• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter estimation of continuous variable quantum key distribution system via artificial neural networks

    2022-02-24 09:38:50HaoLuo羅浩YiJunWang王一軍WeiYe葉煒HaiZhong鐘海YiYuMao毛宜鈺andYingGuo郭迎
    Chinese Physics B 2022年2期

    Hao Luo(羅浩), Yi-Jun Wang(王一軍), Wei Ye(葉煒), Hai Zhong(鐘海),?,Yi-Yu Mao(毛宜鈺), and Ying Guo(郭迎),?

    1School of Automation,Central South University,Changsha 410083,China

    2School of Computer Science and Engineering,Central South University,Changsha 410083,China

    3College of Applied Science,Jiangxi University of Science and Technology,Ganzhou 341000,China

    Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system.In this paper,we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks(ANN), which can be merged in post-processing with less additional devices.The ANN-based training scheme, enables key prediction without exposing any raw key.Experimental results show that the error between the predicted values and the true ones is in a reasonable range.The CVQKD system can be improved in terms of the secret key rate and the parameter estimation,which involves less additional devices than the traditional CVQKD system.

    Keywords: quantum key distribution,artificial neural networks,secret key rate,parameter estimation

    1.Introduction

    Quantum key distribution (QKD)[1]enables two legitimate parts, Alice and Bob, to exchange secret keys through an insecure channel controlled by a potential eavesdropper,Eve.This technology can be combined with the classical onetime-pad cryptographic system, thereby providing information transmission with unconditional security.[2]There are two branches for QKD,i.e., continuous-variable (CV) QKD and discrete-variable(DV)QKD.Unlike the latter using the singlephoton resources(or detectors),[1]the former has the potential of high-key rate and low-cost implementations as it can be compatible with current standard telecom components such as homodyne and heterodyne detectors.[3]Over the past few years,achievements have been made for CVQKD in both theories and experiments.[4–13]The most mature CVQKD protocol is the prestigious Gaussian-modulated coherent state(GMCS)protocol,[4]which has been proved secure against collective attacks and coherent attacks.[14–17]In the GMCS protocol,Alice first encodes the secret key information by modulating the quadraturesxandpof coherent states with independent Gaussian distributions[18]and then sends them to Bob through an insecure quantum channel.After that, Bob proceeds homodyne detection (measures one of the two quadratures randomly) or heterodyne detection (measures both the two quadratures).[6,19–21]After the post-processing process that involves sifting, parameter estimation, reconciliation and privacy amplification,Alice and Bob share the correlated raw keys.

    In order to estimate a bound on the maximum information that may have been eavesdropped by Eve, the channel transmittanceTand excess noise ξ need to be estimated.Traditional channel parameter estimation needs disclose parts of the raw keys.The more raw keys disclosed,the more accuracy the channel estimation would be.However, more disclosed raw keys leads to less capacity for carrying information,resulting in a lower secret key rate.Recent years, several works have been done on channel parameter estimation.For example, a parameter estimation was suggested for performance improvement of the CVQKD system,[22]which can be applied to low-Earth orbits and underwater communication scenarios by using the Monte Carlo approach.Chaiet al.proposed a parameter estimation method for implementation of the atmospheric GMCS CVQKD.[23]Guo[24]suggested a method for phase estimation and compensation of the CVQKD system,which can reconstruct the phase drifts even at low signal-to-noise ratio conditions.Wanget al.improved the accuracy of parameter estimation, realized by exchanging the order of parameter estimation and information reconciliation.[25]Yang suggested an improved four-state protocol in which the covariance matrix can be estimated from experimental data without using the linear channel assumption,guaranteeing its unconditional security in the asymptotical limits.[26]Liet al.considered an impact of denial-of-service attack on channel parameter estimation and suggested a method to prevent this attack.[27]However,the tradeoff between the secret key rate and the accuracy of parameter estimation is still unsolved.

    In this paper, we propose an ANN-based parameter estimation scheme for performance improvement of the CVQKD system.In post-processing, Alice and Bob have to do some pretreatment to the raw keys(data dividing and normalizing),which are sequentially sent to the ANN for the training,aiming to learn the relationship between the initially prepared and received data.The ANN has the capacity of predicting all the data that Alice holds with few errors.Using this method,Alice and Bob can proceed estimation without disclosing any raw key to Eve.It can be used for the parameter estimation and attack prediction without heavily loading any additional devices,which is feasible to implement for the traditional CVQKD system.

    This paper is organized as follows.In Section 2, we illustrate the framework of ANN-based parameter estimation scheme, and establish the ANN model for the CVQKD system.In Section 3, we show the performance of the ANNinvolved CVQKD system in terms of the secret key rate.In Section 4, the experimental results demonstrate the effect of the ANN-based parameter estimation scheme on the CVQKD system,including the secret key rate,the error range between the predicted values and the true values, as well as the relationship between the prediction accuracy and the block length.Finally,we make conclusions in Section 5.

