• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation

    2022-02-24 09:38:12WenjieYang楊文杰
    Chinese Physics B 2022年2期

    Wenjie Yang(楊文杰)

    School of Science,Xuchang University,Xuchang 461000,China

    Rank-1 attractors play a vital role in biological systems and the circuit systems.In this paper,we consider a periodically kicked Chua model with two delays in a circuit system.We first analyze the local stability of the equilibria of the Chua system and obtain the existence conditions of supercritical Hopf bifurcations.Then,we derive some explicit formulas about Hopf bifurcation, which could help us find the form of Hopf bifurcation and the stability of bifurcating period solutions through the Hassards method.Also,we show that rank-1 chaos occurs when the Chua model with two delays undergoes a supercritical Hopf bifurcation and encounters a periodic kick,which shows the effect of two delays on the circuit system.Finally,we illustrate the theoretical analysis by simulations and try to explain the mechanism of delay in our system.

    Keywords: rank one chaos,periodically kicked Chua model,time delay

    1.Introduction

    Research of chaos is a challenge in theory of nonlinear dynamical systems, especially, analyses of the global bifurcations and chaotic dynamics[1]and multi-pulse chaotic dynamics.[2]Moreover, more complex chaos attractors, such as hidden attractors, rank-1 attractors have been studied recently.For example, a rapidly growing number of studies have been published, in which hidden chaotic attractors are shown in some systems, including a single equilibrium,[3,4]stable equilibria,[5,6]as well as other systems.[7,8]Wang and Young[9]illustrated the existence of rank-1 attractors when only one direction of instability and certain external force exist,and they obtained the dual property of occurring naturally of a class of strange attractors.[10]Then Chen and Han found that a periodically kicked planar system with heteroclinic cycle having rank-1 strange attractors.[11]Also,Yanget al.proposed the rank-1 chaotic theory to solve the chaotic behavior of delayed systems,and they obtained some conditions for rank-1 chaos in a periodically kicked system.[12]

    The Chua model is a well-known model to investigate the bifurcation and chaos, which has attracted more attention in recent years.[13]Tsafack and Kengne[15]pointed out that the Chua model is more flexible to show the rich dynamics behaviors.Meanwhile, Ozkaynak[16]developed a fractional-order chaotic Chua model and proved that it is crucial for the practical application of fractional-order chaotic systems.Yuet al.[17]considered some phenomena observed in a Chua system with multiple delays.

    Mathematical modeling is a vital tool to study different systems and is often used to explain some novel phenomena.[18–21]Meanwhile, the concept of rank-1 attractors is used to illustrate some mechanisms and plays a vital role in biological systems and circuit systems.However, the Chua model with two delays has been seldom investigated in theory.To show the effect of two delays and a periodic kick on the Chua model, we consider a periodically kicked Chua model with two delays in a circuit system.We first analyze the local stability of the equilibria of the Chua system and obtain the existence conditions of supercritical Hopf bifurcations.Then,we derive some explicit formulas about Hopf bifurcation,which could help us find the form of Hopf bifurcation and the stability of bifurcating period solutions through the Hassards method.Also,we show that rank-1 chaos occurs when the Chua model with two delays undergoes a supercritical Hopf bifurcation and encounters a periodic kick, which shows the effect of two delays on the circuit system.Finally,we illustrate the theoretical analysis by simulations and try to explain the mechanism of delay in our system.

    2.Analysis of Hopf bifurcation and rank-1 chaos in Chua model with two delays

    In Ref.[20], Wang considered rank-1 chaos of the Chua model as follows:

    To investigate the rank-1 attractor in the Chua system with both delays and periodically kick, we add time delays τ1,τ2to Eq.(1),and obtain the following form:

    wherea,b,c,d,τ1,τ2∈R,and τ1,τ2≥0 are time delays foryandz,respectively.The undisturbed system is

    In this section, we consider system (3).It always has equilibrium,i=1,2,3,where

    LetE?=(x?,y?,z?) denote the arbitrary equilibrium,=x(t)?x?,=y(t)?y?,=z(t)?z?, still written,asx(t),y(t),z(t), respectively, then the linearized system atE?is

    whereu(t)=[x(t),y(t),z(t)]T,and

    Then we think about the following three kinds of circumstances.

    I.E?=.

    The characteristic equation of(4)is

    where α1=ac+1,α2=ac?a+b,α3=abc.In order to study the distribution of roots of the transcendental Eq.(5),we need to use the Corollary 2.4 of Ruan and Wei.[24]As Eq.(4) has two time delays τ1and τ2,we consider the following six cases.

