• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator

    2022-02-24 09:38:00QilinZheng鄭騎林JiachengLiu劉嘉成ChaoWu吳超ShichuanXue薛詩川PingyuZhu朱枰諭YangWang王洋XinyaoYu于馨瑤MiaomiaoYu余苗苗MingtangDeng鄧明堂JunjieWu吳俊杰andPingXu徐平
    Chinese Physics B 2022年2期
    關鍵詞:徐平明堂王洋

    Qilin Zheng(鄭騎林), Jiacheng Liu(劉嘉成), Chao Wu(吳超), Shichuan Xue(薛詩川),Pingyu Zhu(朱枰諭), Yang Wang(王洋), Xinyao Yu(于馨瑤), Miaomiao Yu(余苗苗),Mingtang Deng(鄧明堂), Junjie Wu(吳俊杰), and Ping Xu(徐平),3,?

    1Institute for Quantum Information and State Key Laboratory of High Performance Computing,College of Computer,National University of Defense Technology,Changsha 410073,China

    2College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    3National Laboratory of Solid State Microstructures and School of Physics,Nanjing University,Nanjing 210093,China

    High-dimensional entanglement provides valuable resources for quantum technologies, including quantum communication, quantum optical coherence tomography, and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant value.Here we utilize a tunable asymmetric Mach–Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal.With the strategy of the tunable coupler, the dynamical and extensive tuning range of quality factors of the microring can be obtained, and then the biphoton pair generation rate can be optimized.By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb, we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/mW2 under a low on-chip pump power,which corresponds to 547 dimensions Hilbert space in frequency freedom.These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.

    Keywords: silicon microring resonator,quantum entanglement,biphoton frequency comb

    1.Introduction

    With the prosperity of the photonic quantum industry,numerous applications with the practical value from quantum computing to quantum communication[1,2]have emerged.Lying at the heart of these quantum technologies, quantum light sources[3]provide available resources and endue them with quantum advantages.High-dimensional entanglement is one of the valuable resources for supporting high capacity quantum communication,[4]quantum optical coherence tomography (QOCT),[5]high-dimensional one-way quantum processing,[6]and error-tolerant quantum computation.[7]However, it is still a challenge to further expand the scale of quantum applications because of the limited quantum resources.One of the solutions can be increasing the physical qudits or the entanglement dimensionality.[8]As a feasible approach to improve entanglement,the biphoton frequency comb (BFC)[9]has been widely studied.As one of the most promising architectures,the quantum photonic chips have the merits of miniaturization, reconfigurability, high integration,high stability,mass production,and so on.[10]For on-chip applications,frequency should be a prominent degree of freedom for scaling the Hilbert space in a single waveguide mode without occupying a large physical space of the chip.Quantum interference and logic gates in frequency space have been successfully demonstrated.[11,12]

    The higher dimensionality usually implies the higher ability achieved in quantum tasks; hence a high-dimensional frequency entanglement is a long-time goal in this field.How to further increase the dimensionality is of significant value.Usually, in order to evaluate the entanglement dimension of BFCs,we can measure their joint spectral intensity(JSI),and then calculate the Schmidt number[13]through singular value decomposition to give the entangled dimensionality.To our knowledge, BFCs have been generated from different photonic chip platforms[14]like the third-order nonlinear platform including silicon-on-insulator(SOI)[15–17]and silicon nitride (SiN),[18,19]the second-order nonlinear material,[20,21]and high refractive index glass.[22]The Schmidt numberKin the frequency freedom obtained from the measured JSI is at most 22.0[15]by measuring both the JSI and unheralded second-order correlationg(2).[23]For the BFCs from silicon nitride microring resonator, the gained maximum Schmidt number is 20.[18]In Ref.[19], the authors observed 37 mode correlated pairs from a 42-pair BFC with a pump power larger than 20 mW,while there was no detailed calculation about the Schmidt number.Chang realized a BFC from a second-order nonlinear PPKTP waveguide with a fiber Fabry–Prot cavity as the post-selection,and the Schmidt number was calculated to be 18.3.[20]An earlier version of this BFC source was characterized with no more than 9 frequency modes.[21]Kumar obtainedK=10.6 from a periodic sequence of coupled silicon microresonators chain.[16]In Ref.[22],the authors achieved a quantum system through two entangled qudits of high refractive index glass BFC,and they characterized the limited modes and obtained a Schmidt number of 10.

    The dimensionality and brightness of the BFCs are one of the main concerned parameters that guarantee a high-quality BFC generation.[24]In this work, we demonstrate a reconfigurable silicon microring resonator, aiming to generate a high brightness and dimension biphoton frequency comb at a low-power consumption that can be widely adopted for further large density on-chip quantum information processing.For increasing the dimensionality, we design a relatively large circumference to obtain a small free spectral range(FSR), i.e., a 100 GHz frequency spacing between adjacent frequency modes.With recently developed high-speed lithium niobate on insulator (LNOI) electro-optic modulators,[25,26]the 100 GHz spacing frequency comb can be manipulated for quantum information processing.[12]For the brightness, we propose to adopt the asymmetric Mach–Zehnder interferometer (AMZI) as the tunable coupler for the microring to offer a tuning range of quality factors to optimize the brightness or pair generation rate (PGR) of the biphoton frequency comb.Experimentally, we fabricate a CMOS-compatible silicon chip that is an efficient nonlinear platform for lowering the required pump power.An at least 23.4-dimensional frequency entanglement spanning 547 dimensional Hilbert space resource with on-chip pair generation rate of 19.9 MHz/mW2is obtained at a low on-chip power.

