二区在线观看| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 亚洲欧美精品自产自拍| 国模一区二区三区四区视频| 十八禁国产超污无遮挡网站| 亚洲精品日韩av片在线观看| 美女内射精品一级片tv| 成人一区二区视频在线观看| 波野结衣二区三区在线| 亚洲国产精品sss在线观看| 午夜精品国产一区二区电影 | 国产在线男女| 国产免费一级a男人的天堂| 乱人视频在线观看| 国产激情偷乱视频一区二区| 国产女主播在线喷水免费视频网站 | 精品久久久久久成人av| 最近最新中文字幕大全电影3| 精品少妇黑人巨大在线播放 | 最后的刺客免费高清国语| 最新在线观看一区二区三区| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 欧美精品国产亚洲| 国产精品一区www在线观看| 日韩大尺度精品在线看网址| 五月伊人婷婷丁香| 久久久久九九精品影院| 日韩精品中文字幕看吧| 亚洲成人中文字幕在线播放| aaaaa片日本免费| 久久久久国产精品人妻aⅴ院| 舔av片在线| 大又大粗又爽又黄少妇毛片口| 日韩制服骚丝袜av| 亚洲人成网站在线播| 国产午夜精品久久久久久一区二区三区 | 日本欧美国产在线视频| 亚洲专区国产一区二区| 丰满乱子伦码专区| 国产av麻豆久久久久久久| 亚洲国产精品sss在线观看| 国产中年淑女户外野战色| 日本熟妇午夜| 亚洲av一区综合| 天堂影院成人在线观看| 九九久久精品国产亚洲av麻豆| 麻豆国产av国片精品| 亚洲中文字幕日韩| 欧美日韩乱码在线| 97超碰精品成人国产| 久久亚洲精品不卡| 给我免费播放毛片高清在线观看| av.在线天堂| 九色成人免费人妻av| 国产精品一区二区免费欧美| 午夜影院日韩av| 非洲黑人性xxxx精品又粗又长| 日韩精品中文字幕看吧| 少妇裸体淫交视频免费看高清| 精品午夜福利视频在线观看一区| 22中文网久久字幕| av在线天堂中文字幕| 亚洲中文日韩欧美视频| 国产伦精品一区二区三区视频9| 成熟少妇高潮喷水视频| 不卡一级毛片| 性色avwww在线观看| 亚洲av中文字字幕乱码综合| 亚洲无线在线观看| 国产又黄又爽又无遮挡在线| 高清日韩中文字幕在线| 欧美xxxx性猛交bbbb| 91久久精品电影网| 久久久久国内视频| 久久鲁丝午夜福利片| 深爱激情五月婷婷| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影| 午夜激情欧美在线| 国产精品久久久久久亚洲av鲁大| 亚洲精品国产av成人精品 | 丰满的人妻完整版| 老司机福利观看| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 久久鲁丝午夜福利片| 一夜夜www| 人妻丰满熟妇av一区二区三区| 免费电影在线观看免费观看| 极品教师在线视频| 午夜a级毛片| 成年av动漫网址| 亚洲成人中文字幕在线播放| 欧美另类亚洲清纯唯美| eeuss影院久久| 一本久久中文字幕| 免费无遮挡裸体视频| 日日干狠狠操夜夜爽| 真人做人爱边吃奶动态| 国产精品日韩av在线免费观看| 国产91av在线免费观看| 18禁黄网站禁片免费观看直播| 99在线视频只有这里精品首页| av在线蜜桃| 99国产精品一区二区蜜桃av| 久久鲁丝午夜福利片| 一级毛片电影观看 | 精品一区二区免费观看| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| 又爽又黄无遮挡网站| 三级国产精品欧美在线观看| 国产美女午夜福利| 九九在线视频观看精品| 1024手机看黄色片| 久久鲁丝午夜福利片| 偷拍熟女少妇极品色| 老女人水多毛片| 亚洲精品色激情综合| 少妇人妻精品综合一区二区 | 国产免费男女视频| 有码 亚洲区| 欧美日本视频| 国产精品女同一区二区软件| 久久久久免费精品人妻一区二区| 床上黄色一级片| 亚洲三级黄色毛片| 香蕉av资源在线| 又黄又爽又刺激的免费视频.| 又粗又爽又猛毛片免费看| 日本一二三区视频观看| 亚洲人成网站在线观看播放| 听说在线观看完整版免费高清| 国产午夜精品论理片| 精品久久国产蜜桃| 国产午夜精品论理片| 十八禁网站免费在线| 国内精品久久久久精免费| 日韩精品有码人妻一区| 欧美极品一区二区三区四区| 久久欧美精品欧美久久欧美| 老司机午夜福利在线观看视频| 人妻夜夜爽99麻豆av| 一进一出抽搐动态| 99视频精品全部免费 在线| 毛片女人毛片| 赤兔流量卡办理| 久久久久久大精品| 亚洲,欧美,日韩| 成人特级av手机在线观看| 日韩成人伦理影院| 有码 亚洲区| 国产精品人妻久久久久久| 免费av毛片视频| 麻豆av噜噜一区二区三区| 99久久九九国产精品国产免费| 国产一区二区亚洲精品在线观看| 男女下面进入的视频免费午夜| 哪里可以看免费的av片| 久久草成人影院| 一进一出抽搐gif免费好疼| 男人舔女人下体高潮全视频| 欧美激情在线99| 国产精品人妻久久久久久| 国产精品无大码| 精品免费久久久久久久清纯| 久久精品国产亚洲网站| 伦精品一区二区三区| 精品乱码久久久久久99久播| 国产精品嫩草影院av在线观看| 欧美丝袜亚洲另类| 偷拍熟女少妇极品色| 