    2.ANN-based parameter estimation of CVQKD

    For a traditional GMCS CVQKD protocol, it can be described as follows.Alice prepares the signal carriers with Gaussian modulation, which are sent to Bob through an unreliable quantum channel monitored by Eve.For the received signals, Bob proceeds the measurements by using homodyne or heterodyne detectors.Subsequently, Alice and Bob perform the data post-processing through an authenticated classical channel.As for the post-processing, Alice and Bob compare their encoding and measurement quadratures with each other and keep the data that they have performed with the same quadratures.By disclosing a subset of the raw keys, the parameter estimation is then proceeded to obtain an upper bound of the information that Eve can steal from.In the end, Alice and Bob could decorrelate their joint data from Eve via reconciliation and privacy amplification, while their data remain correlated.[28]The secret key rateKcan be given by

    whereICis the mutual information between Alice and Bob,IEthe upper bound of information that Eve can obtain, andMthe amount of the information revealed during the postprocessing.

    It is known that the post-processing has became a main restraint on the performance of CVQKD systems.Recently, the hardest issues have been devoted to parameter estimation,[23,25,29]reconciliation,[30–32]and privacy amplification,[33,34]but the tradeoff between the secret key rate and the accuracy of parameter estimation is still faced with challenges.

    Fortunately, the ANN, known as the MP model,[35]is now a popular machine learning technique[36,37]based on the principle of neural networks in biology and network topology,aiming to process complex information by simulating nervous system of human brain.[38]It is an operational model composing a large number of nodes(neurons).In Fig.1(a), it shows the structure of a multiple-input neuron.Thej-th outputojreads

    wherexiis thei-th input,wijis the weight ofxion thej-th path,bis bias that measures the difficulty of activation, and φ(·)represents the activation function.Figure 1(b)shows the structure of back propagation(BP)neural networks, which is employed in this paper.BP neural network is a multi-layer feed-forward neural networks, composed of input layer, hidden layer and output layer,the amount of the hidden layer can be one or more.

    Fig.1.(a)Structure of a multiple-input neuron.(b)Structure of the BP neural networks.

    The ANN-based CVQKD is shown in Fig.2.A set of coherent states,with desired modulation varianceVA,are prepared and multiplexed with the strong local oscillator(LO)by a polarization beam splitter.In the LO path, the delay line is employed to separate the LO from the signal in the time domain so that the time multiplexing can be realized.At the receiver,demultiplexing is executed by using polarization controller and polarization beam splitter.Through another delay line placed in the signal path, the delay of the LO due to the time multiplexing design is compensated so that both the signal and the LO can be precisely aligned.After Bob’s homodyne detection,Alice and Bob have two correlated sequencesxiandyi,respectively.Taking into account the additive white Gaussian noise(AWGN)channel,[39]xiandyican be related by

    whereNis the total number of the raw keys,zirepresents Gaussian noise,xi~N(0,VA),t=√is the quantum channel loss with transmittanceT∈[0,1],zi~N(0,σ2), andyi~N(0,t2VA+σ2).Here η represents the efficiency of the detector,σ2=N0+ηTξ+Vel,N0is the variance of the shot noise,andVeldenotes the detector’s electronic noise.

    Fig.2.Schematic diagram of the ANN-based CVQKD system.LD: Laser diode.BS: Beam splitter; LO: Local oscillator; AM: Amplitude modulator; PM: Phase modulator; VA: Variable attenuator; PBS: Polarization beam splitter; PC: Polarization controller; PIN: PIN photodiode;DPPC:Data pre-processing center;Alice and Bob do pretreatment(including data dividing and data normalizing)to their own original data through their respective DPPC,then the data are transmitted through an authenticated channel.ANN:Artificial neural networks;DTC:Data terminal center,including reconciliation and privacy amplification.

    For the parameter estimations, we take into account the transmittanceT, the excess noise ξ, and the maximum informationIE.Traditionally,we needs to disclose part of the raw keys,typically 50%,whereas in the proposed method none of the raw keys will be wasted.The ANN-based post-processing can be described as follows, it is worth noting that the data exchanged between Alice and Bob is achieved through the authentication channel, that is, the data may be eavesdropped,but cannot be tampered with.

    Theoretically, through the above-mentioned steps, Bob could have exactly all the sameXas Alice has.Then, along with his own raw keysY, he can proceed the parameter estimation without sacrificing any raw keys to the potential adversary, Eve.Consequently, Alice and Bob can achieve not only the high accuracy of parameter estimation but also the high secret key rate.But note that since the ANN algorithm is nothing more than an approximation of arbitrary function by learning the observed data and making prediction,it is impossible to obtain the completely correct results.Simply put,there are errors in the predicted data, which will lead to the deviation of parameter estimation, and eventually lead to the lower key rate than the ideal case.However, it is possible to achieve as high accuracy as possible by optimizing the structure of the ANN-involved CVQKD system and adjusting the suitable parameters.

