• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local Electronic Structure of Lithium Nitrogen Codoped ZnO Films Revealed by X-ray Absorption Fine Structure Spectroscopy

    2022-02-23 10:22:16SHENHeWANGYanyanGAOMingLIDongfei
    發(fā)光學(xué)報(bào) 2022年2期

    SHEN He, WANG Yan-yan, GAO Ming, LI Dong-fei

    (1. Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, Jilin Normal University, Changchun 130103, China;2. College of Physics, Jilin Normal University, Siping 136000, China;3. Key Laboratory of Preparation and Application of Environmentally Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China;4. College of Chemistry, Jilin Normal University, Siping 136000, China)

    *Corresponding Author, E-mail: wangyanyan.24@163.com

    Abstract: It is to reveal the formation mechanism of Li and N codoped p-ZnO films and the cause for the stable p-type conductivity. The films has been studied by investigating their local electronic structures using X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy based on synchrotron radiation source. The signals of Li—N bond and Li—N complex acceptors in the p-ZnO films have been collected, and the acceptor level estimated from photoluminescence spectroscopy is about 122 meV. The formation of Li—N complex acceptors has been confirmed, and the realization of Li—N bond has been attributed to the origin of the good stability of the p-type ZnO films obtained by Li, N codoping method.

    Key words: zinc oxide; p-type doping; formation mechanism; stability; X-ray absorption fine structure spectroscopy

    1 Introduction

    Zinc oxide(ZnO) has attracted much attention for its potential applications in ultraviolet light-emitting devices and low-threshold lasers,etc[1-4]. In order to realize the optoelectronic application of ZnO, the realization of both n- and p-type conductivity in ZnO is demanded. Undoped ZnO is usually n-type, whereas the stable and reproducible p-type ZnO is rather difficult to obtain due to the relatively high ionization energy of acceptor impurities, low solubi-lity of dopants, and self-compensation effect in ZnO[5-6]. To date, numerous efforts have been paid to this issue, and p-type ZnO films have been demonstrated using many different acceptor dopants[7-12]. However, the reproducibility and stability of the p-type ZnO films are still poor, which cast a heavy shadow on whether real p-type films have been realized, and whether the p-type films are applicable to optoelectronic devices[13-14]. Based on the local density approximation calculations, Li and N impurities are the best candidates for creating p-type ZnO in regard to the strain effect and energy levels[15]. However, there are still some problems to be solved. The incorporated N may occupy O sites to form the nitrogen substituted oxygen (NO) acceptors, but the solubility of N in ZnO is too low to generate enough NOacceptors, moreover the N ions in ZnO may integrate together to form N2-on-O substitutions (N2)Odonors[16-17]. Li can be easily induced into ZnO, and Li substituted Zn(LiZn) can act as acceptors, but the Li may also occupy the interstitial sites (Lii) acting as the Liidonors or the LiZn—Liicomplex donors[18-19]. For the above reasons, the reproducibility and stability of p-type ZnO doped by single N or Li are poor. In the past few years, a Li and N codoping method has been employed for the p-type doping of ZnO[20-23]. On one hand, the Li—N codoping may form multiform acceptors such as LiZn, NOand some complex acceptors. On the other hand, it is expected to bond Li with N that may depress the migration of N and Li to decrease the production of (N2)Oand Liirelated donors and suppress the compensation for the existing acceptors. Some reports have demonstrated the reproducible and stable p-type ZnO films obtained by the Li, N codoping method, and devices that can operate continuously for hours, ultraviolet photodetectors that can still work after several months have been demonstrated, indicating the good stability of the p-type ZnO films[24-27]. However, the formation mechanism and the cause for the stable p-type conductivity have not been revealed yet.

    In this paper, the acceptor state of the p-type ZnO films obtained by Li, N codoping method has been studied by investigating the local electronic structures of the films using X-ray absorption fine structure(XAFS) spectroscopy based on synchrotron radiation source, and such a technique has been widely employed to study the local electronic structures of ZnO[28-31]. The formation of Li—N complex acceptors has been confirmed by extended X-ray absorption fine structure(EXAFS) measurements, and the Li—N complex has been attributed to the cause of the stable p-type ZnO films obtained by Li, N codoping method.

