• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances

    2022-02-24 09:38:32XimingWang王希銘JinshengSun孫金生ZhitaoLi李志韜andZixingWu吳梓杏
    Chinese Physics B 2022年2期

    Ximing Wang(王希銘), Jinsheng Sun(孫金生), Zhitao Li(李志韜), and Zixing Wu(吳梓杏)

    School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China

    This paper presents a novel flocking algorithm based on a memory-enhanced disturbance observer.To compensate for external disturbances,a filtered regressor for the double integrator model subject to external disturbances is designed to extract the disturbance information.With the filtered regressor method,the algorithm has the advantage of eliminating the need for acceleration information, thus reducing the sensor requirements in applications.Using the information obtained from the filtered regressor,a batch of stored data is used to design an adaptive disturbance observer,ensuring that the estimated values of the parameters of the disturbance system equation and the initial value converge to their actual values.The result is that the flocking algorithm can compensate for external disturbances and drive agents to achieve the desired collective behavior,including virtual leader tracking,inter-distance keeping,and collision avoidance.Numerical simulations verify the effectiveness of the algorithm proposed in the present study.

    Keywords: flocking control,multi-agent systems,adaptive control,disturbance rejection

    1.Introduction

    Cooperative control of multi-agent systems has been a hot topic in the field of control theory and applications.Cooperative control deals with the problem of controlling a multiagent system to fulfill a common goal, such as consensus control,[1–3]formation control,[4–7]containment control,[8–10]and flocking control.[11–13]The common advantage of these algorithms is the theoretical and practical value of using local information in the system to achieve the desired collective motion,thereby reducing costs and improving robustness.

    Inspired by biological systems, flocking control focuses on the collective motion of multi-agent systems in which each agent has a limited communication distance, with applications ranging from swarm of unmanned aircraft vehicle(UAV) drones robots[14]to mobile sensor networks.[15]The core advantage of flocking control is that it guarantees collision avoidance, lattice-like formation, leader-tracking, connectivity preservation at the same time.However, most existing flocking algorithms, e.g., in Refs.[16–23], do not take into account the presence of external disturbances in a system, which makes them unsuitable for applications with high robustness requirements.

    External disturbances can negatively affect the system,including degrading the performance,preventing the control system from converging to the desired state,or causing agents to collide.Therefore,disturbance rejection is an important practical issue confronting flocking applications.In the existing literature, disturbance-rejection flocking algorithms, e.g., in Refs.[24–26], utilize different control techniques to stabilize the flocking systems.In Ref.[24],the authors took advantage of the sliding mode control to compensate for bounded external disturbances.The advantage of sliding mode control is that once knowledge of the upper bound on the disturbance is obtained,the disturbance can be compensated for by setting a sufficiently large sliding mode gain.However,large gains require very high control frequencies,which impose significant costs on the application and inevitably cause chattering as a side effect.In Ref.[25],the authors proposed a flocking algorithm based on a full-order disturbance observer to compensate for matched and unmatched modelable disturbances.The benefit of this approach is that it enables the controller to compensate for external disturbances in general,both bounded and unbounded.However,this approach requires the controller to have precise prior knowledge of the form of the disturbance equation,which is difficult to obtain in practice.In Ref.[26],the authors designed a flocking controller using multiple adaptive gains for linear models with time-varying uncertainties and external disturbances.The highlight of this method is that it uses continuous inputs to compensate for unknown bounded perturbations by setting exponential adaptive gains.However,the adaptive gains induce two negative effects.One is that the exponential form of the gains is likely to be too large,making it difficult to apply, and the second is that the algorithm does not make the positions of the agents converge to a configuration that is a minimum of the potential energy field and thus does not guarantee that the formation will be as expected.

    It can be seen that the existing disturbance-rejection flocking algorithms in the literature have different shortcomings, and it is necessary to develop a disturbance-rejection flocking control algorithm with continuous input and a low requirement for a priori knowledge of external disturbances.Inspired by the filtered regressor,[27–29]in this study we propose a novel disturbance-rejection flocking algorithm using adaptive disturbance observers,where each agent can estimate the disturbance without knowing the parameters of the external disturbance system equation or the initial value of the disturbance, thus allowing the agents to compensate for the external disturbance without chattering.In addition, we also use recorded data to further improve the performance of the disturbance observer.