    3.Security analysis

    After elaborating the schematic diagram of the ANNbased CVQKD system,we shall pay attention to the derivation of secret key rate.In the asymptotical case,[8]the key rate can be given by

    whereVξrepresents the variance of excess noise, β ∈[0,1]refers to the efficiency of the reconciliation,I(x:y)is the mutual information of Alice and Bob,(y:E) is the upper bound of information that Eve can obtain from Bob’s information, εPEis the probability that the true values of the parameters are not inside the confidence region.In order to ensure the security of the CVQKD system as much as possible without underestimating the eavesdropping,the worst case,that is,the case with the minimum key rate, needs to be considered.For this case,the minimum valueTminforTand the maximum valueshould be used.Then we can get the key rate in the finite-size case[39]

    wherenis the amount of the raw keys used for key extraction,whilem=N?nraw keys can be used for estimation,and Δ(n)is related to the security of the privacy amplification(PA).The parameter Δ(n)has the form

    where Hxis the Hilbert space of variablex,, and εPAare components of the failure probability of the whole CVQKD protocol.We assume dimHx=2, and a conservative value 10?10for.Thus,Δ(n)can be approximated as

    Note although theoretically there is no raw key disclosed for parameter estimation in this scheme, it does not mean thatn=N(details will be shown in Section 4).In homodyne detection,I(x:y)can be derived from[40]

    whereVBis Bob’s measured variance,VB|Ais the conditional variance, χtot= χline+χhom/Tminis the total noise,χline=1/Tmin?1+ξ is the channel-added noise,and χhom=[(1 ?η)+Vel]/η is detection-added noise.We note thatTmin=.

    To acquiretminand, the maximum-likelihood estimatorsandcan be used for the transmission model of Eq.(3)

    For the Holevo bound,[8]it can be simplified as

    whereG(x)=(x+1)log2(x+1)?xlog2x, λiis symplectic eigenvalue of the corresponding covariance matrix given by(in homodyne detection case)

    where we have

    Using Eq.(9),the estimatorsandcan be derived.After substituting them into Eq.(11), we obtaintminand.Combining Eq.(8) with Eq.(13), we getIhom(x:y) and,and hence derive the secret key rateKfrom Eq.(5).

    4.Numerical simulation

    In the ANN-based scenario, the value ofn/Nshould be one in theory as no raw key is sacrificed.But it is impossible for the actual neural networks to make the predicted value exactly the same as the real one, meaning thatnis always less thanN.Therefore, it is still valid in Eq.(4) for this scheme except thatnrepresents the amount of Alice’s raw keys that predicted correctly by Bob.We take into account

    which is the prediction accuracy.Then we have

    The value ofn/Nis usually assumed to be 0.5 in our experiment, as in the traditional scheme.However, the value ofSdepends on the performance of the ANN.

    We set the parameters of the ANN in Table 1,that is a BP neural networks which has a hidden layer with 12 neurons.In hidden layer,we take the activation function

    Table 1.Parameter settings.

    and the output layer activation function

    As for the training function,we take the Levenberg–Marquardt algorithm, which is used for solving the non-linear least squares problems.These can minimize the problems arise in training process of the ANN.

    At the beginning,all the variables and vectors are calculated and fed into the ANN,which randomly divides the data into three parts,i.e., training data, verification data, and test data, accounting for 70%, 15%,and 15%,respectively.After that, the networks begins to learn.The learning process will be repeated until the lowest level of error is achieved.(L=20 km,d=80,N=1.2×106).

    Fig.3.Regression diagram of the first learning for

    Figure 3 shows the regression graph of the first learning(for the relationship, while figure 4 represents the second learning(for the relationshipQ(‖yj‖)=‖xj‖).In these two graphs,the horizontal axis and the vertical axis represent the target value and the output value,respectively.Ideally,the output value should be equal to the target value,which is represented by a dotted line in the diagram.The black circles represent the data points,and the solid lines represent the fitting curves based on them.Theoretically,the closer the fitting curve is to the dotted line,the better the training effect of the ANN will be.After adequate training,the fitting curve of a perfect ANN should coincide with the “Y=T” curve, reflecting the most accurate description of the data relationship.But in reality,on the one hand,under the existing technology,such ideal ANN can not be constructed.On the other hand,if the fitting degree is too high(R=1),the overfitting occurs,that is, the training effect is perfect but the prediction effect is greatly deviated.During the two stages of training in our experiment, the fitting curve is close to the dotted line.The value ofRis greater than 0.8,meaning that the output and the target fit well.Besides,the values of minimum mean squared error(MSE)in two sequential training processes are relatively small,0.026163 and 0.023441,respectively.Both the regression diagram and the MSE reveal that the ANN is well trained.

    Fig.4.Regression diagram of the second learning for Q(‖yj‖)=‖xj‖(L=20 km,d=80,N=1.2×106).

    After sufficient training, we began with the prediction process.To demonstrate the effect of the prediction, we randomly select some of Alice’s raw keys,and compare them with the predicted values.As shown in Fig.5,it shows that the two values are relatively close.In fact, the final mean relative error (MRE) we obtain from the experiment is 0.0246, which indicates that the prediction works well.

    After Bob acquires all the predicted data (denoted asXout), the parameter estimation can be proceeded.In Fig.6,we performance of the ANN-based CVQKD system in terms of the secret key rate.ForS=1,it is the case of the ideal ANN scheme that the neural networks can predict all the data with complete accuracy.In addition, we also test the performance of secret key rate at different block lengths.We find that the ANN-based scheme has more advantages than the traditional one in terms of both transmission distance and secret key rate.The closer the value of prediction accuracySapproaches to 100%, the higher the secret key rate is, as shown in Eq.(17).The performance of the ANN-based scheme is closer to that of the ideal one,which results from the tunable parametern/N.