    2 Experiments

    The films investigated in this paper were all grown with a VG V80H radio-frequency molecular beam epitaxy technique employinga-plane sapphire as the substrates, and the detailed growth conditions can be found elsewhere[24,26]. Briefly, the p-type ZnO∶(Li,N) films were grown with the O source and N dopant from the cracked nitric oxide gas in an Oxford Applied Research plasma cell(Model HD25) at a fixed radio-frequency power of 330 W, and Zn source and Li dopant are leading into the growth chamber from heating metallic zinc and lithium in individual Knudsen cells at 240 ℃ and 310 ℃, respectively. For comparison, single N, single Li and undoped ZnO films were prepared under the same growth conditions. The chemical bonding states in the ZnO films were analyzed in an AXIS Ultra “DLD” X-ray photoelectron spectrometer(XPS). EXAFS spectra of Zn K-edge were collected at the X-ray Absorption Fine Structure station(Beam line 14 W1) of Shanghai Synchrotron Radiation Facility(SSRF) using the fluorescence mode at room temperature. Temperature dependent photoluminescence(PL) measurement was performed in a JY-630 micro-Raman spectrometer employing the 325 nm line of a He-Cd laser as the excitation source.

    3 Results and Discussion

    Fig.1 shows the XPS data of the ZnO∶(Li,N) film. In Fig.1(a), a Li 1s peak was evidenced at 55.4 eV, which is close to the binding energy of Li in Li—N bonds(55.0 eV) and Li—O bonds(55.6 eV)[32-33].No signal from Lii(52.9 eV) can be found[34], revealing that the incorporated Li may occupy Zn sites to form the acceptors LiZnbonding with N and/or O, while the Liithat is frequently observed in Li doped ZnO has been depressed in our case. The N 1s spectrum shown in Fig.1(b) can be fitted using two Gaussian lineshapes at 396.7 eV and 398.7 eV, and the former has been usually attributed to NO, while the latter is close to the binding energy of Li—N bonds in Li—N complex[20,32]. One can deduce from the above data that Li—N bonds form in the ZnO∶(Li,N) films. Thus, it is rational to speculate from the XPS data that the acceptor formed in ZnO∶(Li,N) film may be the Li—N complex containing LiZnand NO.

    Fig.1 XPS spectra of Li 1s(a) and N 1s(b) in ZnO∶(Li,N) films. Note that the spectra have been fitted using Gaussian line shapes.

    In order to further prove the above speculation, the Zn K-edge EXAFS absorption spectra of ZnO∶(Li,N), ZnO∶N, ZnO∶Li and ZnO films were measured, as shown in Fig.2(a). The inset shows the amplified profile of the near-edge feature, attributed to the unoccupied hybridized O 2p and Zn 4sp orbits, with a large ratio of pxystates to pzstates. Interestingly, doping of Li, N or Li—N increases the near-edge peak intensity, which could indicate the localization of the conduction band through limited hopping interactions and orbital hybridization between adjacent ions, upon the inducing of the dopants. The Zn K-edge EXAFS spectra were analyzed by the programs of Athena V0.8.056, Artemis V0.8.012 within the IFEFFIT package[34-36]version 1.2.11. Fig.2(b) shows thek3-weightedχ(k) signal of EXAFS data(a function of the photoelectron wave-vectork), which reflects the scattering effects from other atoms around the given atom. The intensity of χ(k) can be related to the coordination number of Zn atoms. The EXAFS data were Fourier-transformed toRspace and fitted to the theoretical EXAFS calculations, as shown in Fig.2(c). The first shell of the radial distribution function indicates the position of the Zn—O bond distance, and the second shell peak denotes a combination of Zn—Zn bond distances. It is interesting to observe that, the Zn—O bond length in ZnO∶(Li,N) is slightly shorter than that in ZnO∶N, ZnO∶Li and ZnO, which reveals that the substituted site doping by the Li plus N elements will produce the change of the localized structure. One can speculate that Zn—O bond length will be increased if (N2)Oor Liiis dominant because either of them will then be pushed O atom and the Zn atoms away from their original sites, increase the Zn—O bond length.Only the bond of LiZnand NOas shown in XPS results may decrease the Zn—O bond length, for the length of Li—N bond is shorter than that of Zn—O bond. While its Zn—Zn bond length is almost invariable for all cases, as labeled by the red line.This result indicates that doping whether it is acceptor or donor does not change the total volume. The predicted bond length is under estimated from their actual bond lengths due to the phase shift of the backscattered photoelectrons. In our case, relative change is of greater importance than actual values. Detailed bonding analysis(summarized in Tab.1) was conducted with akrange of 20-125 nm-1andRrange of 0.1-0.36 nm. The fitting included single- and multi-scattering paths, with 95% polarization of the incident X-rays taken into account. A fully occupied wurtzite model (space group:P63m) witha=0.324 9 nm andb=0.520 7 nm was used while taking into account four different scattering paths[37](namely Zn—O1, Zn—O2, Zn—Zn1 and Zn—Zn2), according to symmetry of the structure(the paths of Zn—O1 and Zn—O2 are illustrated in Fig.2(d)). During the fitting, varied parameters include bond lengthR, coordination numberN, and the Debye-Waller factorσ2, which includes thermal vibrations and static disorders and is set the same for Zn—O1 and Zn—O2, and the same for Zn—Zn1 and Zn—Zn2. As shown in Fig.2(d) and Tab.1, for ZnO∶(Li,N), there is about 0.015 nm of bond length difference between Zn—O1 and Zn—O2, while for the bond length difference is only 0.002 nm for ZnO∶N, ZnO∶Li and ZnO. This indicates that, the symmetry of the original ZnO structure has been deviated for the formation of Li—N bond, while the similar effect is not observed in sole N or Li doping condition. The above results are consistent with the speculation shown in the XPS data that N has been bonded with Li and the Li—N complex acceptors have formed in the ZnO∶(Li,N) films.