    2.Theory and experiments

    The AMZI-coupled microring resonator was firstly proposed by Barbarossa in Ref.[27], then has been widely used for tunable filtering,[28]sensing,[29]and improving the PGR[30]of photons.Here,we dynamically modulate the quality factorQof the microring with this AMZI as the coupler,then optimize the PGR and characterize the dimensionality of quantum entanglements around this high PGR working point.The AMZI-coupled microring is shown in Fig.1(a).The silicon waveguide covered with SiO2has a width of 500 nm and a height of 220 nm.The two gaps between AMZI and the microring are both 200 nm which guarantee that the microring can be in different coupling status, and the length difference between the two arms of AMZI is 2πR,whereRis the radius of the microring with 112μm that corresponds to the 100 GHz free spectral range (FSR) which is compatible with commercial dense wavelength division multiplexing(DWDM).TheQfactors of the AMZI-coupled microring can be expressed as

    whereQt,QintandQextare the total, intrinsic and extrinsic quality factors, respectively, the subscriptvrepresent pump(p), idler (i) or signal (s).Besides,Qint=ω/(Vgα) is determined by the round-trip loss coefficient α inside the ring.TheQext=2πRω/(Vg|Ke|2) is related to the equivalent coupling coefficientKebetween the microring and waveguide.HereVgis the group velocity of the ring,Ris the microring radius,and ω is the center angular frequency.Combine all-pass microring theory and the AMZI theory,[27]Ke= itk(e?i(βΔL+Ψ)+1),wheretandkare the electric field amplitude coupling coefficient and transmission coefficient of the coupler satisfyingt2+k2=1,β is the propagation constant related to the wavelength, ΔLis the arm length difference, and Ψ is the modulation phase controlled by the voltage applied on the resistive heater of the thermal-optic phase shifter.Figure 1(b) shows the theoretical transmission efficiency and|Ke|2changing with wavelength under two different Ψ.The phase Ψ can modulateKeand then the extrinsic quality factorQextandQint/Qextcan be modulated.According to the different values ofQint/Qext,we can divide the working status of the microring into three regions.Specifically,whenQint/Qext=1,the amplitude in the microring can be maximized, and the transmission efficiency at this point is near 0.We call this state critical-coupling and define the|Ke|2in this point as|Kc|2.WhenQint/Qext>1,that means|Ke|2>|Kc|2,the state turns into over-coupling,and the most over-coupling point refers to the coupling state when the maximum value ofQint/Qextis achieved on the structure we use.While whenQint/Qext<1,that means|Ke|2<|Kc|2,the state becomes under-coupling.Under different coupling situations, we can get different spontaneous four-wave mixing(SFWM)efficiencies.

    From the references,[3,31]the PGR of them-th pair spectral modes is closely related to the value ofQint/Qext.Specifically,

    Among them, γ is the nonlinear parameter of χ(3),Ppis the pump power, and Ωpis the resonance frequency of the pump light.Qextis the extrinsic quality factor of them-th entangled frequency photon pair that varies with Ψ,which can be given by the following formula:

    where Ωs,mis the resonate frequency and βsis the propagation constant of them-th mode signal photon.Since ΔL=2πRwill lead to the extrinsic quality factors of all resonance modes including pump,signal,and idler being the same,and therefore the total PGR of all frequency modes can be finally expressed as a function ofQint/Qextwhich is in the same form of them-th frequency pair’s PGR.In fact,when the microring is manufactured with a fixed ΔLand coupling gap, we can change the voltage applied to AMZI, thereby equivalently changing the coefficientKe, and then determiningQand further affecting PGR.

    The experimental schematic is shown as Fig.2.A tunable laser is coupled into the silicon chip through the on-chip grating, and the BFC from SFWM inside the microring is generated and coupled out again through an on-chip grating then passes through a filtering system to reach superconductor nanowire single-photon detectors(SNSPD)finally.When the pump laser at 1549.315 nm was coupled to and decoupled from the chip by coupling fiber arrays and the waveguide grating array, the total insertion loss was about 7.68 dB and each facet insertion loss was about 3.84 dB.We define the onchip pump power as the power that is coupled into the chip through one facet coupling for fiber arrays to the waveguide grating array with an insertion loss of 3.84 dB.Before this,the pump power has suffered a transmission loss of 0.47 dB,then passes through the polarization controller and filter with a loss of 1.14 dB.The tunable CW laser has a line width of 0.4 MHz and a wavelength tuning range of 1500 nm to 1630 nm.The adjustment accuracy of the temperature controller (TEC) for the silicon chip is 0.01°C; it is an automatic temperature adjustment system combining a Peltier with a negative feedback module.The tunable filter supports independently tunable center wavelength and bandwidth.It has a 1525 nm to 1610 nm tuning range and 0.08 nm minimum filter bandwidth;when the bandwidth is set to 0.2 nm,the insertion loss is about 6 dB.The digital-to-analog voltage converter(DAC)is an adjustable voltage controller with 8 channels, and each channel has an accuracy of 0.01 V.The timing analyzer (TA) has a 78 ps time bin width.Besides, the dark counts of the two SNSPDs are 150 Hz and 200 Hz,with efficiencies of 74% and 75%,respectively.