    We summarize the contributions of this paper as follows:(1) A disturbance-rejection flocking algorithm is proposed to use an adaptive control method for the first time.Compared to the existing disturbance-rejection flocking algorithms, our proposed algorithm does not require knowledge of the parameters of the external disturbance system equation.To achieve this goal,we propose a new disturbance observer that uses the filtered regression approach to decompose the external disturbance into the product of a known regression matrix and an unknown constant parameter vector.(2)It is remarkable that the proposed flocking algorithm uses the recorded data to guarantee that the disturbance estimation given by the observer converges to the actual value of the disturbance.In classic adaptive control systems,the convergence of the estimated parameters depends on whether the regression matrix satisfies the persistent excitation(PE)condition.When the PE condition is not satisfied,adaptive control can not guarantee the parameters to converge to the actual values,resulting in degraded performance.In this paper, a new adaptive law based on a filtered regressor is designed,in which the estimated disturbances converge to the actual disturbances as well as stabilize the system if only the recorded data satisfy the full rank condition.

    The rest of this paper is organized as follows: In Section 2 we provide the basics of system models, assumptions, and the virtual potential functions for flocking control.In Section 3 we introduce the novel disturbance observer for the doubleintegrator dynamics using filtered regressors.In Section 4 we give the flocking algorithm and its theoretical analysis.In Section 5 we verify the effectiveness of the proposed algorithm through a numerical simulation.Finally,in Section 6 we give some conclusions and future perspectives.

    2.Preliminaries

    2.1.System model

    Consider a multi-agent system consisting ofNdoubleintegrator particles,which can be expressed by

    whereqi(t) ∈Rn, ˙qi(t) ∈Rnand ¨q(t) ∈Rnare the position, velocity, and acceleration of theith agent, respectively;di(t)∈Rnis the external disturbance,and τi∈Rnis the control input of theith agent.Furthermore,we assume that there exists a virtual leader in the system.The leader’s positionq0and velocity ˙q0are smooth enough so that ¨q0exists and is continuous.Next, we assume that the disturbancedican be expressed as

    whereDi∈Rn×mis an unknown matrix satisfying rank(Di)=m,ωi∈Rm×1and

    withAi∈Rm×mbeing an unknown matrix.Therefore, each disturbancedican be captured if the unknown parametersDi,Aiand the initial value ωi(t0)are estimated.Note that by the assumption ofDi,there exists a Moore–Penrose pseudoinversesuch that=Im.

    2.2.Communication topology

    The proximity-induced topology[30,31]is employed to describe the information flow in system (1).Consider an undirected graph G = (V,E,A), where elements in vertex set V ?{1,...,N}index agents,edge set E ?{(i,j)|i,j∈V,‖qi?qj‖≤r} represents the communication links between neighboring agents,and A=[aij]∈Rn×nis the weight matrix with eachaij∈[0,1].Note thataij=aji?(i,j)∈[1,N],andaij=0 if(i,j) /∈E.Here,the constantr>0 is known as the maximal communication radius.Thejthagent is called a neighbor of theith agent and vice versa if(i,j)∈E,and the neighborhood set ofican be defined as Ni?{j|(i,j)∈E}.

    2.3.Virtual potential field functions

    Following the approach in Ref.[30], a bump function ρh:R≥0→[0,1] is needed to construct the virtual potential field function as well as the weights in the communication topology.Since all existing bump functions to our knowledge are not twice differentiable and the algorithm proposed in this paper will use the twice differentiable of the potential field function to stable the flocking system,we propose a new bump function ρhas follows:

    where constanth∈(0,1).Hence,the weights in G can be defined asaij=.Similar to Ref.[30],we define the virtual potential field function using the integral of the product of bump function (4) and a continuous differential action function φ :R≥0→R which satisfies

    wherelais the expected inter-distance of neighboring agents.Then, the virtual potential field function ψ :R≥0→R≥0can be defined as

    Hence, the virtual potential field function between agentiand agentjis given byand the corresponding interaction is denoted by φi j=?qi?q jψij.Note that since the bump function (4) is twice differentiable,is continuous.The positivity of ψ can be obtained by checking its minimal value.Based on the definition, ψ decreases monotonically inand increases monotonically in.Therefore, ψ reaches its minimal value atz=, resulting in ψ ≥= 0.Similarly, to track the virtual leader, the leader’s potential field function ψd:R≥0→R≥0is defined as

    where φd(z) is a positive continuously differential function and φd(‖z‖2)=0 if and only ifz=0.For convenient, the virtual potential field function between agentiand the virtual leader is given byand the corresponding interaction is denoted by.