    Case 1:τ1=τ2=0,Eq.(5)becomes

    The Routh–Hurwitz criterion implies if

    (H1) α1>0,α3>0,and α1(α2?b)+b>0.

    Then all roots of Eq.(5)have negative real parts.Namely,the equilibrium pointis locally asymptotically stable when the condition(H1)is satisfied.

    Case 2:τ1>0,τ2=0,Eq.(5)becomes

    Suppose that iω1(ω1>0) is a root of Eq.(7) in the imaginary axis.Substituting it to Eq.(7)and separating the real and imaginary parts,we have

    which is equivalent to

    SinceG(0)=<0,G(+∞)=+∞,we can obtain that Eq.(10)has at least one positive root sincee13<0.

    According to the lemma in Ref.[23], we can investigate the distribution of the roots of Eq.(7).Sincee13<0,for the polynomial Eq.(7), we can obtain that all roots with positive real parts of Eq.(7)have the same sum to those of the polynomial Eq.(6)for τ1∈[0,τ10).

    According to Eqs.(10)–(12),we have

    According to the above derivation,we can obtain the following theorems.

    Theorem 1Suppose that(H1)holds,

    (i) when τ1∈[0,τ10), thenof system (3) is locally asymptotically stable,

    (ii)when τ1>τ10,of system(3)is unstable,

    (iii)when τ1=τ10,the system(3)exhibits Hopf bifurcation.

    Case 3τ2>0,τ1=0.

    The calculation is similar to case 2,so we have

    Theorem 2Suppose that(H1)holds,

    (i) when τ2∈[0,τ20), thenof system (3) is locally asymptotically stable,

    (ii)when τ2>τ20,of system(3)is unstable,

    (iii) when τ2=τ20, the system (3) exhibits Hopf bifurcation, where τ20is the minimum critical value of τ2for the occurrence of Hopf bifurcation when τ1=0.

    Case 4τ1=τ2/=0.

    Theorem 3Suppose that(H1)holds,

    (i)when τ1∈[0,τ30),of system(3)is locally asymptotically stable,

    (ii)when τ1>τ30,of system(3)is unstable,

    (iii)when τ1=τ30,the system(3)exhibits Hopf bifurcation.

    Case 5τ1>0,τ2∈[0,τ20)and τ1/=τ2.

    We consider Eq.(5)with τ2∈[0,τ20),and τ1is regarded as the parameter.Let iω5(ω5>0)be the root of Eq.(5),then we can obtain

    From Eq.(13),we can reach

    Now we make the following assumption and get the main conclusions.

    (H2): Eq.(14)has at least finite positive root.

    Suppose that(H2)holds, we denote the positive roots of Eq.(14)as ω5k(k=1,2,3,4,5,6).For every ω5k, the corresponding critical value of(j=1,2,3)is

    Then we differentiate two sides of Eq.(5)with respect to τ1to verify the transversality condition.Taking the derivative of λ of τ1in Eq.(5)and substituting λ =iω50,we have

    which leads to

    where

    Therefore,if the following condition holds

    (H3)AC+BD/=0,

    Theorem 4For system (3), τ1> 0, τ2∈[0,τ20) and τ1/=τ2.Suppose that the conditions(H2)and(H3)hold,then

    (i)when τ1∈[0,τ50),of system(3)is locally asymptotically stable,

    (ii)when τ1>τ50,of system(3)is unstable,

    (iii)when τ1=τ50,the system(3)exhibits Hopf bifurcation.

    Case 6τ2>0,τ1∈[0,τ10)and τ1/=τ2.

    We consider Eq.(5)with τ1∈[0,τ10),and take τ2as the parameter.The calculation is similar to case 5,so we can get the following results.

    Theorem 5For system (3), τ2> 0, τ1∈[0,τ10) and τ2/=τ1.

    (i)when τ2∈[0,τ60),of system(3)is locally asymptotically stable,

    (ii)when τ2>τ60,of system(3)is unstable,

    (iii) when τ2=τ60, the system (3) exhibits Hopf bifurcation, where τ60is the minimum critical value of τ2for the occurrence of Hopf bifurcation when τ1∈[0,τ10).

    II.E?=,or.

    WhenE?=, or, the coefficients of Eq.(5) are α1=1 ?2ac, α2=?2ac?a, β1=?2ac.Under the condition (H1), Eq.(5) has at least one positive real root, soandare unstable equilibria.