    Fig.1.(a)The structure of the experimental AMZI-coupled microring,the resistive heater can be powered through the metal pads.The k refers to the electric field amplitude coupling coefficient,and t refers to the electric field amplitude transmission coefficient that satisfies t2+k2=1.(b)The theoretical transmission efficiency and|Ke|2 changing with the wavelength under two different phases.When the phase changes from Ψ =0 to Ψ =0.66π,the transmission efficiency becomes smaller because of the equivalent change of Ke.

    Fig.2.The schematic diagram of our experiments.Here, PC, polarization controller; PM, power meter; BS, beam splitter; D, superconducting nanowire single-photon detector(SNSPD);TEC,temperature controller,it is an automatic temperature adjustment system combining a Peltier with a negative feedback module; DAC,digital-to-analog voltage converter,it is an adjustable voltage controller with 8 channels,and each channel has an accuracy of 0.01 V;DF,DWDM filter;TF,tunable filter;TA,timing analyzer.

    Experimentally first we make linear optical tests on the AMZI-coupled microring.We fix the laser wavelength at one of the resonance wavelengths of 1549.315 nm and then change the voltage applied on the AMZI to observe the transmission power.The critical-coupling is experienced twice at 3.0 V and 5.5 V respectively, during the voltage scanning from 0 to 8.5 V.We fix the test range from 4.3 V to 5.7 V, the coupling state changes from over-coupling to critical-coupling to under-coupling.Detailedly when the voltage is in (4.3, 5.7),we measure the transmission dips and calculate to find the coupling state’s different attributes.An extinction ratio (ER)of ?32.2 dB is obtained at the critically coupled voltage of 5.5 V.Table 1 shows the relationship between the voltage,Q,Qint/Qext,ER,full width at half maximum(FWHM),and resonance wavelength center (RWC).The third row isQint/Qextunder different voltages, they change from 4.2 to 0.7 when the voltages vary from 4.3 V to 5.7 V, that means we can get different operating status of microring being over-coupling(Qint/Qext∈(1.0,4.2]),critical-coupling(Qint/Qext=1.0)and under-coupling (Qint/Qext∈[0.7,1.0)).Another thing that should be noted is that during the changing of AMZI’s voltage, the resonance wavelength center is shifted a little due to the thermal crosstalk,and we characterized this shift and measured the transmission both at the optimal wavelength.

    Table 1.The relationship between the voltage, Q, Qint/Qext, ER,FWHM,and RWC(‘#’indicates the results minus 1549).

    Then we focus on how to gain large PGR from the microring at a fixed relative low pump power.Figure 3(a)shows the theoretical relationship between the PGR,Qint,p/Qext,pandQint,s(i)/Qs(i)according to Eq.(2).When theQvalue between the pump and the signal(idler)is independent,the maximum conversion efficiency point appears atQint,s(i)/Qext,s(i)=2 andQint,p/Qext,p=1.When theQvalue between the pump and the signal(idler)is the same and correlated,as shown by the black dotted line,the maximum conversion efficiency point appears atQint,s(i)/Qext,s(i)=Qint,p/Qext,p=4/3.TheQvalue between the pump and the signal (idler) of our working point is the same,that meansQint,s(i)/Qext,s(i)=Qint,p/Qext,p.To facilitate comparison with theoretical values,we define the normalized PGR as the measured value divided by the maximum value of all measured values.Fix the on-chip power at a suitable value,we explore the dependence of the normalized PGR of modes 5(1545.299 nm)and ?5(1553.363 nm)with an on-chip pump power of 143μW.Figure 3(b)shows the results.It is clear to see that we gain the maximum PGR in the slight over-coupling region whenQint/Qext∈(1.4,1.8).The measured maximum coincidence count of pair(5,?5)is 56 Hz,and the pair generation rate(loss subtracted)is calculated to be 1.50 MHz/mW2.Besides, the black dashed line is the theoretical value whenQint/Qextof the signal, idler and pump are identical, and the maximum point appears whenQint/Qext≈4/3, which indicates that the experimental result is consistent with the theory basically.Therefore the PGR can be improved through the tunable extrinsic quality factor of the AMZI-coupled microring.This improved PGR value reaches a high level when compared to other published works.[32,33]It should be noted that this AMZI-coupled microring can ensure the high PGR by only one-run fabrication.It is of practical use since usually precise coupling efficiency of the microring requires precise control on the coupling gap between the waveguide and microring which needs multiple-run fabrication tests.