    The improvement ofSdepends much on block length.Within certain range,prediction accuracy,as well as transmission distance, can be improved by the increased block length since more data provide the sufficient training.In Fig.7, we show effect of block length (blue-solid line) on the prediction accuracyS.For the block length that is no less than 106,the value ofSis between [80%,83%], whereas for the data length less than 106, a significant decrease of prediction accuracy can be observed, which indicates that adequate data are required for the performance improvement.In addition,due to the finite-size effect,small amounts of data may lead to the decrease of the secret key rate.However, when the block length is up to 107,Scan be improved slightly.The reason is that once there is enough data for the training, without optimizing the ANN, increasing data length makes no sense to improve the training and predicting ability of the ANN.As the growth of the block length, it takes more time in the training and predicting, which will be a great challenge for the real-time performance of the system.The time spent in the post-processing of CVQKD system via ANN depends on the structure of ANN itself, the algorithm of training and prediction,and the performance of the computer running ANN.The most important factor is the block length of the data.When the blocks length are 105,106,and 107,the times required to complete the post-processing are about two minutes, ten minutes and two hours,respectively.The performance of the computer used in our experiments is middling,with following configuration: core i5-10400F, 16G RAM, and 500G SSD.Obviously,The training time can be significantly reduced with a more powerful computer.In addition, during one working process of CVQKD system in optical fiber,the fitting relationship obtained by training the first data block can also be used in the subsequent data blocks.Therefore,we do not need to train every data block.Meanwhile,in Fig.7,we can also find that with the increase of transmission distance,the prediction accuracy gradually decreases.This is because the longer the distance,the more distorted the signal.

    Fig.5.Comparison between X and Xout. X represents the true values of Alice’s raw keys, and Xout denotes the predicted values that Bob gets through the ANN.

    In order to illustrate the characteristics of our scheme better, the method-of-moments (MM) scheme[42]and the transformed scheme by changing the implementation order of estimation and reconciliation(we call it exchanging order scheme for short)[25]are selected,to compare with our scheme.All of them can be used for the parameter estimations.The principles of these three schemes are completely different, our scheme uses a trained ANN to predict raw keys,while the MM scheme and the exchanging order scheme uses MM method to find a new estimator for σ2and changes the implementation order of parameter estimation and reconciliation, respectively.Compared with the other two competitors, our scheme is algorithmically simpler.In terms of disadvantages,more time is needed to train the networks in the ANN-based scheme, the performance of the estimator in the MM scheme is poor in minimizing variance and bias, and the exchanging order scheme requires an additional parameter estimation for channel characteristics, which increases the system complexity.And in terms of applicable scenario, our scheme is suitable for medium block length and unstable channel scenarios, while MM scheme is appropriate for long block length and high-loss channel, and the remaining scheme is applied to the stable system with slowly changing characteristics.Finally, we compared the secret key rates of the three schemes when the block lengthN=108and the transmission distanceL=30 km,there are 0.0507,0.085,and 0.036,respectively.It is important to note that this is not the best performance of our scheme,we can increase the key rate by improving the structure of the neural networks, adjusting the parameters’value,and optimizing the training and predicting algorithm.For example, instead of BP neural networks, we can use the radial basis function (RBF) neural networks, which contains input layer,hidden layer(only one)and output layer.Various forms of RBF function can be used as the activation function in hidden layer, take Gaussian function for example, its expression can be written as follows:

    where φi(·)represents thei-th RBF function,xpis thep-th input,cirepresents the center ofi-th node in the hidden layer,andis the variance of the Gaussian function.Then thej-th output of the RBF neural networks reads

    wherewijis the connection weight of the hidden layer to the output layer.Compared with BP networks,RBF networks can approximate arbitrary function with higher precision.Our experiments show that the key rate can be increased by 3% or even more by using the RBF networks and selecting appropriate parameters, such as the dimension of the input data,the spread of radial basis function, and so on.It should be noted that although RBF networks can avoid the local minimum problem and thus achieve higher prediction accuracy,its structure can be more complex.Since there is no specific law to follow in neural networks design at present,quite a lot of continuous attempts are essential to improve the key rate.We believe that different approaches,or combinations of them,may lead to better performance.In general, although the key rate of the ANN-based scheme is not the highest,the complexity of the algorithm is low, and additional hardware is barely required.The property that ANN can approach any rational number in theory makes it have the most prominent advantage, that is, suitable for the complex, variable and unstable channels.

    Fig.6.Secret key rate as a function of transmission distance.From left to right,red-dotted lines,blue-dashed lines,and green-solid lines,correspond to the traditional scheme,the ANN-based scheme,and the ideal ANN scheme,respectively.

    Fig.7.The A–N curve shows how the prediction accuracy varies with the length of the data(blue-solid line,L=20 km).The A–L curve represents the variation of the prediction accuracy with transmission distance (red-dotted line,N=1.2×107).