    3.Disturbances observer

    3.1.Filtered regressors

    The double-integrator dynamics in Eq.(1) can be developed as

    Then,the following lemma is used to introduce the filtered regressor.

    Lemma 1The following equation holds:

    where

    with any appropriate positive constantai.

    ProofEquations(10)–(12)can be expressed in the form of convolution as

    Then,using integration by parts we have

    Substituting Eq.(8)into Eq.(16),we can continuously get

    which completes the proof.

    Remark 1From Lemma 1, it can be seen that signalDiωf,ican be captured using measurable signalsand τf,i.

    Similarly, the filtered regression can also be applied for external system(3).

    Lemma 2The following equation holds:

    where ωf,iis defined in Eq.(11).

    ProofUsing integration by parts for Eq.(14),we have

    Then,multiplyingaiat its both side,it follows that

    which completes the proof.

    3.2.Disturbance observer

    Using Eq.(18)and noting that=Im,one obtains

    4.Observer-based flocking algorithm

    4.1.Controller design

    For convenience, let us define position, velocity and coordination error signals as

    Substituting Eqs.(27)and(28)into Eq.(1)yields

    Then,we give the control input τias

    Next,substituting Eq.(24)into Eq.(31)yields

    Now,we are ready to give the adaptive laws for ?Aiand ?ω0,iin a compact form as

    where Γiis a positive matrix, and data (Yi(t),Wi(t)) are defined as

    whereYiis defined as in Eq.(23),τf,iis defined as in Eq.(12),vf,iis defined as in Eq.(10), constant δi> 0, andMi={ti,1,...ti,m}is a set contains time instants when the data pair(Yi(t),Wi(t))is recorded.Here,we assume that the data pairs are sufficiently recorded such that the following assumption holds.

    Assumption 1For each agenti, the data pairs(Yi(t),Wi(t)) are sufficiently collected in a finite duration such that there exits a constant βi>0 satisfying

    where λmin(z) means the minimal eigenvalue of matrixzand Yi=.

    Remark 2Following Ref.[32],assumption 1 can be verified online during the collection and once Yiis full rank,the data collection process can be stopped.Note that we can select a larger βito guarantee a better convergence rate of the estimated parameters.Moreover, real-time applicability is an issue that needs to be considered in applications.Since the amount of data to be gathered in the proposed algorithm is hard to determine beforehand,the amount of computation required by the flocking algorithm increases in the event of too much data being collected.For this reason,data selection can help to improve the real-time performance of the system.See Ref.[33]for more information.

    4.2.System analysis

    Consider a Lyapunov function as

    where

    Then,we have the following theorem.

    Theorem 1Consider a multi-agent system(1)applying flocking controller (30) with disturbance observer consisting of Eqs.(23) and (33).Then, ifV(t0) is limited and assumption 1 is satisfied,the following statements holds:

    (2)(Formation)q=converges to an equilibrium point that is a local minima ofV2.

    (3)(Disturbance observation)→di(t)ast→∞.

    (4) (Collision avoidance) GivenV(t0) < (k+1)ψ(0).Then,at mostkdistinct pair of agent could possibly collide.

    ProofDifferentiating both sides ofV1,we have

    Substituting Eq.(32)into Eq.(41)yields

    Hence,it follows that

    Differentiating both sides ofV2,we have

    Differentiating both sides ofV3and using Eq.(33), one can obtain

    Next,substituting Eq.(22)into Eq.(8),we have

    After substituting Eq.(9) into Eq.(49), we can continuously obtain

    which yields

    Then,using Eqs.(12)and(10),we can continuously reach

    Next,integrating both sides of Eq.(52),one obtains

    Therefore,we have

    Now,substituting Eq.(54)into Eq.(48),we can obtain

    Then,after merging Eqs.(45),(46)and(55),the derivative of Eq.(37)is calculated as

    Using LaSalle’s invariant set principle, all solutions stared fromasymptotically converge to the largest invariant set contained in

    5.Numerical study

    Flocking control originates from imitations of biological imitation in nature, and therefore numerical simulation of flocking systems has been an important research method.In the early days, the Boids model[34]based on heuristic rules was proposed in order to graphically implement the imitation of bird flocks.Subsequently, Vicseket al.[35]and Couzinet al.[36]proposed mathematical models of flocking that focus on revealing the behavior in complex systems.To facilitate the theoretical analysis of the behaviors of flocking systems, models such as Cucker–Smale’s model[37]and Olfati’s model[30]have been proposed, which model the agents as double-integrator,reducing the difficulty of analyzing flocking systems using stability theory and thus obtaining the theoretical conditions for velocity consensus,collision avoidance,and so on.The double-integrator model is a highly abstract model that uses only the position and velocity of a agent as states and the acceleration as control input.Therefore, this class of flocking algorithms is suitable for applications in multi-robot systems with inertia, such as quadrotor swarms[38]and autonomous surface vehicles.[39]