    Fig.3.(a) The theoretical normalized PGR (color bar) changing with Qint,p/Qext,p and Qint,s(i)/Qext,s(i).The black dashed line is the result when assuming Qint,v/Qext,v are dependent,where v is signal,idler or pump.The maximum value appears when Qint,v/Qext,v =4/3.(b)The experimental PGR changing with Qint/Qext.The black dashed line is the theoretical curve of the PGR when Qint,v/Qext,v of the pump,signal and idler are identical.

    We scan the input frequency from 1517 nm to 1582 nm and gain about 80 modes of the transmission spectrum.The on-chip coupling efficiency η refers to the ratio of the pump power before coupling to the chip through the waveguide grating array and coupling out of the chip.Figure 4(a)shows the normalized grating coupling efficiency when the wavelength changes from 1517 nm to 1582 nm(normalization means that all coupling efficiencies are divided by the maximum of them).The FSR is deduced to be 100 GHz which consists well with the theoretical design.The envelope of this transmission spectrum is mainly determined by the grating coupler which couples the pump laser into the chip.We set the on-chip power at 143μW and measure all the photon pairs of the combined frequency with the mode number varying from 1 to 30.Totally,there are 30×30=900 measurements.Moreover, for each measurement, we utilize 30 seconds to perform coincidences counting(CC),and we need 27000 seconds to measure the JSI.AtQint/Qext=1.8 which corresponds to a high PGR as illustrated in Fig.3(b),the JSI is measured and shown in Fig.4(b).Since the first two pairs of entangled photons close to the pump have a poor signal-to-noise ratio (CAR) which is shown by Fig.4(c),we choose 3(?3)to 30(?30)pairs for the Schmidt number calculation, and the JSI after removing the first two pairs is shown in Fig.4(d).It is clear to see that the diagonal elements dominate the complete coincidences, and this illustrates the good properties of the optical frequency comb we generated.The Schmidt number calculated from this raw data is 22.1.To restore the generation of on-chip photon pairs truly,we need to deduct the facet grating’s coupling efficiency with, where CC is the measuring coincidences counts,ηsand ηiare the coupling efficiencies of the signal photon and idler photon, respectively.The revised Schmidt number is 23.4 which corresponds to 547 dimensions Hilbert space in frequency freedom.The total coincidence count for all frequency pairs is 742 Hz and the pair generation rate(loss subtracted)is 19.9 MHz/mW2by summing up all the frequency pairs.

    Fig.4.(a)The experimental results of the normalized coupling efficiency when the wavelength varies from 1517 nm to 1582 nm,and the red line is the fitting result of a Gaussian function.(b)The coincidence for 30 pairs of a total of 900 measurements.(c)The CAR of 30 photon pairs.(d)The measured JSI from mode 3(?3)to 30(?30)at the coupling point of Qint/Qext=1.8.The color bar is CC in logarithmic coordinates.

    3.Discussion and conclusion

    In conclusion, we demonstrated a 100 GHz spacing biphoton frequency comb that matched the ITU frequency grid and obtained at least 23.4-dimension frequency entanglement,which corresponds to 547 dimension available frequency resources in Hilbert space.This high-dimensional frequency entanglement is achieved with a high pair generation rate of 19.9 MHz/mW2at a relatively low on-chip pump power of 143μW,which is ensured through the accurate coupling condition of microring by using AMZI as the coupler.This structure design can also be extended to other materials such as SiN,[18]lithium niobate(LN),[34]etc.Actually, if we replace the grating coupler with an end coupler,move the pump light to a more suitable wavelength range, or design the dispersion of the waveguide,[35]we can measure higher dimension BFC.This type of low-power consumption and high-quality quantum frequency comb can be high-density designed on the quantum photonic chip for further applications of large-scale quantum computation and quantum communications.

    Acknowledgements

    Project supported by the National Basic Research Program of China (Grant Nos.2019YFA0308700 and 2017YFA0303700),the National Natural Science Foundation of China(Grant Nos.61632021 and 11690031),and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology).