    5.Conclusion

    We have presented an ANN-involved parameter estimation scheme for performance improvement of the CVQKD system,where BP neural networks are placed in the data postprocessing stage without disclosing the raw keys.After being preprocessed,Alice’s and Bob’s original data are fed into the ANN to start the training experiments, in which the structure and the parameters of the ANN are constantly adjusted until the regression curve and error curve show that the ANN has achieved its best performance.Relationship between the data is obtained at the end of the training experiments before the ANN’s prediction.It is secure from Eve’s eavesdropping since none of the original data is disclosed.Simulation results suggest that the ANN-based scheme has shown better performance in the parameter estimation, secret key rate, capacity for carrying information and the accuracy of prediction,compared with the traditional scheme and other schemes.Besides,the ANN-based scheme,which requires very few additional devices,can be expediently implemented in the practical CVQKD systems.

    搡老妇女老女人老熟妇| 久久精品亚洲精品国产色婷小说| 别揉我奶头~嗯~啊~动态视频| 日本撒尿小便嘘嘘汇集6| 琪琪午夜伦伦电影理论片6080| 精品久久久久久,| 中文字幕最新亚洲高清| 欧美日韩乱码在线| 美女午夜性视频免费| 不卡一级毛片| 国产精品亚洲美女久久久| 91大片在线观看| 国产国语露脸激情在线看| 免费人成视频x8x8入口观看| 国产av不卡久久| 国产精品香港三级国产av潘金莲| 欧美日韩黄片免| 欧美精品啪啪一区二区三区| 中文字幕久久专区| 欧美日韩亚洲国产一区二区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人精品久久二区二区91| 变态另类丝袜制服| av在线播放免费不卡| 18禁观看日本| 在线观看66精品国产| netflix在线观看网站| 久久午夜综合久久蜜桃| 最新在线观看一区二区三区| 禁无遮挡网站| 国产黄色小视频在线观看| 亚洲熟妇中文字幕五十中出| 中文字幕人成人乱码亚洲影| 国内少妇人妻偷人精品xxx网站 | 天堂动漫精品| 久久亚洲精品不卡| 亚洲九九香蕉| a级毛片a级免费在线| 黄频高清免费视频| 国产精品久久久久久人妻精品电影| 叶爱在线成人免费视频播放| 亚洲,欧美精品.| 97人妻精品一区二区三区麻豆 | 免费电影在线观看免费观看| 久久国产乱子伦精品免费另类| 欧美日韩黄片免| 黄色成人免费大全| 成人永久免费在线观看视频| 99精品在免费线老司机午夜| 久久伊人香网站| 亚洲一区高清亚洲精品| 99在线视频只有这里精品首页| 欧美黑人巨大hd| 欧美日韩亚洲综合一区二区三区_| 中文字幕人妻丝袜一区二区| 日韩精品免费视频一区二区三区| 此物有八面人人有两片| 国产成人欧美| 侵犯人妻中文字幕一二三四区| 国产精品乱码一区二三区的特点| 看黄色毛片网站| 亚洲 欧美一区二区三区| 国产av一区在线观看免费| 首页视频小说图片口味搜索| 一进一出抽搐动态| 嫁个100分男人电影在线观看| 亚洲七黄色美女视频| a级毛片a级免费在线| 哪里可以看免费的av片| 亚洲激情在线av| 国产精品香港三级国产av潘金莲| 久久国产乱子伦精品免费另类| 亚洲全国av大片| 国产99白浆流出| 国产亚洲精品久久久久久毛片| 女性被躁到高潮视频| 韩国av一区二区三区四区| 久久国产亚洲av麻豆专区| 久久久久久久久免费视频了| 欧洲精品卡2卡3卡4卡5卡区| 久久久国产成人精品二区| 国产日本99.