    Fig.2 Zn K-edge X-ray absorption spectra of ZnO∶(Li,N), ZnO∶N, ZnO∶Li and ZnO films. (a)The measured full X-ray absorption spectra. The inset shows the amplified near edge feature with indication of Zn electronic orbital components, namely, pxy and pz. (b)k3χ(k) is represented as a function of k. (c)Fourier-transformed EXAFS data in R space, fitted to the theoretical EXAFS calculations. (d)Fitted EXAFS data in R space along Zn—O1 and Zn—O2 paths. The insets show the corresponding atomic geometric structures of the bonds of Zn—O1, Zn—O2.

    Tab.1 Coordination number(N), bond length R, and Debye-Waller factor(σ2) of ZnO∶(Li,N), ZnO∶N, ZnO∶Li and ZnO films, determined through fitting the orientation-dependent EXAFS data measured at the Zn—K edge

    The temperature-dependent PL measurements of ZnO∶(Li,N) film are shown in Fig.3. The spectrum at 80 K consists of three main emission bands, located at 3.315, 3.347, 3.203 eV, respectively. According to their positions, the peak at 3.315 eV can be attributed to electronic radiative transition from conduction band to neutral acceptor level(eFA), the one at 3.347 eV to the emission from neutral acceptor-bound excitons(A0X), and the broad bands centered at 3.202 eV from the recombination of donor-acceptor pairs(DAP)[22,36]. With the increase of the measuring temperature, the eFA peak at 3.315 eV redshifts, while the DAP peak blueshifts firstly and finally merges into 3.315 eV band at about 140 K. These are the feature of the thermal ionization of donors, which are typical characteristics of transition between DAP and eFA. Since the position of eFA has been ascertained, the acceptor level of the p-type films can be calculated using the following equation[22,36]:

    While the noodles boiled in the broth in my kitchen, I realized that I was reconnecting with my mother through food. I laughed a bit at myself when I reflected on all the dishes I had cooked that week. Without knowing it, I had created a beautiful ritual to honor my mother and to comfort myself at this vulnerable time. I suddenly felt my mother at hand and was filled with her presence. I was so uplifted and excited that I began talking to her, imagining she were there.

    Fig.3 Temperature-dependent PL spectra of the ZnO∶(Li,N) films from 80 K to 290 K