    To show the control effect of the proposed algorithm,let us consider the double-integrator multi-agent system(1)consisting of 10 agents with a prescribed trajectoryq0(t)designed as

    The initial positions and velocities of all agents are randomly selected in[?5,5].The communication radiusr=1.2 and the expected inter-distancela=1.The initial values of disturbances are randomly selected in[?3,3],andAiis randomly generated such thatAi=?ATi,andDi=Infor all agents.The parameter of the smooth bump function ρhis set ash=0.9.The continuous differential action function φ is designed as

    and the leader’s potential field function is designed as

    In the filtered regressors(9),we setai=1 for all agents.In the controller(30),we setk1,i=1 andk2=1 for all agents.The simulation starts att0=0 and ends att=30,and data defined in Eq.(33)is collected every 0.3 s.

    Fig.1.Flocking trajectories of all agents.

    Fig.2.Velocity consensus of all agents.

    As shown in Fig.1, all agents track the virtual leader while maintaining inter-distance without collision, where crosses, dots and lines denote the initial positions, final positions and trajectories of agents,respectively;the crosses and dashed line represent the position and trajectory of the virtual leader.The velocity differences between agents and the virtual leader are plotted in Fig.2,where all agents reach velocity consensus after 5 s.Figure 3 illustrates the convergence of the estimated parameters.Figure 4 shows that the disturbances estimated by all observers converge to the actual disturbances.Furthermore, as shown in Fig.5, no collisions occur during the simulation,and minimum inter-distances of all agents are close tola=1,as is expected.

    Fig.3.Parameter convergence of all agents.

    Fig.4.Disturbance observation errors.

    Fig.5.Minimum inter-distances of all agents.

    6.Conclusion

    A novel flocking algorithm using adaptive disturbance observer is proposed.Based on the designed filtered regressor, the disturbance observer estimates the disturbances in a way without the need of the acceleration information.The concurrent learning adaptive control method is employed to guarantee the convergence of the estimated disturbances, and LaSalle’s invariant set principle is used to guarantee the stability as well as collision avoidance and velocity consensus.Numerical simulation shows the perfect performance of the proposed algorithm.

    Data Availability StatementThe latest source code is available at https://doi.org/10.5281/zenodo.5813300