    猜你喜歡
    徐平明堂王洋
    “搞名堂”有來由
    CO2資源化回收技術分析
    科學家(2022年5期)2022-05-13 21:42:18
    1,4-丁二醇加氫進料泵管線改造
    科學家(2022年3期)2022-04-11 23:55:49
    Improving the spectral purity of single photons by a single-interferometer-coupled microring
    Bandwidth-tunable silicon nitride microring resonators
    探訪明堂天堂
    小讀者(2021年4期)2021-06-11 05:42:36
    屹立
    悅行(2019年7期)2019-09-10 07:22:44
    王洋空間設計作品
    藝術評論(2017年8期)2017-10-16 08:37:07
    張明堂救“仇敵”戰(zhàn)日軍
    文史春秋(2016年6期)2016-12-01 05:43:18
    徐平 肩負重任的北上
    中國汽車界(2016年1期)2016-07-18 11:13:34
    久热久热在线精品观看| 女的被弄到高潮叫床怎么办| 日本-黄色视频高清免费观看| 在线观看人妻少妇| 亚洲图色成人| 成年av动漫网址| 麻豆精品久久久久久蜜桃| 美女国产高潮福利片在线看| 在线观看三级黄色| 日韩大片免费观看网站| 搡女人真爽免费视频火全软件| 母亲3免费完整高清在线观看 | 天天躁夜夜躁狠狠久久av| 亚洲成人av在线免费| 亚洲,欧美精品.| 亚洲国产看品久久| 国产精品久久久av美女十八| 巨乳人妻的诱惑在线观看| 亚洲三级黄色毛片| 狠狠精品人妻久久久久久综合| 国产精品久久久久久精品古装| 婷婷色综合www| 中文字幕精品免费在线观看视频 | 免费黄频网站在线观看国产| av线在线观看网站| 婷婷色av中文字幕| 青春草国产在线视频| 亚洲av综合色区一区| 黄色 视频免费看| 成人黄色视频免费在线看| 秋霞伦理黄片| 国产淫语在线视频| 国产精品国产av在线观看| 熟女av电影| 国产精品人妻久久久久久| 在线观看人妻少妇| 国产精品麻豆人妻色哟哟久久| 日本91视频免费播放| 老女人水多毛片| 巨乳人妻的诱惑在线观看| 赤兔流量卡办理| 老司机影院毛片| 自线自在国产av| 乱码一卡2卡4卡精品| 精品一品国产午夜福利视频| 久久久欧美国产精品| 久久久国产精品麻豆| 波野结衣二区三区在线| 肉色欧美久久久久久久蜜桃| 高清黄色对白视频在线免费看| 寂寞人妻少妇视频99o| 久久99精品国语久久久| 69精品国产乱码久久久| 亚洲伊人久久精品综合| 亚洲国产精品专区欧美| 色婷婷av一区二区三区视频| 精品午夜福利在线看| av又黄又爽大尺度在线免费看| 青春草亚洲视频在线观看| 欧美少妇被猛烈插入视频| 亚洲精品国产色婷婷电影| 天堂8中文在线网| 亚洲 欧美一区二区三区| 99九九在线精品视频| av不卡在线播放| 狂野欧美激情性bbbbbb| 亚洲成人一二三区av| 自线自在国产av| 精品视频人人做人人爽| 欧美+日韩+精品| 五月开心婷婷网| 久久国产精品大桥未久av| 中文天堂在线官网| 大香蕉久久成人网| 99香蕉大伊视频| av免费在线看不卡| 免费久久久久久久精品成人欧美视频 | 亚洲精品一区蜜桃| 乱码一卡2卡4卡精品| 亚洲丝袜综合中文字幕| 亚洲成av片中文字幕在线观看 | 欧美丝袜亚洲另类| 女的被弄到高潮叫床怎么办| 中文字幕亚洲精品专区| 九九爱精品视频在线观看| 国产免费又黄又爽又色| 国产午夜精品一二区理论片| 国产精品不卡视频一区二区| 岛国毛片在线播放| 你懂的网址亚洲精品在线观看| 男的添女的下面高潮视频| 国产黄色免费在线视频| 又大又黄又爽视频免费| av一本久久久久| 免费av中文字幕在线| 久久综合国产亚洲精品| 美女福利国产在线| 亚洲综合精品二区| 亚洲精品日本国产第一区| 日韩一区二区三区影片| 亚洲图色成人| 亚洲人成网站在线观看播放| 亚洲精品美女久久久久99蜜臀 | 亚洲,欧美,日韩| 国产在线免费精品| 你懂的网址亚洲精品在线观看| 男女啪啪激烈高潮av片| 国产一区二区在线观看av| 国产成人精品婷婷| 一级a做视频免费观看| 看免费av毛片| 国内精品宾馆在线| 国产一级毛片在线| 老女人水多毛片| 18禁国产床啪视频网站| 最近中文字幕2019免费版| 永久免费av网站大全| 亚洲色图 男人天堂 中文字幕 | 国产精品久久久久成人av| 国产成人aa在线观看| 国产精品蜜桃在线观看| 老女人水多毛片| 欧美老熟妇乱子伦牲交| 免费高清在线观看日韩| 亚洲精品,欧美精品| 亚洲国产av新网站| 97在线视频观看| 一级毛片我不卡| 亚洲国产精品成人久久小说| 欧美亚洲日本最大视频资源| 