    EFA(T)=Eg(T)-EA+kT/2,

    (1)

    whereEg(T) is the temperature-dependent band gap following a Varshni-type equation,EAis acceptor level,kandTare Boltzmann constant and temperature, respectively. Using the eFA emission peak positons and theEgvalue at 80 K, the acceptor level can be calculated to be about 122 meV according to Eq.1. This value is similar to the acceptor level of Li—N complex acceptors reported before(126 meV)[22,36]and different from the single LiZn(90 or 150 meV)[15,37]or NOacceptor level(170-200 meV)[6]. This result also verifies the speculations from XPS and XAFS measurements that the p-type conductivity of the ZnO∶(Li,N) films comes from the contribution of the Li—N complex acceptors containing LiZnand NO. The bonding of Li and N may also explain the disappearance of (N2)Oand Liisignals in XPS measurements,i.e.Li bonding with N depresses the migration of N and Li, suppresses the formation of (N2)Oand Lii. Also, it is speculated that the Li—N bonds will suppress the migration of N or Li in the ZnO matrix, thus improve the stability of the p-type ZnO films. It has been demonstrated both theoretically and experimentally that the doping using complex acceptors may be a promising route to p-type ZnO[38-42]. The results reported in this paper consolidate the above viewpoint.

    4 Conclusion

    In conclusion, the formation mechanism of Li, N codoped ZnO films has been investigated using X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy based on synchrotron radiation source in this study, and the p-type conductivity is mainly originated from the Li—N complex acceptors as revealed by XPS and XAFS, and the acceptor level was estimated to be about 122 meV. The bonding of Li and N will also suppress the formation of (N2)Oand Liidonors and improve the stability of the p-type films. The understanding of acceptor formation and stability mechanisms will be of importance for further improvement of the Li—N codoped p-type ZnO, thus push the development of ZnO optoelectronics forwards.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20210365.