    国产精品.久久久| 欧美亚洲日本最大视频资源| 99九九在线精品视频| 日本欧美国产在线视频| 一本—道久久a久久精品蜜桃钙片| 国模一区二区三区四区视频| 一区在线观看完整版| 伦理电影大哥的女人| 欧美精品高潮呻吟av久久| 欧美 日韩 精品 国产| 老女人水多毛片| kizo精华| 岛国毛片在线播放| 欧美变态另类bdsm刘玥| 国产日韩欧美视频二区| 日本wwww免费看| 美女脱内裤让男人舔精品视频| 国产亚洲av片在线观看秒播厂| 国产乱人偷精品视频| av有码第一页| 国产一区有黄有色的免费视频| 亚洲av.av天堂| 七月丁香在线播放| 我的老师免费观看完整版| 成人毛片60女人毛片免费| 边亲边吃奶的免费视频| 久久久久久久久久久免费av| 少妇精品久久久久久久| 久久久国产欧美日韩av| 国产在视频线精品| 国精品久久久久久国模美| 欧美国产精品一级二级三级| 亚洲久久久国产精品| 免费不卡的大黄色大毛片视频在线观看| 日本av免费视频播放| 99精国产麻豆久久婷婷| av在线老鸭窝| 亚洲成人一二三区av| 人妻少妇偷人精品九色| 男女国产视频网站| 精品一区二区免费观看| 国产高清不卡午夜福利| 成人综合一区亚洲| 久久精品久久久久久久性| 久久精品久久精品一区二区三区| 色婷婷av一区二区三区视频| av网站免费在线观看视频| 97在线人人人人妻| 婷婷色av中文字幕| 久久99热这里只频精品6学生| 亚洲av国产av综合av卡| 国产成人午夜福利电影在线观看| 免费av中文字幕在线| 男人操女人黄网站| 久久精品熟女亚洲av麻豆精品| 中文乱码字字幕精品一区二区三区| 中文欧美无线码| 老女人水多毛片| 日本91视频免费播放| 日韩,欧美,国产一区二区三区| 精品人妻偷拍中文字幕| 一区二区三区精品91| 97超视频在线观看视频| 国产男女内射视频| 久久ye,这里只有精品| 狂野欧美激情性xxxx在线观看| 精品一区二区免费观看| 交换朋友夫妻互换小说| 精品酒店卫生间| 亚洲精品,欧美精品| 亚洲欧洲精品一区二区精品久久久 | 日本爱情动作片www.在线观看| 国产综合精华液| av国产精品久久久久影院| 免费观看的影片在线观看| 久久99热6这里只有精品| 999精品在线视频| 欧美成人精品欧美一级黄| 国产精品蜜桃在线观看| 免费黄网站久久成人精品| 一个人免费看片子| 美女中出高潮动态图| 久久av网站| 国产男女超爽视频在线观看| 91久久精品电影网| 欧美日韩成人在线一区二区| 99热国产这里只有精品6| 一本色道久久久久久精品综合| 九九久久精品国产亚洲av麻豆| 又大又黄又爽视频免费| 国产成人免费观看mmmm| 亚洲国产欧美在线一区| 亚州av有码| av天堂久久9| 久久午夜综合久久蜜桃| 午夜老司机福利剧场| 国产免费一区二区三区四区乱码| 亚洲av免费高清在线观看| 青青草视频在线视频观看| 国产成人精品在线电影| 人妻少妇偷人精品九色| 久久久久久人妻| 80岁老熟妇乱子伦牲交| 少妇被粗大的猛进出69影院 | 多毛熟女@视频| 黄片播放在线免费| 亚洲综合精品二区| 国产精品久久久久成人av| 午夜老司机福利剧场| 免费日韩欧美在线观看| 免费观看性生交大片5| 91精品伊人久久大香线蕉| 欧美精品国产亚洲| 69精品国产乱码久久久| 日韩av不卡免费在线播放| 纵有疾风起免费观看全集完整版| 午夜视频国产福利| 综合色丁香网| 亚洲综合色惰| 各种免费的搞黄视频| 欧美另类一区| 少妇人妻 视频| 99热网站在线观看| 一本—道久久a久久精品蜜桃钙片| 日韩av免费高清视频| 国产黄片视频在线免费观看| 国产精品嫩草影院av在线观看| 久久久国产一区二区| 男人操女人黄网站| 亚洲av欧美aⅴ国产| 老司机影院毛片| 午夜福利在线观看免费完整高清在| 少妇被粗大的猛进出69影院 | 国产综合精华液| 亚洲av综合色区一区| 国产乱人偷精品视频| av视频免费观看在线观看| 99热这里只有精品一区| 我要看黄色一级片免费的| 高清欧美精品videossex| 韩国av在线不卡| 狠狠精品人妻久久久久久综合| 国产亚洲精品第一综合不卡 | 亚洲国产精品国产精品| 国产深夜福利视频在线观看| 国产色爽女视频免费观看| 亚洲精品乱码久久久v下载方式| 午夜影院在线不卡| 日韩欧美一区视频在线观看| 国产不卡av网站在线观看| 久久亚洲国产成人精品v| 欧美变态另类bdsm刘玥| 欧美97在线视频| 国产亚洲精品第一综合不卡 | av卡一久久| 亚洲成人手机| 最后的刺客免费高清国语| 视频中文字幕在线观看| 久久久久久伊人网av| 大陆偷拍与自拍| 久久久久国产网址| 大码成人一级视频| 久久99热6这里只有精品| 久久久久久久久久成人| 