91成人精品电影| 欧美激情 高清一区二区三区| 夫妻性生交免费视频一级片| 久久久久久久久久久久大奶| 一区在线观看完整版| 99久久中文字幕三级久久日本| 久久综合国产亚洲精品| av电影中文网址| 亚洲精品中文字幕在线视频| 国产精品久久久av美女十八| 成年人免费黄色播放视频| 成人毛片60女人毛片免费| 欧美精品一区二区大全| 久久国产精品男人的天堂亚洲 | freevideosex欧美| 这个男人来自地球电影免费观看 | 国产日韩欧美视频二区| 性色av一级| 国产又爽黄色视频| 黄色配什么色好看| 美女大奶头黄色视频| 欧美日韩精品成人综合77777| 少妇的丰满在线观看| 综合色丁香网| 国内精品宾馆在线| a级毛色黄片| 国产又爽黄色视频| 国产一区二区激情短视频 | 人妻少妇偷人精品九色| 国产爽快片一区二区三区| 一区二区日韩欧美中文字幕 | 最黄视频免费看| 极品人妻少妇av视频| 久久人人爽人人爽人人片va| 午夜免费鲁丝| 最近的中文字幕免费完整| 免费黄频网站在线观看国产| 亚洲精品美女久久久久99蜜臀 | 天天躁夜夜躁狠狠久久av| 91午夜精品亚洲一区二区三区| 99久久中文字幕三级久久日本| 日本爱情动作片www.在线观看| 亚洲欧美中文字幕日韩二区| av线在线观看网站| 亚洲精品美女久久av网站| 亚洲国产精品一区二区三区在线| 69精品国产乱码久久久| 中文精品一卡2卡3卡4更新| 看免费av毛片| 国内精品宾馆在线| 亚洲精品一区蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲五月色婷婷综合| 精品人妻一区二区三区麻豆| 深夜精品福利| 亚洲国产精品一区二区三区在线| 久久精品久久久久久噜噜老黄| 日韩成人av中文字幕在线观看| 男人爽女人下面视频在线观看| 亚洲人与动物交配视频| 国产在线一区二区三区精| 18+在线观看网站| 国产成人精品在线电影| 亚洲色图 男人天堂 中文字幕 | 99久国产av精品国产电影| 亚洲美女搞黄在线观看| 久久亚洲国产成人精品v| 亚洲精品aⅴ在线观看| 最近最新中文字幕免费大全7| 免费观看性生交大片5| 黄网站色视频无遮挡免费观看| 高清在线视频一区二区三区| 久久久久久久久久久免费av| 中文字幕人妻熟女乱码| 成人漫画全彩无遮挡| 丝袜脚勾引网站| 中文字幕制服av| 亚洲三级黄色毛片| 99视频精品全部免费 在线| 哪个播放器可以免费观看大片| 男女边吃奶边做爰视频| 女性被躁到高潮视频| 精品亚洲乱码少妇综合久久| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 一本色道久久久久久精品综合| 国产1区2区3区精品| 人妻系列 视频| 成年女人在线观看亚洲视频| 国产有黄有色有爽视频| 亚洲国产av影院在线观看| av在线播放精品| 999精品在线视频| 欧美激情国产日韩精品一区| 免费观看在线日韩| 国产精品秋霞免费鲁丝片| 毛片一级片免费看久久久久| 国产爽快片一区二区三区| www.av在线官网国产| 99香蕉大伊视频| 丰满迷人的少妇在线观看| 在现免费观看毛片| 老熟女久久久| 大香蕉久久网| 欧美精品一区二区免费开放| 激情五月婷婷亚洲| 一二三四在线观看免费中文在 | 亚洲国产精品一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 看免费av毛片| 亚洲精品中文字幕在线视频| 午夜福利,免费看| 大香蕉久久成人网| 在线观看美女被高潮喷水网站| 麻豆乱淫一区二区| 国产又爽黄色视频| 亚洲在久久综合| 日韩一本色道免费dvd| 日本猛色少妇xxxxx猛交久久| 在现免费观看毛片| 国产成人精品一,二区| 人体艺术视频欧美日本| 亚洲国产av影院在线观看| 亚洲情色 制服丝袜| 日韩一区二区三区影片| 国产不卡av网站在线观看| 1024视频免费在线观看| 一边亲一边摸免费视频| 老司机亚洲免费影院| 国产又爽黄色视频| 大话2 男鬼变身卡| 中文字幕人妻熟女乱码| 最新中文字幕久久久久| 久久热在线av| 美女福利国产在线| 纯流量卡能插随身wifi吗| 国产一区二区激情短视频 | 黄色 视频免费看| 久久精品国产亚洲av涩爱| 婷婷色麻豆天堂久久| 有码 亚洲区| 曰老女人黄片| 精品视频人人做人人爽| 亚洲欧美精品自产自拍| 国产一区亚洲一区在线观看| 99九九在线精品视频| 99久久人妻综合| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 免费观看性生交大片5| 啦啦啦啦在线视频资源| 亚洲,欧美,日韩| 草草在线视频免费看| 啦啦啦中文免费视频观看日本| 久久精品久久久久久久性| 99国产精品免费福利视频| 美女大奶头黄色视频| 国产国拍精品亚洲av在线观看| 国产精品久久久久久精品电影小说| 丁香六月天网| 成人亚洲精品一区在线观看| 