    3.Hopf bifurcation and rank-1 chaos of the delayed system

    According to the above analysis, system (3) undergoes Hopf bifurcation for different τ1,τ2.Now,we apply Hassard’s method,[24]to study Hopf bifurcation of system (3) with respect to εPTx(t), τ1, τ2∈[0,τ20).Then we apply the rank-1 chaos theory to the delayed system,[12]to research the Chua model(3)with two delays and periodically kick εPT.Let τ1=τ50+μ,μ ∈R,t=sτ1,x(sτ1)=,denotex=andt=s,then system(3)with εPTx(t)(i.e.,Eq.(2))can be written as a functional differential equation(FDE)inC=C([?1,0],R3):

    whereu(t)=(x(t),y(t),z(t))T∈C, andut(θ)=u(t+θ)=(x(t+θ),y(t+θ),z(t+θ))T∈CandLμ:C→R3,F:R×C→R3are given by

    whereA,B1,B2are as in Eq.(4), and by the Riesz representation theorem,there is a 3×3 matrix function η(θ,μ)of bounded variation for θ ∈[?1,0],such thatLμφ as the form

    In fact,we can choose

    Then write Eq.(2)as

    where

    and

    For φ ∈C([?1,0],(R3)?), where (R3)?is the 3-dimensional space of row vectors,andA?is adjoint operator ofA(0):For φ ∈C([?1,0],R3),φ ∈C([?1,0],(R3)?),and the bilinear form where η(θ)=η(θ,0),A=A(0)andA?are adjoint operators.We have±iω50τ50that are eigenvalues ofA(0)andA?.

    Assume thatq(θ)is the eigenvector ofA(0)corresponding to iω50τ50, thenA(0)q(θ)=iω50τ50q(θ).According to the definition ofA(0),we can reach

    Thus,we haveq(θ)=,where

    Similarly, we haveq?(s)=that is the eigenvector to the eigenvalue ?iω50τ50ofA?, which is the adjoint operator ofA(0),where

    Therefore,we have

    where

    such that=1,=0.

    Then we have the coordinates to describe the center manifoldC0at τ =τ50.

    Notice thatut(θ)=(xt(θ),yt(θ),zt(θ))T=zq(θ)++W(t,θ),then we can obtain

    Thus,from Eq.(15)we have

    We can obtain

    and

    which determine the stability and bifurcation direction of periodic solutions at the critical value τ50, i.e., μ2determines the directions of a Hopf bifurcation: if Re{λ′(τ50)} > 0,μ2> 0 (resp.μ2< 0), then the Hopf bifurcation is supercritical (resp.subcritical) and the periodic solution exist for τ >τ50(τ <τ50).Here,β2determines the stability of the bifurcation periodic solutions: the bifurcating periodic solutions are stable (unstable) if β2<0 (β2>0).We can also obtain Re(k1(0))and Im(k1(0))as follows:

    4.Numerical simulations

    In this section, we consider the following particular example of system(2):

    It is easy to see that(H1)holds,for τ1>0,τ2=0,we have ω10≈1.3128,τ10≈0.485.By Theorem 1,we can obtain thatE?is asymptotically stable when τ1∈[0,τ10),when τ1passes through τ10,E?will lose its stability,and Hopf bifurcation occurs.We can also obtaink1(0)≈?0.0457+2.3334i,μ2≈0.0431,β2≈?0.0914, so the bifurcation is supercritical and the stable periodic solution emerges fromE?,see Figs.1 and 2.

    Fig.1.The trajectories and phase graphs of system (16) with ε =0,τ1 =0.4, τ2 =0. E?becomes unstable, and a stable periodic solution bifurcates from the equilibrium E?.

    Fig.2.The trajectories and phase graphs of system (16) with ε =0,τ1=0.485,τ2=0. E?become unstable,and a stable periodic solution bifurcates from the equilibrium E?.

    Fig.3.The trajectories and phase graphs of system (16) with ε =0,τ1 =0, τ2 =0.3. E?becomes unstable, and a stable periodic solution bifurcates from the equilibrium E?.

    Fig.4.The trajectories and phase graphs of system (16) with ε =0,τ1=0,τ2=0.36. E?becomes unstable,and a stable periodic solution bifurcates from the equilibrium E?.

    Similarly,for τ1=0,τ2>0,we have ω20≈1.1271,τ20≈0.3619,from Theorem 2,we can realize thatE?is asymptotically stable when τ2∈[0,τ20).When τ2passes through τ20,E?will lose its stability and Hopf bifurcation emerges,see Figs.3 and 4.For τ1=τ2?τ3/=0,we can obtain ω30≈1.6186 and τ30≈1.8446.