    国产又爽黄色视频| 欧美人与性动交α欧美软件| 美国免费a级毛片| 久久久久久久精品精品| 亚洲综合精品二区| 日韩中文字幕欧美一区二区 | 午夜精品国产一区二区电影| 久久久国产欧美日韩av| 在线天堂中文资源库| 国产精品国产三级专区第一集| 有码 亚洲区| 搡老乐熟女国产| 亚洲国产色片| 成人午夜精彩视频在线观看| 一级,二级,三级黄色视频| 在线观看三级黄色| 9热在线视频观看99| 丁香六月天网| 制服丝袜香蕉在线| 看非洲黑人一级黄片| 久久热在线av| 久久精品久久精品一区二区三区| 亚洲国产成人一精品久久久| 久久久国产精品麻豆| 哪个播放器可以免费观看大片| av天堂久久9| 日韩 亚洲 欧美在线| 巨乳人妻的诱惑在线观看| 在线天堂最新版资源| 一区二区av电影网| 美女福利国产在线| 久久久久久人妻| 亚洲精品美女久久av网站| 91aial.com中文字幕在线观看| 中文字幕最新亚洲高清| 另类精品久久| 国产一区二区激情短视频 | 老女人水多毛片| 亚洲第一青青草原| 两性夫妻黄色片| 国产精品女同一区二区软件| 国产一级毛片在线| 巨乳人妻的诱惑在线观看| 亚洲第一区二区三区不卡| 国产97色在线日韩免费| 人妻人人澡人人爽人人| 国产色婷婷99| 亚洲精品日韩在线中文字幕| 国产成人av激情在线播放| 黄网站色视频无遮挡免费观看| 午夜福利一区二区在线看| 美女大奶头黄色视频| 高清av免费在线| 国产老妇伦熟女老妇高清| 少妇精品久久久久久久| 欧美精品人与动牲交sv欧美| 激情五月婷婷亚洲| 一级黄片播放器| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| 激情五月婷婷亚洲| 综合色丁香网| 高清av免费在线| 国产成人91sexporn| 免费播放大片免费观看视频在线观看| 最近最新中文字幕免费大全7| 日韩伦理黄色片| 婷婷色综合大香蕉| 一边摸一边做爽爽视频免费| 男女高潮啪啪啪动态图| 午夜91福利影院| 午夜福利影视在线免费观看| 高清不卡的av网站| 国产免费视频播放在线视频| 日本爱情动作片www.在线观看| videossex国产| 午夜福利影视在线免费观看| 欧美精品亚洲一区二区| 欧美精品亚洲一区二区| 秋霞在线观看毛片| 熟妇人妻不卡中文字幕| 欧美在线黄色| 人人妻人人爽人人添夜夜欢视频| 九草在线视频观看| 交换朋友夫妻互换小说| 欧美人与性动交α欧美精品济南到 | 精品国产乱码久久久久久男人| 亚洲一区二区三区欧美精品| 日韩精品有码人妻一区| 99久久综合免费| 亚洲图色成人| 中文字幕另类日韩欧美亚洲嫩草| 精品午夜福利在线看| av女优亚洲男人天堂| 考比视频在线观看| 看非洲黑人一级黄片| 精品卡一卡二卡四卡免费| 日日啪夜夜爽| 永久网站在线| 黑人欧美特级aaaaaa片| 日日啪夜夜爽| 亚洲精品日韩在线中文字幕| 午夜免费鲁丝| 韩国精品一区二区三区| 中文天堂在线官网| 亚洲精品av麻豆狂野| 黑人巨大精品欧美一区二区蜜桃| 美女脱内裤让男人舔精品视频| 成年女人毛片免费观看观看9 | 亚洲欧洲精品一区二区精品久久久 | 亚洲四区av| 亚洲三级黄色毛片| 91aial.com中文字幕在线观看| 日日爽夜夜爽网站| 国产日韩欧美在线精品| 久久精品亚洲av国产电影网| 亚洲婷婷狠狠爱综合网| 日韩一区二区视频免费看| 亚洲av中文av极速乱| 天堂8中文在线网| 久久久久久人人人人人| 亚洲欧美精品自产自拍| 亚洲情色 制服丝袜| 亚洲国产欧美日韩在线播放| 中文字幕av电影在线播放| 欧美成人午夜精品| 国产高清不卡午夜福利| 久久久久人妻精品一区果冻| 国产成人欧美| 欧美xxⅹ黑人| 午夜免费鲁丝| 国产色婷婷99| 最黄视频免费看| 午夜91福利影院| 国产欧美日韩一区二区三区在线| 久热久热在线精品观看| 国产精品偷伦视频观看了| 亚洲欧美精品自产自拍| 国产成人精品无人区| 黄片无遮挡物在线观看| 免费av中文字幕在线| 久久久精品区二区三区| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看 | 91精品三级在线观看| 国产一区二区三区av在线| 99久久综合免费| 女人高潮潮喷娇喘18禁视频| 国产一区二区激情短视频 | 久久青草综合色| 咕卡用的链子| 亚洲精品成人av观看孕妇| 建设人人有责人人尽责人人享有的| 成人18禁高潮啪啪吃奶动态图| 色婷婷久久久亚洲欧美| 丝袜在线中文字幕| 欧美在线黄色| 狠狠婷婷综合久久久久久88av| 亚洲av成人精品一二三区| 日本vs欧美在线观看视频| 国产av国产精品国产| 日韩中文字幕欧美一区二区 | 青春草亚洲视频在线观看| 久久久久网色| 在线观看人妻少妇| 久久女婷五月综合色啪小说| 婷婷色综合大香蕉| 午夜免费鲁丝| 国产精品国产三级国产专区5o| 久久婷婷青草| 边亲边吃奶的免费视频| 色吧在线观看| 亚洲国产最新在线播放| 九九爱精品视频在线观看| 亚洲精品美女久久av网站| 国产一区二区三区av在线| 黄色怎么调成土黄色| 热re99久久精品国产66热6| 精品一区二区三卡| 午夜福利在线观看免费完整高清在| 国产精品秋霞免费鲁丝片| 亚洲 欧美一区二区三区| 亚洲精品在线美女| 亚洲第一青青草原| 一区二区三区精品91| 激情五月婷婷亚洲| 一级a爱视频在线免费观看| 欧美97在线视频| 国产免费福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 