99热网站在线观看| 美女内射精品一级片tv| 国产乱人偷精品视频| 久久女婷五月综合色啪小说| 99热网站在线观看| 午夜福利影视在线免费观看| av黄色大香蕉| 国产有黄有色有爽视频| 亚洲精品色激情综合| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 中文天堂在线官网| 欧美少妇被猛烈插入视频| 97精品久久久久久久久久精品| 熟女av电影| 久久精品久久久久久噜噜老黄| 国产1区2区3区精品| 韩国精品一区二区三区 | 视频中文字幕在线观看| 午夜精品国产一区二区电影| 亚洲中文av在线| 极品人妻少妇av视频| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看| 美女大奶头黄色视频| 久久久精品94久久精品| 啦啦啦啦在线视频资源| 五月开心婷婷网| 我的女老师完整版在线观看| 中文乱码字字幕精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲av日韩在线播放| 国产精品一区二区在线不卡| 国产无遮挡羞羞视频在线观看| 亚洲国产日韩一区二区| 色婷婷av一区二区三区视频| 国产亚洲精品久久久com| 久热这里只有精品99| 国产黄色免费在线视频| 日本爱情动作片www.在线观看| 欧美成人午夜免费资源| 中文字幕人妻丝袜制服| 国产精品免费大片| 韩国高清视频一区二区三区| 成人免费观看视频高清| 日韩精品有码人妻一区| 午夜福利影视在线免费观看| 巨乳人妻的诱惑在线观看| 免费人妻精品一区二区三区视频| 免费观看性生交大片5| 亚洲精品一区蜜桃| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图| 欧美3d第一页| 久久国产精品大桥未久av| 久久久国产一区二区| 九色亚洲精品在线播放| 亚洲久久久国产精品| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 精品酒店卫生间| 一级片'在线观看视频| 秋霞在线观看毛片| 国产免费现黄频在线看| 国产一区亚洲一区在线观看| 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看 | 男女下面插进去视频免费观看 | 尾随美女入室| 精品一区二区三区四区五区乱码 | 啦啦啦中文免费视频观看日本| 涩涩av久久男人的天堂| 亚洲av国产av综合av卡| 免费观看无遮挡的男女| 国产精品久久久av美女十八| 免费高清在线观看视频在线观看| av卡一久久| 热99久久久久精品小说推荐| 69精品国产乱码久久久| av不卡在线播放| 9191精品国产免费久久| 乱人伦中国视频| 日韩人妻精品一区2区三区| 久久久久久久精品精品| 亚洲欧美色中文字幕在线| 亚洲熟女精品中文字幕| 国产老妇伦熟女老妇高清| 高清视频免费观看一区二区| 国产成人91sexporn| 51国产日韩欧美| 成人免费观看视频高清| 免费久久久久久久精品成人欧美视频 | 在线观看免费高清a一片| 97在线人人人人妻| 91午夜精品亚洲一区二区三区| 亚洲 欧美一区二区三区| 久久国产精品男人的天堂亚洲 | 少妇熟女欧美另类| 日韩熟女老妇一区二区性免费视频| 又粗又硬又长又爽又黄的视频| 热re99久久精品国产66热6| 亚洲av电影在线进入| 一级毛片电影观看| 亚洲美女搞黄在线观看| 国产免费福利视频在线观看| 黄片播放在线免费| 久久国产精品男人的天堂亚洲 | 九色亚洲精品在线播放| 大香蕉久久网| 国产精品免费大片| 香蕉精品网在线| 欧美日韩综合久久久久久| 久久午夜综合久久蜜桃| 在线观看人妻少妇| 欧美日韩视频精品一区| 亚洲欧美中文字幕日韩二区| 国产成人精品福利久久| 精品一区在线观看国产| av线在线观看网站| 婷婷色麻豆天堂久久| 午夜福利影视在线免费观看| 内地一区二区视频在线| 亚洲精品自拍成人| 久久精品国产综合久久久 | 久久久国产一区二区| 丝袜在线中文字幕| 九九在线视频观看精品| 国产成人av激情在线播放| 少妇精品久久久久久久| 在线观看免费日韩欧美大片| 最近手机中文字幕大全| 国产不卡av网站在线观看| 桃花免费在线播放| 超碰97精品在线观看| 永久网站在线| av卡一久久| 另类亚洲欧美激情| 成人国语在线视频| 香蕉精品网在线| 国产黄色免费在线视频| 一本大道久久a久久精品| 国产在线视频一区二区| 丰满乱子伦码专区| tube8黄色片| 日本av免费视频播放| 国产精品嫩草影院av在线观看| 国产在线视频一区二区| 丰满乱子伦码专区| 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲av涩爱| 新久久久久国产一级毛片| 亚洲熟女精品中文字幕| 97精品久久久久久久久久精品| 在线天堂最新版资源| 精品少妇久久久久久888优播| 成年动漫av网址| 最黄视频免费看| 国产乱来视频区| 香蕉丝袜av| 亚洲 欧美一区二区三区| 久久久精品免费免费高清| www.