    For τ1>0,τ2=0.33 ∈[0,τ20), we have obtain ω50≈1.1554,τ50≈0.02.By Theorem 4,E?is asymptotically stable when τ1∈[0,τ50).When τ1>τ50the steady state becomes unstable and the sustained oscillations occur.The bifurcation diagram of the system (16) forxis shown in Fig.5, where the control parameter is time delay τ1.At low values of τ1,the system reaches a stable steady state.With the increase of τ1, bifurcation occurs τ1≥0.02.We choose τ1=0.02, after the computation, we havek1(0)≈?0.0249 ?0.0042i,μ2≈0.0125,β2≈?0.0498,we know that the bifurcation is supercritical and the stable periodic solution emerges fromE?,see Figs.6 and 7.

    Fig.5.The bifurcation diagram of the system(16)for x.

    Fig.6.The trajectories and phase graphs of system (16) with ε =0,τ1 =0.011,τ2 =0.33. E?becomes unstable,and a stable periodic solution bifurcates from the equilibrium E?.

    For all θ such that φ′(θ)=0,φ′′(θ)/=0, we can realize that φ(θ) is a Morse function (see Fig.8), meanwhile,E(0) .=0.0249>0,|F(0)/E(0)|.=0.1686.Then we chooseT= 6897, which is quite “l(fā)arge” to afford us a long relaxation period between consecutive kicks of the external force.In Figs.9–11 we present a rank-1 attractor at(ε,T)=(0.73,6897),(0.73,7183),(0.93,7183) when τ1=0.02,τ2=0.33.The results of our numerical simulations well confirm the previous rank-1 theory.

    Fig.7.The trajectories and phase graphs of system (16) with ε =0,τ1=0.02,τ2=0.33. E?becomes unstable,and a stable periodic solution bifurcates from the equilibrium E?.

    Fig.8.The graphs of φ′(θ)and φ′′(θ).

    Fig.9.The trajectories and phase graphs of system(16)with T =6897,ε =0.73,τ1=0.02,τ2=0.33.A rank-1 strange attractor occurs.

    Fig.10.The trajectories and phase graphs of system (16) with T =7183,ε=0.73,τ1=0.02,τ2=0.33.A rank-1 strange attractor occurs.

    Fig.11.The trajectories and phase graphs of system (16) with T =7183,ε=0.93,τ1=0.02,τ2=0.33.A rank-1 strange attractor occurs.

    5.Conclusion

    In summary,we have studied two-delayed Chua models.We first analyze the local stability of the system equilibria and the existence of Hopf bifurcations, and obtain the conditions that locally asymptotically stable, unstable, Hopf bifurcations occur on bases of τ1and τ2.Then we obtain some explicit formulas about Hopf bifurcation, find that μ2determines the directions of Hopf bifurcation, and β2determines the stability of the bifurcation periodic solutions.Also, we show that rank-1 chaos occurs when our Chua model with two delays undergoes a supercritical Hopf bifurcation and encounters an external periodic force,namely,suppose that φ(θ)is a Morse function and Re(k1(0))<0,rank-1 chaos occurs when>K2.Finally,we illustrate the theoretical analysis by numerical simulations.Our theoretical analysis is verified by numerical simulations,which may be a novel phenomenon to explain mechanisms of some circuits.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos.11772291 and 12002297), Youth Talent Support Project of Henan, China(Grant No.2020HYTP012),Basic Research Project of Universities in Henan Province,China(Grant No.21zx009),Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.22HASTIT018).