天天操日日干夜夜撸| 看非洲黑人一级黄片| 日本午夜av视频| 中文精品一卡2卡3卡4更新| 五月玫瑰六月丁香| 一级二级三级毛片免费看| 王馨瑶露胸无遮挡在线观看| 免费黄色在线免费观看| 99热这里只有精品一区| 日日啪夜夜爽| 人人妻人人爽人人添夜夜欢视频| 成年美女黄网站色视频大全免费 | 国产亚洲最大av| 免费观看无遮挡的男女| 在现免费观看毛片| 三级国产精品片| 国产欧美日韩一区二区三区在线 | a级毛片黄视频| 女性生殖器流出的白浆| 麻豆乱淫一区二区| 久久久久久久大尺度免费视频| 少妇被粗大的猛进出69影院 | 欧美精品一区二区大全| 免费大片18禁| 亚洲欧美一区二区三区国产| 久久久国产欧美日韩av| 欧美激情国产日韩精品一区| 亚洲精品美女久久av网站| 夜夜看夜夜爽夜夜摸| 一级,二级,三级黄色视频| 最黄视频免费看| 亚洲高清免费不卡视频| 免费黄网站久久成人精品| 国产成人午夜福利电影在线观看| 亚洲国产精品一区二区三区在线| 天堂中文最新版在线下载| 久久久久久久久大av| 国产亚洲欧美精品永久| 欧美 亚洲 国产 日韩一| 国产日韩欧美在线精品| 黑丝袜美女国产一区| 亚洲天堂av无毛| 老司机影院毛片| 男人操女人黄网站| 国产国拍精品亚洲av在线观看| 日日摸夜夜添夜夜爱| 在线免费观看不下载黄p国产| 曰老女人黄片| 水蜜桃什么品种好| 下体分泌物呈黄色| 少妇 在线观看| 国产亚洲一区二区精品| 亚洲国产欧美日韩在线播放| 91精品一卡2卡3卡4卡| 国产有黄有色有爽视频| 亚洲av男天堂| av卡一久久| 韩国av在线不卡| 欧美精品高潮呻吟av久久| 欧美日本中文国产一区发布| 中文天堂在线官网| 欧美人与性动交α欧美精品济南到 | 欧美激情国产日韩精品一区| 夜夜看夜夜爽夜夜摸| 免费人妻精品一区二区三区视频| 亚洲精品日韩av片在线观看| 日本vs欧美在线观看视频| 十分钟在线观看高清视频www| 日本av手机在线免费观看| 国产av国产精品国产| 嘟嘟电影网在线观看| 永久网站在线| 午夜福利视频精品| 尾随美女入室| 少妇被粗大猛烈的视频| 久久99热这里只频精品6学生| 色婷婷久久久亚洲欧美| 97精品久久久久久久久久精品| 欧美日韩av久久| 在线观看人妻少妇| 精品人妻一区二区三区麻豆| 国产成人freesex在线| 久久久久久久久久久久大奶| 97超视频在线观看视频| 久久青草综合色| 国产日韩欧美视频二区| 久久精品熟女亚洲av麻豆精品| 国产成人freesex在线| 18在线观看网站| 有码 亚洲区| 99九九线精品视频在线观看视频| 一级毛片我不卡| 精品亚洲乱码少妇综合久久| 一个人看视频在线观看www免费| 免费看av在线观看网站| 国产亚洲午夜精品一区二区久久| 插阴视频在线观看视频| 国产亚洲一区二区精品| 精品视频人人做人人爽| 欧美激情极品国产一区二区三区 | 丝袜喷水一区| 亚洲三级黄色毛片| 精品少妇黑人巨大在线播放| 国产免费一级a男人的天堂| 国产国语露脸激情在线看| 制服人妻中文乱码| 97精品久久久久久久久久精品| 国产精品99久久99久久久不卡 | 午夜91福利影院| 亚洲欧美日韩另类电影网站| 午夜福利视频在线观看免费| 欧美日韩一区二区视频在线观看视频在线| 日本vs欧美在线观看视频| 精品一区二区免费观看| 在线观看美女被高潮喷水网站| videossex国产| 少妇 在线观看| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 七月丁香在线播放| 插阴视频在线观看视频| 涩涩av久久男人的天堂| 岛国毛片在线播放| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 性色av一级| 久久久久国产网址| 国产日韩欧美在线精品| 亚洲性久久影院| 日韩人妻高清精品专区| 日韩伦理黄色片| 啦啦啦视频在线资源免费观看| 丝袜脚勾引网站| 午夜福利视频在线观看免费| 成年美女黄网站色视频大全免费 | 日韩一区二区三区影片| 黄色配什么色好看| 汤姆久久久久久久影院中文字幕| 高清av免费在线| 国产成人aa在线观看| 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 日本猛色少妇xxxxx猛交久久| 男人爽女人下面视频在线观看| 国产深夜福利视频在线观看| 免费大片黄手机在线观看| 街头女战士在线观看网站| 亚洲国产欧美在线一区| 国模一区二区三区四区视频| 老熟女久久久| 亚洲成人av在线免费| 五月玫瑰六月丁香| 青春草国产在线视频| 日韩视频在线欧美| 欧美亚洲 丝袜 人妻 在线| 天美传媒精品一区二区| 