色视频.com| 如何舔出高潮| 亚洲一码二码三码区别大吗| 久久国产亚洲av麻豆专区| 午夜免费男女啪啪视频观看| 一本—道久久a久久精品蜜桃钙片| 亚洲国产欧美日韩在线播放| 天天躁夜夜躁狠狠久久av| 最后的刺客免费高清国语| 亚洲国产日韩一区二区| 精品久久国产蜜桃| 国产一区有黄有色的免费视频| 看非洲黑人一级黄片| a级毛色黄片| 最近最新中文字幕大全免费视频 | 五月天丁香电影| videosex国产| 青青草视频在线视频观看| 亚洲丝袜综合中文字幕| 日韩大片免费观看网站| 国产欧美日韩一区二区三区在线| 亚洲精品视频女| www日本在线高清视频| 亚洲,欧美,日韩| 免费av中文字幕在线| 国产又爽黄色视频| 久久久久久伊人网av| 亚洲美女搞黄在线观看| 日本av免费视频播放| 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 91精品伊人久久大香线蕉| 99国产精品免费福利视频| 男女国产视频网站| 久久婷婷青草| 亚洲成国产人片在线观看| 亚洲伊人色综图| 精品国产乱码久久久久久小说| 一级黄片播放器| 国产女主播在线喷水免费视频网站| 日韩欧美精品免费久久| 国产一区二区三区综合在线观看 | 国产成人午夜福利电影在线观看| 欧美精品国产亚洲| 丝瓜视频免费看黄片| 中文欧美无线码| 久久午夜综合久久蜜桃| 丁香六月天网| 日本wwww免费看| 纯流量卡能插随身wifi吗| 国产一区二区在线观看日韩| 免费看av在线观看网站| 午夜日本视频在线| 最近的中文字幕免费完整| 人成视频在线观看免费观看| 免费日韩欧美在线观看| 狠狠婷婷综合久久久久久88av| 18禁在线无遮挡免费观看视频| 黄色一级大片看看| av在线播放精品| 亚洲在久久综合| 亚洲av电影在线观看一区二区三区| 久久婷婷青草| 少妇的逼好多水| 久久精品熟女亚洲av麻豆精品| 欧美精品国产亚洲| 欧美97在线视频| 日韩大片免费观看网站| 久久精品国产亚洲av天美| 日本午夜av视频| 丝袜在线中文字幕| 只有这里有精品99| 麻豆乱淫一区二区| 亚洲av国产av综合av卡| 97精品久久久久久久久久精品| 一级片免费观看大全| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 黄色视频在线播放观看不卡| 高清黄色对白视频在线免费看| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人 | 欧美 亚洲 国产 日韩一| 精品国产露脸久久av麻豆| 亚洲高清免费不卡视频| 亚洲经典国产精华液单| xxxhd国产人妻xxx| 国产在线视频一区二区| 视频中文字幕在线观看| 在线精品无人区一区二区三| 观看美女的网站| 国产在线视频一区二区| 精品少妇久久久久久888优播| 在线精品无人区一区二区三| 在线观看美女被高潮喷水网站| 伦精品一区二区三区| 久久综合国产亚洲精品| 不卡视频在线观看欧美| 国产av国产精品国产| av有码第一页| 99久久综合免费| 免费大片黄手机在线观看| 国产成人a∨麻豆精品| 久久久久久久久久人人人人人人| 亚洲国产最新在线播放| 全区人妻精品视频| 欧美国产精品va在线观看不卡| 欧美xxⅹ黑人| 水蜜桃什么品种好| 日韩av不卡免费在线播放| 亚洲精品第二区| 免费人妻精品一区二区三区视频| 另类精品久久| 久久久久精品久久久久真实原创| 亚洲av在线观看美女高潮| 少妇人妻 视频| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 秋霞伦理黄片| 制服人妻中文乱码| 人人妻人人爽人人添夜夜欢视频| 91在线精品国自产拍蜜月| 五月开心婷婷网| 亚洲高清免费不卡视频| 全区人妻精品视频| 亚洲精品日本国产第一区| 一级,二级,三级黄色视频| 一边摸一边做爽爽视频免费| 香蕉国产在线看| 亚洲国产成人一精品久久久| 国产一区二区在线观看av| av在线老鸭窝| 午夜激情久久久久久久| 考比视频在线观看| 欧美另类一区| 欧美+日韩+精品| 亚洲成人手机| 永久网站在线| 最近的中文字幕免费完整| 日本av免费视频播放| 亚洲美女搞黄在线观看| 久久久久视频综合| 人妻 亚洲 视频| 天堂8中文在线网| 亚洲av电影在线进入| 热99国产精品久久久久久7| 男女啪啪激烈高潮av片| 国产69精品久久久久777片| 精品国产乱码久久久久久小说| 精品亚洲成a人片在线观看| 少妇的逼好多水| 午夜影院在线不卡| 精品久久国产蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品国产三级专区第一集| 女的被弄到高潮叫床怎么办| 最近最新中文字幕免费大全7|