    日韩欧美三级三区| 国产又色又爽无遮挡免费看| 亚洲国产看品久久| 国产免费av片在线观看野外av| av欧美777| 午夜视频精品福利| 午夜成年电影在线免费观看| 久久久久九九精品影院| 男人的好看免费观看在线视频| 特大巨黑吊av在线直播| 又黄又爽又免费观看的视频| 此物有八面人人有两片| 久久久精品欧美日韩精品| 美女cb高潮喷水在线观看 | 99久久久亚洲精品蜜臀av| 亚洲激情在线av| 老鸭窝网址在线观看| 国产69精品久久久久777片 | 日韩高清综合在线| 最新美女视频免费是黄的| 白带黄色成豆腐渣| 丁香欧美五月| 69av精品久久久久久| 成年女人毛片免费观看观看9| 99国产精品99久久久久| 婷婷精品国产亚洲av在线| 美女高潮喷水抽搐中文字幕| 成年人黄色毛片网站| 美女扒开内裤让男人捅视频| 99精品久久久久人妻精品| 九九热线精品视视频播放| 日韩免费av在线播放| 丁香欧美五月| 一进一出好大好爽视频| 亚洲国产欧美人成| 男女之事视频高清在线观看| а√天堂www在线а√下载| 精品一区二区三区四区五区乱码| 国产激情偷乱视频一区二区| 亚洲中文字幕日韩| 一进一出好大好爽视频| 后天国语完整版免费观看| 亚洲第一电影网av| 午夜福利在线观看免费完整高清在 | 免费看美女性在线毛片视频| 在线免费观看不下载黄p国产 | 亚洲无线在线观看| 波多野结衣高清作品| 久久久久久大精品| 69av精品久久久久久| 美女高潮的动态| 看黄色毛片网站| 亚洲欧美精品综合一区二区三区| 色老头精品视频在线观看| 我的老师免费观看完整版| 欧美在线黄色| 性色av乱码一区二区三区2| 午夜激情福利司机影院| 成人一区二区视频在线观看| 变态另类成人亚洲欧美熟女| 久久久成人免费电影| 亚洲国产精品成人综合色| 免费在线观看亚洲国产| 国产精品美女特级片免费视频播放器 | 亚洲精品美女久久久久99蜜臀| 草草在线视频免费看| 99在线人妻在线中文字幕| 男女之事视频高清在线观看| 国产成人影院久久av| 日本黄色片子视频| 搡老熟女国产l中国老女人| 最好的美女福利视频网| 欧美性猛交黑人性爽| 美女黄网站色视频| 国产免费男女视频| 99久久成人亚洲精品观看| 国产美女午夜福利| 香蕉国产在线看| 国产成人精品久久二区二区91| 黄频高清免费视频| 一夜夜www| 久久婷婷人人爽人人干人人爱| 亚洲美女黄片视频| 香蕉av资源在线| 美女高潮喷水抽搐中文字幕| 香蕉av资源在线| 久久久久久人人人人人| 欧美乱码精品一区二区三区| 脱女人内裤的视频| 久久久久久久久中文| 国产午夜精品论理片| 无限看片的www在线观看| 欧美日韩国产亚洲二区| 免费一级毛片在线播放高清视频| 国产av不卡久久| 国产精品一区二区精品视频观看| 国产激情欧美一区二区| 精品熟女少妇八av免费久了| 1024手机看黄色片| 别揉我奶头~嗯~啊~动态视频| 51午夜福利影视在线观看| а√天堂www在线а√下载| 热99re8久久精品国产| 欧美一级a爱片免费观看看| 久久久久国产精品人妻aⅴ院| 村上凉子中文字幕在线| 国产精品女同一区二区软件 | 久久久色成人| av黄色大香蕉| 精品国产亚洲在线| www.999成人在线观看| www.www免费av| 午夜精品一区二区三区免费看| 亚洲成人久久性| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 欧美日韩国产亚洲二区| 少妇丰满av| 黄频高清免费视频| 校园春色视频在线观看| 嫩草影院入口| 国产成人精品无人区| 亚洲九九香蕉| 国产在线精品亚洲第一网站| 真实男女啪啪啪动态图| 在线播放国产精品三级| 蜜桃久久精品国产亚洲av| 观看免费一级毛片| 麻豆一二三区av精品| 久久伊人香网站| 成人欧美大片| 亚洲午夜精品一区,二区,三区| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀| 久久久久久久午夜电影| 国产精品综合久久久久久久免费| 免费在线观看亚洲国产| 麻豆国产av国片精品| 桃色一区二区三区在线观看| 久久久精品大字幕| 国产又色又爽无遮挡免费看| 身体一侧抽搐| 综合色av麻豆| 成年女人毛片免费观看观看9| 一区二区三区国产精品乱码| 超碰成人久久| 午夜福利成人在线免费观看| 一级毛片女人18水好多| 夜夜看夜夜爽夜夜摸| 成人三级黄色视频| 久久久国产精品麻豆| 色精品久久人妻99蜜桃| 99热这里只有精品一区 | 白带黄色成豆腐渣| 一个人观看的视频www高清免费观看 | 欧美丝袜亚洲另类 | 亚洲中文字幕一区二区三区有码在线看 | 99久久无色码亚洲精品果冻| 国产精品久久电影中文字幕| 欧美日韩精品网址| 