狂野欧美激情性bbbbbb| 久久婷婷青草| 亚洲精品自拍成人| 丰满乱子伦码专区| 国产高清不卡午夜福利| 久久热精品热| 91久久精品国产一区二区成人| 久久久久久久国产电影| 久久亚洲国产成人精品v| 国产免费一级a男人的天堂| 国产极品粉嫩免费观看在线 | 哪个播放器可以免费观看大片| 国产一区二区在线观看日韩| 久久精品熟女亚洲av麻豆精品| 国产乱人偷精品视频| 国产欧美亚洲国产| 日韩大片免费观看网站| 久久国内精品自在自线图片| 亚洲精品久久成人aⅴ小说 | 插逼视频在线观看| 日韩制服骚丝袜av| 国内精品宾馆在线| 亚洲成人一二三区av| 日韩成人伦理影院| 只有这里有精品99| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产欧美在线一区| 日日摸夜夜添夜夜爱| 大又大粗又爽又黄少妇毛片口| 免费人妻精品一区二区三区视频| 哪个播放器可以免费观看大片| 最后的刺客免费高清国语| 亚洲三级黄色毛片| 国产伦精品一区二区三区视频9| 简卡轻食公司| av在线老鸭窝| 简卡轻食公司| 亚洲丝袜综合中文字幕| 久久久午夜欧美精品| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看| 亚洲国产精品专区欧美| 亚洲国产色片| 中国国产av一级| 人妻系列 视频| 亚洲人成网站在线观看播放| 国产av码专区亚洲av| 十分钟在线观看高清视频www| 久久精品久久精品一区二区三区| 91精品国产九色| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 亚洲四区av| h视频一区二区三区| 久久99一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 午夜老司机福利剧场| 91成人精品电影| 亚洲激情五月婷婷啪啪| 亚洲成人手机| 日韩视频在线欧美| 久久久久久久久久久久大奶| √禁漫天堂资源中文www| 99热全是精品| 伊人久久精品亚洲午夜| freevideosex欧美| 十分钟在线观看高清视频www| 最近手机中文字幕大全| 国产无遮挡羞羞视频在线观看| 亚洲在久久综合| 亚洲精品国产色婷婷电影| 欧美3d第一页| 黄色一级大片看看| 亚洲国产av影院在线观看| 国产黄片视频在线免费观看| 成年av动漫网址| 肉色欧美久久久久久久蜜桃| 大香蕉久久成人网| 亚洲美女视频黄频| 王馨瑶露胸无遮挡在线观看| 老女人水多毛片| 天天躁夜夜躁狠狠久久av| 国产av国产精品国产| 日韩,欧美,国产一区二区三区| 日韩强制内射视频| 黄色欧美视频在线观看| 少妇丰满av| 2018国产大陆天天弄谢| 亚洲国产精品成人久久小说| 亚洲精品一二三| 少妇人妻 视频| 国产精品久久久久久精品电影小说| 亚洲第一av免费看| 日本免费在线观看一区| 亚洲精品国产色婷婷电影| 欧美成人午夜免费资源| 日韩一本色道免费dvd| 国产精品99久久99久久久不卡 | 最近2019中文字幕mv第一页| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 久久韩国三级中文字幕| 老司机影院成人| 岛国毛片在线播放| 爱豆传媒免费全集在线观看| 免费观看性生交大片5| 国产乱人偷精品视频| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 亚洲av成人精品一二三区| 乱码一卡2卡4卡精品| 又粗又硬又长又爽又黄的视频| 日韩精品免费视频一区二区三区 | av有码第一页| 最近最新中文字幕免费大全7| 丝袜美足系列| 亚洲第一av免费看| 国产永久视频网站| 女性被躁到高潮视频| www.av在线官网国产| 在线观看三级黄色| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 国产免费一区二区三区四区乱码| 亚洲在久久综合| 久久午夜综合久久蜜桃| 十八禁高潮呻吟视频| 国产成人91sexporn| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 日本欧美视频一区| 国产一区亚洲一区在线观看| 午夜福利视频在线观看免费| 一区二区av电影网| 婷婷色av中文字幕| 国产在线免费精品| 有码 亚洲区| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 成人国产av品久久久| 久久久国产欧美日韩av| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av涩爱| 