免费观看| 久久香蕉激情| 亚洲色图 男人天堂 中文字幕| a在线观看视频网站| 国产精品久久久久久人妻精品电影| 国产伦人伦偷精品视频| 亚洲人成77777在线视频| videosex国产| 啦啦啦 在线观看视频| 久久99热这里只有精品18| 91成年电影在线观看| 色播亚洲综合网| 男女视频在线观看网站免费 | 成人三级黄色视频| 亚洲第一av免费看| 18禁黄网站禁片免费观看直播| 黄色 视频免费看| 欧美又色又爽又黄视频| 国产成人系列免费观看| 日本五十路高清| av中文乱码字幕在线| 999精品在线视频| 午夜福利高清视频| 欧美亚洲日本最大视频资源| www日本在线高清视频| 黄色毛片三级朝国网站| 国产成+人综合+亚洲专区| 亚洲欧美精品综合久久99| 国产久久久一区二区三区| 91大片在线观看| 国产片内射在线| 在线观看66精品国产| 精品国产一区二区三区四区第35| 久久婷婷成人综合色麻豆| 国产精品免费视频内射| 熟妇人妻久久中文字幕3abv| 波多野结衣巨乳人妻| netflix在线观看网站| 亚洲国产欧美网| 看片在线看免费视频| 人妻丰满熟妇av一区二区三区| 国产亚洲欧美精品永久| 美女 人体艺术 gogo| 午夜免费激情av| 69av精品久久久久久| 琪琪午夜伦伦电影理论片6080| 欧美激情 高清一区二区三区| 久久99热这里只有精品18| 黄频高清免费视频| 麻豆国产av国片精品| 99精品久久久久人妻精品| 午夜免费鲁丝| 一本综合久久免费| 国产精品综合久久久久久久免费| 夜夜看夜夜爽夜夜摸| 欧美三级亚洲精品| 大型黄色视频在线免费观看| 18禁观看日本| 国产三级黄色录像| 叶爱在线成人免费视频播放| 国产精品av久久久久免费| 亚洲无线在线观看| 亚洲第一青青草原| 88av欧美| 亚洲精品美女久久av网站| 在线天堂中文资源库| 日本免费a在线| 热99re8久久精品国产| 欧美久久黑人一区二区| 亚洲国产中文字幕在线视频| 特大巨黑吊av在线直播 | 国产99白浆流出| 亚洲三区欧美一区| 久久香蕉精品热| 亚洲专区国产一区二区| 美国免费a级毛片| av电影中文网址| 欧美丝袜亚洲另类 | 日本免费a在线| 欧美日韩乱码在线| 午夜亚洲福利在线播放| 中文字幕另类日韩欧美亚洲嫩草| 欧美性猛交╳xxx乱大交人| 国产亚洲欧美在线一区二区| 亚洲精品美女久久久久99蜜臀| 亚洲精品美女久久av网站| 一二三四社区在线视频社区8| 黄片小视频在线播放| 精品乱码久久久久久99久播| 午夜免费观看网址| 一进一出好大好爽视频| 1024香蕉在线观看| 少妇被粗大的猛进出69影院| 丁香欧美五月| 中文字幕人成人乱码亚洲影| 美女午夜性视频免费| 男人舔女人下体高潮全视频| www日本黄色视频网| 免费av毛片视频| 丰满的人妻完整版| 黄片小视频在线播放| 日本精品一区二区三区蜜桃| 在线免费观看的www视频| 久久中文看片网| 国产成年人精品一区二区| 88av欧美| 国产黄a三级三级三级人| 久久香蕉国产精品| 久久久久久久午夜电影| 免费高清在线观看日韩| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久毛片微露脸| 91成年电影在线观看| 极品教师在线免费播放| 免费看美女性在线毛片视频| 一夜夜www| 国产成人欧美在线观看| 亚洲欧美日韩高清在线视频| 我的亚洲天堂| 国产1区2区3区精品| 久久久久久久久中文| av电影中文网址| 久久久久国产精品人妻aⅴ院| 色老头精品视频在线观看| 国产精品国产高清国产av| 777久久人妻少妇嫩草av网站| 亚洲熟女毛片儿| 国产高清视频在线播放一区| 波多野结衣高清无吗| 亚洲国产精品sss在线观看| 一区福利在线观看| 香蕉av资源在线| 日韩三级视频一区二区三区| 亚洲av电影在线进入| 日韩欧美免费精品| 最近最新中文字幕大全免费视频| 亚洲黑人精品在线| 精品久久久久久久末码| 成人手机av| 女警被强在线播放| x7x7x7水蜜桃| 亚洲国产中文字幕在线视频| 91大片在线观看| 国产精品野战在线观看| 香蕉久久夜色| 欧美精品啪啪一区二区三区| 久热爱精品视频在线9| 黄色成人免费大全| 12—13女人毛片做爰片一| 午夜激情福利司机影院| 午夜老司机福利片| 性欧美人与动物交配| 国产精品久久电影中文字幕| 一本精品99久久精品77| 日日爽夜夜爽网站| 女人爽到高潮嗷嗷叫在线视频| 欧美绝顶高潮抽搐喷水| 黑人巨大精品欧美一区二区mp4| 悠悠久久av| 在线视频色国产色| 一区二区日韩欧美中文字幕| 亚洲精品色激情综合| 国产一区二区在线av高清观看| 亚洲无线在线观看| 色播亚洲综合网| 后天国语完整版免费观看| 亚洲成a人片在线一区二区| 日韩欧美在线二视频| 欧美一级a爱片免费观看看 | 国产成人精品久久二区二区免费| 亚洲欧美精品综合一区二区三区| 女性被躁到高潮视频| 亚洲三区欧美一区| 精品国产超薄肉色丝袜足j| 自线自在国产av| 国产一区在线观看成人免费| 亚洲成av片中文字幕在线观看| 成在线人永久免费视频| 麻豆av在线久日| 国产麻豆成人av免费视频| 亚洲精品国产一区二区精华液| 人妻丰满熟妇av一区二区三区| 亚洲专区字幕在线| 亚洲国产高清在线一区二区三 | 久久久水蜜桃国产精品网| 精品免费久久久久久久清纯| 91国产中文字幕| 欧美色欧美亚洲另类二区| 国产片内射在线| 午夜日韩欧美国产| 麻豆成人av在线观看| 国产精品影院久久| 