国产精品一区二区三区四区久久| 后天国语完整版免费观看| 青草久久国产| 久久中文字幕一级| 国产精品日韩av在线免费观看| 最近最新中文字幕大全免费视频| 久久久久九九精品影院| 久久久国产成人精品二区| 最近最新中文字幕大全免费视频| 91在线精品国自产拍蜜月 | 久久久久久人人人人人| 久久精品91蜜桃| 午夜免费成人在线视频| 午夜福利欧美成人| 最近最新中文字幕大全免费视频| 真人做人爱边吃奶动态| 久久久国产欧美日韩av| 18美女黄网站色大片免费观看| 国产精品永久免费网站| 欧美日韩黄片免| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲国产一区二区在线观看| 午夜两性在线视频| 久久久久久久午夜电影| 免费在线观看成人毛片| 亚洲av成人一区二区三| 老汉色∧v一级毛片| 亚洲美女视频黄频| 国模一区二区三区四区视频 | 色哟哟哟哟哟哟| 久久久水蜜桃国产精品网| 亚洲人成电影免费在线| 成人永久免费在线观看视频| 一区福利在线观看| 亚洲国产色片| 久久精品亚洲精品国产色婷小说| 亚洲国产精品999在线| 免费观看的影片在线观看| 亚洲在线观看片| 午夜免费成人在线视频| 男女视频在线观看网站免费| 成人精品一区二区免费| 国产精品香港三级国产av潘金莲| 亚洲欧美日韩卡通动漫| 亚洲成av人片在线播放无| 男女午夜视频在线观看| 99在线视频只有这里精品首页| 观看免费一级毛片| 男人舔女人下体高潮全视频| 在线免费观看不下载黄p国产 | 香蕉av资源在线| 91麻豆精品激情在线观看国产| 国产在线精品亚洲第一网站| av在线蜜桃| 国产激情偷乱视频一区二区| 成人欧美大片| 欧美日韩精品网址| 美女免费视频网站| 国产伦人伦偷精品视频| 一级作爱视频免费观看| 91在线观看av| 久久精品国产清高在天天线| АⅤ资源中文在线天堂| 国产精品一区二区精品视频观看| 日韩 欧美 亚洲 中文字幕| 亚洲av片天天在线观看| 黑人巨大精品欧美一区二区mp4| 99久久久亚洲精品蜜臀av| 精品人妻1区二区| 久久人人精品亚洲av| 99精品欧美一区二区三区四区| 偷拍熟女少妇极品色| 精品日产1卡2卡| 亚洲成人久久爱视频| 午夜福利成人在线免费观看| 精品日产1卡2卡| 亚洲 欧美一区二区三区| 亚洲国产精品合色在线| 天堂影院成人在线观看| av天堂中文字幕网| 亚洲色图av天堂| 色综合亚洲欧美另类图片| 国产成人精品无人区| 在线播放国产精品三级| 精品国产亚洲在线| 琪琪午夜伦伦电影理论片6080| 国产成人aa在线观看| 一级黄色大片毛片| 男女床上黄色一级片免费看| 精品一区二区三区四区五区乱码| 日韩中文字幕欧美一区二区| 亚洲,欧美精品.| 久久草成人影院| 小说图片视频综合网站| 99久久精品热视频| 成年女人毛片免费观看观看9| av天堂中文字幕网| 成年女人永久免费观看视频| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 免费观看的影片在线观看| 免费观看精品视频网站| 久久久久久九九精品二区国产| 日本 欧美在线| 久久人妻av系列| 亚洲中文字幕日韩| 啪啪无遮挡十八禁网站| 一本精品99久久精品77| 亚洲国产看品久久| 99国产精品一区二区蜜桃av| 中文资源天堂在线| 国产午夜精品久久久久久| 成熟少妇高潮喷水视频| av天堂在线播放| 少妇裸体淫交视频免费看高清| 18禁黄网站禁片午夜丰满| 国产毛片a区久久久久| 亚洲成人免费电影在线观看| h日本视频在线播放| 国产野战对白在线观看| 亚洲美女黄片视频| 午夜亚洲福利在线播放| 久久性视频一级片| 国产精品亚洲av一区麻豆| 久久精品国产综合久久久| 国产一级毛片七仙女欲春2| 啪啪无遮挡十八禁网站| 亚洲国产精品久久男人天堂| 在线a可以看的网站| 日本a在线网址| 精品日产1卡2卡| 国产av在哪里看| 免费大片18禁| 少妇的逼水好多| 亚洲 欧美 日韩 在线 免费| 他把我摸到了高潮在线观看| 国产激情久久老熟女| 老熟妇乱子伦视频在线观看| 亚洲av熟女| 性色avwww在线观看| 99久久精品一区二区三区| 岛国视频午夜一区免费看| 可以在线观看的亚洲视频| 日本成人三级电影网站| 一个人免费在线观看的高清视频| 欧美一级a爱片免费观看看| 亚洲真实伦在线观看| 97超视频在线观看视频| 国产高清videossex| 又紧又爽又黄一区二区| 19禁男女啪啪无遮挡网站| 亚洲人成网站高清观看| 日本免费一区二区三区高清不卡| a在线观看视频网站| 免费观看精品视频网站| 亚洲av免费在线观看| 老司机午夜福利在线观看视频| 国产午夜福利久久久久久| 一夜夜www| 日韩有码中文字幕| 