啦啦啦视频在线资源免费观看| 美女脱内裤让男人舔精品视频| av国产精品久久久久影院| av网站免费在线观看视频| 亚洲激情五月婷婷啪啪| 国产亚洲精品久久久com| 久久国产精品大桥未久av| 天美传媒精品一区二区| 久久毛片免费看一区二区三区| 亚洲国产av影院在线观看| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 青春草亚洲视频在线观看| 午夜免费男女啪啪视频观看| 欧美bdsm另类| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| 亚洲欧洲日产国产| 一边摸一边做爽爽视频免费| 亚洲无线观看免费| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 色视频在线一区二区三区| 一本一本综合久久| 日韩精品免费视频一区二区三区 | 亚洲熟女精品中文字幕| 亚洲精品国产色婷婷电影| 日韩电影二区| 亚洲国产精品专区欧美| 美女视频免费永久观看网站| 亚洲在久久综合| 桃花免费在线播放| 欧美3d第一页| 天堂中文最新版在线下载| 高清不卡的av网站| 精品酒店卫生间| 97在线视频观看| 大又大粗又爽又黄少妇毛片口| 国产亚洲欧美精品永久| 日本91视频免费播放| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 欧美bdsm另类| 久久久久久久大尺度免费视频| 日本av免费视频播放| 国产成人aa在线观看| 99国产精品免费福利视频| 亚洲av男天堂| 一级二级三级毛片免费看| 精品人妻一区二区三区麻豆| 日韩伦理黄色片| av天堂久久9| 狠狠精品人妻久久久久久综合| 天天操日日干夜夜撸| 国产 精品1| 午夜日本视频在线| 国产精品一二三区在线看| 国产午夜精品久久久久久一区二区三区| 欧美丝袜亚洲另类| 日本色播在线视频| 热re99久久精品国产66热6| 亚洲av中文av极速乱| av卡一久久| 国产一区二区三区综合在线观看 | 精品国产一区二区三区久久久樱花| 欧美日韩在线观看h| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 亚洲怡红院男人天堂| 国产精品久久久久久久久免| 亚洲精品乱久久久久久| 伦精品一区二区三区| 中文字幕精品免费在线观看视频 | 最新中文字幕久久久久| 亚洲五月色婷婷综合| 男的添女的下面高潮视频| 国产 精品1| 99视频精品全部免费 在线| 日韩成人av中文字幕在线观看| 亚洲丝袜综合中文字幕| 免费观看a级毛片全部| 中文乱码字字幕精品一区二区三区| 亚洲精品美女久久av网站| 欧美性感艳星| 在线观看免费视频网站a站| 免费不卡的大黄色大毛片视频在线观看| 乱码一卡2卡4卡精品| 黑人高潮一二区| 国产又色又爽无遮挡免| 欧美性感艳星| 不卡视频在线观看欧美| 免费大片18禁| 国产白丝娇喘喷水9色精品| 黄色毛片三级朝国网站| 久久久久久久久久久免费av| 亚洲美女黄色视频免费看| 免费黄色在线免费观看| 亚洲国产精品一区二区三区在线| 97在线视频观看| av在线老鸭窝| 日日撸夜夜添| 中文字幕制服av| 成人毛片a级毛片在线播放| 国产综合精华液| 亚洲在久久综合| av在线播放精品| 国产精品久久久久久久电影| 春色校园在线视频观看| 久久久久久久久久久久大奶| 人人妻人人澡人人看| 免费日韩欧美在线观看| 中文字幕久久专区| 综合色丁香网| 欧美另类一区| 午夜福利,免费看| 国产成人a∨麻豆精品| 久久国产精品大桥未久av| 午夜老司机福利剧场| 国产精品一区二区三区四区免费观看| 热re99久久国产66热| 91精品三级在线观看| 亚洲国产精品一区三区| 91精品三级在线观看| 亚洲高清免费不卡视频| 美女中出高潮动态图| 99精国产麻豆久久婷婷| 一本大道久久a久久精品| 天天躁夜夜躁狠狠久久av| 欧美3d第一页| 国产精品成人在线| 中文字幕亚洲精品专区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品麻豆人妻色哟哟久久| 日韩不卡一区二区三区视频在线| 一边摸一边做爽爽视频免费| 免费人妻精品一区二区三区视频| 国产视频内射| 免费人妻精品一区二区三区视频| 中文字幕亚洲精品专区| 精品久久久久久电影网| 久久久a久久爽久久v久久| 欧美精品国产亚洲| 中国美白少妇内射xxxbb| 一区二区三区四区激情视频| 久久国产精品大桥未久av| 春色校园在线视频观看| 国产永久视频网站| 国产一级毛片在线| 精品一区二区免费观看| 欧美激情国产日韩精品一区| 九色亚洲精品在线播放|