1024香蕉在线观看| 99国产综合亚洲精品| av超薄肉色丝袜交足视频| 国产色视频综合| 成年女人毛片免费观看观看9| 国产成人av激情在线播放| 日韩国内少妇激情av| 中文亚洲av片在线观看爽| 2021天堂中文幕一二区在线观 | 99久久精品国产亚洲精品| 欧美大码av| 中文字幕精品免费在线观看视频| 亚洲人成网站在线播放欧美日韩| 波多野结衣高清无吗| 男女午夜视频在线观看| 久久久久久久久久黄片| 欧美日韩亚洲综合一区二区三区_| 男人的好看免费观看在线视频 | aaaaa片日本免费| 久久热在线av| 又黄又粗又硬又大视频| 亚洲精品中文字幕在线视频| 成人三级黄色视频| 亚洲精品国产精品久久久不卡| 男女视频在线观看网站免费 | 久久香蕉激情| 日本三级黄在线观看| 亚洲av片天天在线观看| 成人特级黄色片久久久久久久| 国产野战对白在线观看| or卡值多少钱| 亚洲第一电影网av| 成人国产综合亚洲| 男人舔奶头视频| 国产成年人精品一区二区| 成人午夜高清在线视频 | 亚洲精品中文字幕在线视频| 一a级毛片在线观看| 久久久久久久午夜电影| 十八禁人妻一区二区| 特大巨黑吊av在线直播 | 国产av不卡久久| 一边摸一边抽搐一进一小说| 国产单亲对白刺激| 成人精品一区二区免费| 欧美精品亚洲一区二区| 99国产极品粉嫩在线观看| 亚洲国产欧洲综合997久久, | 免费在线观看视频国产中文字幕亚洲| 99久久久亚洲精品蜜臀av| 精品国产美女av久久久久小说| 亚洲av第一区精品v没综合| 黄色片一级片一级黄色片| 久久久久久久久免费视频了| 成人国产综合亚洲| 国产野战对白在线观看| 久久香蕉国产精品| 给我免费播放毛片高清在线观看| 欧美另类亚洲清纯唯美| 国产伦一二天堂av在线观看| 大型黄色视频在线免费观看| 日本精品一区二区三区蜜桃| av超薄肉色丝袜交足视频| 可以免费在线观看a视频的电影网站| 99国产精品99久久久久| 999精品在线视频| 国产一卡二卡三卡精品| 精品福利观看| 久久久久亚洲av毛片大全| 免费高清视频大片| 麻豆av在线久日| 午夜福利成人在线免费观看| 欧美乱码精品一区二区三区| 精品一区二区三区视频在线观看免费| 草草在线视频免费看| 最近最新中文字幕大全免费视频| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看| 麻豆久久精品国产亚洲av| 亚洲,欧美精品.| www.www免费av| 色尼玛亚洲综合影院| 亚洲av五月六月丁香网| 97人妻精品一区二区三区麻豆 | 欧美人与性动交α欧美精品济南到| 中文在线观看免费www的网站 | 国产亚洲精品一区二区www| 国产爱豆传媒在线观看 | 免费电影在线观看免费观看| cao死你这个sao货| 91麻豆av在线| 超碰成人久久| 美女大奶头视频| 国产伦人伦偷精品视频| 亚洲一区高清亚洲精品| 国产亚洲精品av在线| 久久久久亚洲av毛片大全| videosex国产| 国产麻豆成人av免费视频| 中文字幕av电影在线播放| 欧美亚洲日本最大视频资源| 日本精品一区二区三区蜜桃| 大香蕉久久成人网| xxx96com| 国产一级毛片七仙女欲春2 | 国产精品 欧美亚洲| 国产精品98久久久久久宅男小说| 一区福利在线观看| 母亲3免费完整高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 在线十欧美十亚洲十日本专区| 村上凉子中文字幕在线| 91av网站免费观看| 亚洲成国产人片在线观看| 女人爽到高潮嗷嗷叫在线视频| 神马国产精品三级电影在线观看 | 久久久水蜜桃国产精品网| 麻豆国产av国片精品| 成人欧美大片| 波多野结衣高清无吗| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 欧美 亚洲 国产 日韩一| 精华霜和精华液先用哪个| 亚洲精品中文字幕一二三四区| 特大巨黑吊av在线直播 | 黄色视频,在线免费观看| 国产97色在线日韩免费| 欧美 亚洲 国产 日韩一| 久久国产精品男人的天堂亚洲| 国产成人精品久久二区二区91| 精品久久久久久成人av| 一级a爱视频在线免费观看| 亚洲激情在线av| 亚洲成av人片免费观看| 国产99久久九九免费精品| 午夜福利高清视频| 久久久精品欧美日韩精品| 欧美中文日本在线观看视频| 9191精品国产免费久久| 村上凉子中文字幕在线| 69av精品久久久久久| 伦理电影免费视频| 999精品在线视频| 欧美性猛交黑人性爽| 十分钟在线观看高清视频www| 少妇熟女aⅴ在线视频| 午夜福利欧美成人| 久久久久国内视频| 国内精品久久久久精免费| 亚洲全国av大片| 久久人妻福利社区极品人妻图片| 老司机福利观看| 欧美一区二区精品小视频在线| 在线天堂中文资源库| 亚洲欧美激情综合另类| 国产精品乱码一区二三区的特点| 一区二区日韩欧美中文字幕| 男人的好看免费观看在线视频 | 又大又爽又粗| 日本一本二区三区精品| 亚洲最大成人中文| av欧美777| 午夜免费激情av| 国产1区2区3区精品| 波多野结衣av一区二区av| 亚洲国产精品成人综合色| 久久热在线av| 国产精品久久久久久亚洲av鲁大| 日本a在线网址| 