久久久久久人人人人人| av视频在线观看入口| 又黄又粗又硬又大视频| 床上黄色一级片| 久久久久久久久免费视频了| 久久精品夜夜夜夜夜久久蜜豆| 成人鲁丝片一二三区免费| 欧美日韩综合久久久久久 | 99久久99久久久精品蜜桃| 变态另类丝袜制服| 狂野欧美白嫩少妇大欣赏| 韩国av一区二区三区四区| 床上黄色一级片| 午夜精品久久久久久毛片777| 窝窝影院91人妻| 丰满人妻一区二区三区视频av | 制服丝袜大香蕉在线| 特大巨黑吊av在线直播| 日韩 欧美 亚洲 中文字幕| 亚洲人成伊人成综合网2020| 精品电影一区二区在线| 18禁裸乳无遮挡免费网站照片| 久久人妻av系列| 亚洲激情在线av| 精品无人区乱码1区二区| 国产乱人视频| 九九久久精品国产亚洲av麻豆 | 亚洲人与动物交配视频| 哪里可以看免费的av片| 91麻豆精品激情在线观看国产| 久久久水蜜桃国产精品网| av女优亚洲男人天堂 | 亚洲成人久久性| 男女视频在线观看网站免费| 99精品在免费线老司机午夜| 一a级毛片在线观看| 日本免费a在线| aaaaa片日本免费| 欧美黑人欧美精品刺激| 国产黄色小视频在线观看| 97超级碰碰碰精品色视频在线观看| 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 男女那种视频在线观看| a在线观看视频网站| 人人妻人人看人人澡| 日韩欧美一区二区三区在线观看| 69av精品久久久久久| 免费在线观看日本一区| 精品福利观看| 成人精品一区二区免费| 中文亚洲av片在线观看爽| 久久精品国产亚洲av香蕉五月| 免费看十八禁软件| 成年女人毛片免费观看观看9| 亚洲精品在线美女| 悠悠久久av| 18禁美女被吸乳视频| 午夜免费激情av| 亚洲av电影不卡..在线观看| 每晚都被弄得嗷嗷叫到高潮| 一进一出抽搐gif免费好疼| 国产精品亚洲一级av第二区| 久久久久久久久久黄片| 黄色视频,在线免费观看| 国产精品亚洲av一区麻豆| 亚洲男人的天堂狠狠| 免费观看精品视频网站| 香蕉av资源在线| 麻豆成人午夜福利视频| 成人三级做爰电影| 国产野战对白在线观看| cao死你这个sao货| 超碰成人久久| 综合色av麻豆| 九色国产91popny在线| 国产精品久久久av美女十八| 午夜激情福利司机影院| 日本免费一区二区三区高清不卡| a级毛片在线看网站| 搞女人的毛片| 亚洲精品粉嫩美女一区| 成人18禁在线播放| 亚洲成人久久性| 夜夜爽天天搞| 91九色精品人成在线观看| 亚洲18禁久久av| 成熟少妇高潮喷水视频| 我的老师免费观看完整版| 久久天躁狠狠躁夜夜2o2o| 亚洲成av人片在线播放无| www.999成人在线观看| 狂野欧美激情性xxxx| 变态另类成人亚洲欧美熟女| 制服丝袜大香蕉在线| 成人永久免费在线观看视频| 久久香蕉国产精品| 校园春色视频在线观看| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 国内精品美女久久久久久| 久久午夜亚洲精品久久| 亚洲专区国产一区二区| 一个人观看的视频www高清免费观看 | 亚洲人成伊人成综合网2020| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产精品成人综合色| 搞女人的毛片| 亚洲精品国产精品久久久不卡| 亚洲人成网站高清观看| 精品乱码久久久久久99久播| 特大巨黑吊av在线直播| 国产三级中文精品| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 久久亚洲真实| 无限看片的www在线观看| 国产一区二区激情短视频| aaaaa片日本免费| 999精品在线视频| 日韩高清综合在线| 免费av不卡在线播放| 婷婷六月久久综合丁香| 在线观看免费午夜福利视频| 久久午夜综合久久蜜桃| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 国产精品久久视频播放| 亚洲一区二区三区不卡视频| 十八禁网站免费在线| 中文在线观看免费www的网站| 18禁黄网站禁片免费观看直播| 一进一出抽搐动态| 97碰自拍视频| 黄色片一级片一级黄色片| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区| 国产精品久久久久久人妻精品电影| 久久伊人香网站| 99久久久亚洲精品蜜臀av| 在线观看美女被高潮喷水网站 | tocl精华| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产一区最新在线观看| 亚洲欧美日韩高清专用| 香蕉久久夜色| 亚洲无线在线观看| 两个人看的免费小视频| 