久久草成人影院| 免费av不卡在线播放| 亚洲18禁久久av| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久九九精品二区国产| videossex国产| 欧美潮喷喷水| 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区 | 搡老熟女国产l中国老女人| 亚洲国产欧洲综合997久久,| 国产成人aa在线观看| 少妇的逼水好多| 天美传媒精品一区二区| 欧美高清成人免费视频www| 嫩草影院新地址| 午夜视频国产福利| 黄色视频,在线免费观看| 国产在视频线在精品| 国产精品国产三级国产av玫瑰| 亚洲三级黄色毛片| 国产高清视频在线观看网站| 欧美日本视频| 噜噜噜噜噜久久久久久91| 亚洲国产精品合色在线| 国产黄色小视频在线观看| 日韩,欧美,国产一区二区三区 | 十八禁网站免费在线| 久久久久性生活片| 午夜福利18| 能在线免费观看的黄片| 国产一区二区三区av在线 | 国产色爽女视频免费观看| 最新中文字幕久久久久| 国内精品久久久久精免费| 国产精品,欧美在线| 99久久精品一区二区三区| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 免费不卡的大黄色大毛片视频在线观看 | 免费看av在线观看网站| 午夜福利高清视频| 特大巨黑吊av在线直播| 此物有八面人人有两片| 少妇熟女欧美另类| 最新中文字幕久久久久| 亚洲欧美精品综合久久99| 99久久中文字幕三级久久日本| 国产精品永久免费网站| 国产一区二区在线av高清观看| 精品久久久久久久久久久久久| 欧美精品国产亚洲| 亚洲性久久影院| 一级毛片久久久久久久久女| 亚洲成人av在线免费| 嫩草影院入口| 色哟哟哟哟哟哟| 国产成人影院久久av| 亚洲av中文av极速乱| 亚洲国产精品成人久久小说 | 久久这里只有精品中国| 亚洲三级黄色毛片| 亚洲自偷自拍三级| 色5月婷婷丁香| av在线天堂中文字幕| 在线观看66精品国产| 亚洲高清免费不卡视频| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区 | 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 国产在线精品亚洲第一网站| 国产一区亚洲一区在线观看| 欧美+日韩+精品| 五月玫瑰六月丁香| 亚洲成av人片在线播放无| 六月丁香七月| 一级黄色大片毛片| 99热全是精品| 欧美+亚洲+日韩+国产| 亚洲人成网站在线播| 99在线人妻在线中文字幕| 免费观看精品视频网站| av视频在线观看入口| 亚洲性久久影院| 国产精品爽爽va在线观看网站| 少妇的逼水好多| 嫩草影院入口| 欧美最新免费一区二区三区| 精品一区二区三区视频在线| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 丰满的人妻完整版| 最近最新中文字幕大全电影3| 国产精品精品国产色婷婷| 黄色日韩在线| 男插女下体视频免费在线播放| 神马国产精品三级电影在线观看| 非洲黑人性xxxx精品又粗又长| 男女做爰动态图高潮gif福利片| 色尼玛亚洲综合影院| 成人特级av手机在线观看| 成年av动漫网址| 国产精品三级大全| 久久精品国产亚洲av涩爱 | 舔av片在线| 国产高清不卡午夜福利| 亚洲精品影视一区二区三区av| 国产精品综合久久久久久久免费| 一级毛片我不卡| 2021天堂中文幕一二区在线观| 国产片特级美女逼逼视频| 我的老师免费观看完整版| av视频在线观看入口| 亚洲成av人片在线播放无| 我的女老师完整版在线观看| 国产高清三级在线| 两性午夜刺激爽爽歪歪视频在线观看| 中文亚洲av片在线观看爽| av卡一久久| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 国产aⅴ精品一区二区三区波| 村上凉子中文字幕在线| 国产精品伦人一区二区| 一区二区三区高清视频在线| 亚洲成人久久爱视频| 欧美三级亚洲精品| 99久国产av精品国产电影| 日本熟妇午夜| 国产成人福利小说| 国产乱人偷精品视频| 日本与韩国留学比较| 国产69精品久久久久777片| 12—13女人毛片做爰片一| 成人性生交大片免费视频hd| 看十八女毛片水多多多| 亚洲av成人av| 天堂av国产一区二区熟女人妻| 天天一区二区日本电影三级| 亚洲精品成人久久久久久| 特大巨黑吊av在线直播| 国产精品久久久久久亚洲av鲁大| 国产日韩欧美视频二区| 精品熟女少妇av免费看| 欧美性感艳星| 国产欧美亚洲国产| 国产高清国产精品国产三级| 久久久久久久久久成人| 在线观看国产h片| 国产成人freesex在线| 成人漫画全彩无遮挡| 国产成人精品福利久久| 日本av手机在线免费观看| 波野结衣二区三区在线| 国产成人免费无遮挡视频| 99精国产麻豆久久婷婷| 嫩草影院入口| 亚洲av日韩在线播放| 丰满乱子伦码专区| 日韩精品免费视频一区二区三区 | av在线app专区| 久久人人爽人人爽人人片va| 尾随美女入室| 曰老女人黄片| 日日撸夜夜添| 成年人免费黄色播放视频 | 国产精品一二三区在线看|