午夜久久久久精精品| 久久久久久九九精品二区国产 | 久久久久久大精品| 婷婷丁香在线五月| 少妇 在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲一区高清亚洲精品| 欧美日韩乱码在线| 成人国语在线视频| 又紧又爽又黄一区二区| 老汉色av国产亚洲站长工具| videosex国产| 欧美日韩福利视频一区二区| 又黄又粗又硬又大视频| 草草在线视频免费看| 别揉我奶头~嗯~啊~动态视频| 国产成+人综合+亚洲专区| avwww免费| 久久香蕉激情| 99国产精品一区二区三区| 免费电影在线观看免费观看| 99久久国产精品久久久| 婷婷亚洲欧美| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 国产午夜福利久久久久久| 黄色视频,在线免费观看| 国产av一区在线观看免费| 亚洲全国av大片| 亚洲黑人精品在线| 可以在线观看毛片的网站| www日本黄色视频网| 成人手机av| 亚洲自偷自拍图片 自拍| 精品国产美女av久久久久小说| 无人区码免费观看不卡| 老司机在亚洲福利影院| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播 | 一边摸一边抽搐一进一小说| 亚洲av五月六月丁香网| 老汉色av国产亚洲站长工具| 狂野欧美激情性xxxx| 一边摸一边做爽爽视频免费| 久久久精品欧美日韩精品| 国产高清videossex| 精品人妻1区二区| 俺也久久电影网| 亚洲国产欧美网| 国产91精品成人一区二区三区| 成年免费大片在线观看| 在线观看www视频免费| 黄频高清免费视频| 看免费av毛片| 日本 av在线| 在线看三级毛片| 欧美三级亚洲精品| 18禁美女被吸乳视频| 欧美最黄视频在线播放免费| av在线播放免费不卡| 色尼玛亚洲综合影院| 久久精品国产清高在天天线| 久久草成人影院| 18禁观看日本| 1024视频免费在线观看| 美国免费a级毛片| 久久精品影院6| 成人18禁在线播放| 午夜影院日韩av| 欧美人与性动交α欧美精品济南到| 亚洲va日本ⅴa欧美va伊人久久| 久久久水蜜桃国产精品网| √禁漫天堂资源中文www| 国内少妇人妻偷人精品xxx网站 | 又黄又爽又免费观看的视频| 久久久久久国产a免费观看| svipshipincom国产片| 人人妻人人澡欧美一区二区| 一区二区三区精品91| 美女国产高潮福利片在线看| 欧美激情极品国产一区二区三区| 在线播放国产精品三级| 久久久久亚洲av毛片大全| 久久午夜亚洲精品久久| 午夜激情av网站| 搡老妇女老女人老熟妇| 波多野结衣巨乳人妻| 日韩欧美三级三区| 午夜福利成人在线免费观看| 男女午夜视频在线观看| av福利片在线| 亚洲中文字幕日韩| 欧美黑人巨大hd| 亚洲自偷自拍图片 自拍| 亚洲熟妇熟女久久| 观看免费一级毛片| 黄色女人牲交| 老司机福利观看| 久久人人精品亚洲av| 日本一区二区免费在线视频| 日韩中文字幕欧美一区二区| а√天堂www在线а√下载| 精品久久久久久久人妻蜜臀av| 亚洲成av片中文字幕在线观看| 高清在线国产一区| 在线视频色国产色| 国内精品久久久久久久电影| 欧美日韩黄片免| 99riav亚洲国产免费| 曰老女人黄片| 51午夜福利影视在线观看| 9191精品国产免费久久| 啦啦啦 在线观看视频| 欧美久久黑人一区二区| 国内揄拍国产精品人妻在线 | 真人做人爱边吃奶动态| 天堂动漫精品| 九色国产91popny在线| 亚洲片人在线观看| 成人三级做爰电影| 2021天堂中文幕一二区在线观 | 伊人久久大香线蕉亚洲五| 黄色视频,在线免费观看| 日韩大尺度精品在线看网址| 两个人免费观看高清视频| 久久久久久亚洲精品国产蜜桃av| 精品电影一区二区在线| 成人手机av| 动漫黄色视频在线观看| a在线观看视频网站| 国产乱人伦免费视频| 69av精品久久久久久| 在线十欧美十亚洲十日本专区| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品av在线| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 变态另类丝袜制服| 午夜免费鲁丝| 波多野结衣高清作品| 黄色a级毛片大全视频| 亚洲av美国av| 亚洲在线自拍视频| 亚洲精品色激情综合| 男女那种视频在线观看| 在线免费观看的www视频| 国产av一区在线观看免费| 午夜福利一区二区在线看| 久久伊人香网站| 88av欧美| 窝窝影院91人妻| 一夜夜www| 亚洲精品一卡2卡三卡4卡5卡| 禁无遮挡网站| 午夜免费成人在线视频| 国产97色在线日韩免费| 久久天堂一区二区三区四区| 9191精品国产免费久久| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久久久毛片| 午夜老司机福利片| 一区福利在线观看| www.精华液| 视频区欧美日本亚洲| 欧美精品亚洲一区二区| 久99久视频精品免费| av在线播放免费不卡| 一级毛片女人18水好多| 18禁美女被吸乳视频| 麻豆久久精品国产亚洲av| 亚洲成国产人片在线观看| 18禁国产床啪视频网站|