一区二区三区激情视频| 母亲3免费完整高清在线观看| 亚洲av中文字字幕乱码综合| 18禁黄网站禁片免费观看直播| 又爽又黄无遮挡网站| 国语自产精品视频在线第100页| 色吧在线观看| 亚洲一区高清亚洲精品| h日本视频在线播放| 国产私拍福利视频在线观看| 熟女人妻精品中文字幕| 亚洲一区二区三区色噜噜| 一个人免费在线观看的高清视频| 久9热在线精品视频| 中文字幕av在线有码专区| 国产真人三级小视频在线观看| 美女免费视频网站| 黄色片一级片一级黄色片| 91字幕亚洲| 亚洲国产色片| av在线蜜桃| 麻豆成人午夜福利视频| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区蜜桃av| 欧美日韩瑟瑟在线播放| 国产成人精品久久二区二区91| 成人精品一区二区免费| 午夜福利免费观看在线| 天堂av国产一区二区熟女人妻| ponron亚洲| tocl精华| 亚洲电影在线观看av| 91久久精品国产一区二区成人 | 亚洲成av人片免费观看| av在线蜜桃| 久久久国产成人免费| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 日本三级黄在线观看| 12—13女人毛片做爰片一| 69av精品久久久久久| 曰老女人黄片| 日本a在线网址| 超碰成人久久| 免费大片18禁| 怎么达到女性高潮| 精品乱码久久久久久99久播| 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| 国模一区二区三区四区视频 | 精品久久久久久久毛片微露脸| 亚洲精品乱码久久久v下载方式 | 91麻豆精品激情在线观看国产| 少妇的丰满在线观看| 人人妻,人人澡人人爽秒播| 啪啪无遮挡十八禁网站| 99国产精品一区二区三区| 国产伦人伦偷精品视频| 在线播放国产精品三级| 五月伊人婷婷丁香| 午夜激情福利司机影院| 国产探花在线观看一区二区| 精品午夜福利视频在线观看一区| 999久久久精品免费观看国产| 美女高潮喷水抽搐中文字幕| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 熟女少妇亚洲综合色aaa.| 亚洲电影在线观看av| 久久婷婷人人爽人人干人人爱| 一夜夜www| 精品久久久久久久末码| 天天一区二区日本电影三级| 男女床上黄色一级片免费看| 国产成人一区二区三区免费视频网站| 亚洲精品在线美女| 亚洲无线在线观看| 国产单亲对白刺激| 又紧又爽又黄一区二区| 嫁个100分男人电影在线观看| 一级黄色大片毛片| 亚洲最大成人中文| 人妻夜夜爽99麻豆av| 天堂动漫精品| 国模一区二区三区四区视频 | 女人高潮潮喷娇喘18禁视频| 国产精品久久视频播放| 三级国产精品欧美在线观看 | 特级一级黄色大片| 亚洲片人在线观看| 制服人妻中文乱码| 欧美在线黄色| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| 国产v大片淫在线免费观看| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 男女那种视频在线观看| 国产亚洲欧美在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 久久99热这里只有精品18| 欧美一级毛片孕妇| 日韩欧美一区二区三区在线观看| 在线观看日韩欧美| av在线蜜桃| 日韩av在线大香蕉| 久久精品亚洲精品国产色婷小说| 观看美女的网站| 中文字幕久久专区| 中文字幕熟女人妻在线| 99久久成人亚洲精品观看| 免费高清视频大片| 国产伦一二天堂av在线观看| 最新中文字幕久久久久 | 午夜福利成人在线免费观看| 日本五十路高清| 欧美日韩亚洲国产一区二区在线观看| 亚洲片人在线观看| 日本三级黄在线观看| 亚洲熟妇熟女久久| 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区久久| 国产精品电影一区二区三区| 精品乱码久久久久久99久播| 真人做人爱边吃奶动态| www.999成人在线观看| 9191精品国产免费久久| 久久久久久久久久黄片| 国产成人精品久久二区二区免费| 91久久精品国产一区二区成人 | 国产淫片久久久久久久久 | 精品久久久久久,| 别揉我奶头~嗯~啊~动态视频| 成人三级黄色视频| 国产aⅴ精品一区二区三区波| 久久亚洲精品不卡| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 午夜福利成人在线免费观看| av国产免费在线观看| 国产又黄又爽又无遮挡在线| 日韩人妻高清精品专区|