午夜日韩欧美国产| 成年av动漫网址| 免费大片黄手机在线观看| 国产熟女午夜一区二区三区| 国产精品三级大全| 亚洲精品日本国产第一区| 精品亚洲成国产av| 99国产综合亚洲精品| 69精品国产乱码久久久| 日韩精品有码人妻一区| 亚洲精品国产一区二区精华液| 又黄又粗又硬又大视频| 伊人久久国产一区二区| 中文字幕人妻丝袜一区二区 | 欧美人与性动交α欧美精品济南到 | 菩萨蛮人人尽说江南好唐韦庄| 激情五月婷婷亚洲| 免费av中文字幕在线| 久久久久精品久久久久真实原创| 免费观看性生交大片5| 亚洲国产欧美日韩在线播放| 在线天堂中文资源库| 精品国产乱码久久久久久小说| 观看美女的网站| 亚洲国产欧美日韩在线播放| 免费黄频网站在线观看国产| 国产精品不卡视频一区二区| 精品人妻偷拍中文字幕| 日韩大片免费观看网站| 午夜91福利影院| 久久精品国产鲁丝片午夜精品| 在线天堂中文资源库| 五月伊人婷婷丁香| xxxhd国产人妻xxx| 免费看av在线观看网站| 精品人妻在线不人妻| 欧美精品人与动牲交sv欧美| 大码成人一级视频| 中文字幕精品免费在线观看视频| 久久久国产欧美日韩av| 中文字幕人妻丝袜制服| 亚洲精品乱久久久久久| 热re99久久国产66热| 国产av一区二区精品久久| 久久这里只有精品19| 狂野欧美激情性bbbbbb| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 国产成人精品一,二区| 只有这里有精品99| 欧美国产精品一级二级三级| 亚洲精品美女久久av网站| 日韩精品免费视频一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 久久精品国产自在天天线| 久久久国产一区二区| 午夜日韩欧美国产| 久久久久久人人人人人| 亚洲成av片中文字幕在线观看 | 精品国产一区二区久久| 亚洲国产最新在线播放| 高清在线视频一区二区三区| 亚洲人成77777在线视频| 有码 亚洲区| 老汉色∧v一级毛片| 亚洲国产日韩一区二区| 日本av免费视频播放| 免费av中文字幕在线| 99热全是精品| 久久精品aⅴ一区二区三区四区 | 视频区图区小说| 国产片内射在线| 日韩,欧美,国产一区二区三区| 99精国产麻豆久久婷婷| 搡女人真爽免费视频火全软件| 亚洲欧美清纯卡通| 国产精品香港三级国产av潘金莲 | 成年女人毛片免费观看观看9 | 少妇熟女欧美另类| 欧美黄色片欧美黄色片| 国产极品天堂在线| 美女xxoo啪啪120秒动态图| 精品国产超薄肉色丝袜足j| 久久久欧美国产精品| 男女边摸边吃奶| 桃花免费在线播放| videossex国产| 黑人巨大精品欧美一区二区蜜桃| 最近中文字幕2019免费版| 菩萨蛮人人尽说江南好唐韦庄| 热re99久久国产66热| 999久久久国产精品视频| 亚洲人成电影观看| 777久久人妻少妇嫩草av网站| 黑丝袜美女国产一区| 日本爱情动作片www.在线观看| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 三上悠亚av全集在线观看| 丝袜人妻中文字幕| a级毛片黄视频| 欧美最新免费一区二区三区| 国产精品一区二区在线不卡| 成年女人在线观看亚洲视频| 国产精品人妻久久久影院| 亚洲图色成人| 国产精品一国产av| 亚洲精品在线美女| 青草久久国产| 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 大片免费播放器 马上看| 黄片小视频在线播放| √禁漫天堂资源中文www| 久久久a久久爽久久v久久| 久久精品久久久久久噜噜老黄| 黄网站色视频无遮挡免费观看| 伊人亚洲综合成人网| 婷婷色综合www| av有码第一页| 久久 成人 亚洲| 午夜福利,免费看| 伦理电影免费视频| 国产色婷婷99| 一边亲一边摸免费视频| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| 乱人伦中国视频| 最黄视频免费看| 婷婷色av中文字幕| 香蕉国产在线看| 亚洲五月色婷婷综合| 伊人亚洲综合成人网| 女性被躁到高潮视频| 你懂的网址亚洲精品在线观看| 亚洲成人手机| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区久久| 色网站视频免费| av卡一久久| 九草在线视频观看| 国产成人免费无遮挡视频| 人妻一区二区av| 中文字幕最新亚洲高清| 黄片小视频在线播放| 国产亚洲最大av| 久久久精品免费免费高清| 高清av免费在线| 久久国产精品男人的天堂亚洲| 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看| 少妇人妻 视频| 如何舔出高潮| 免费播放大片免费观看视频在线观看| www.自偷自拍.com| 日韩制服骚丝袜av| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕免费大全7| 高清在线视频一区二区三区| 十分钟在线观看高清视频www| 高清在线视频一区二区三区| 十分钟在线观看高清视频www| 伊人久久国产一区二区| 日韩大片免费观看网站| 日本欧美视频一区| 国产激情久久老熟女| 精品视频人人做人人爽| 色哟哟·www| 亚洲三级黄色毛片| 欧美另类一区| 亚洲精品一二三| 国产片内射在线| 午夜免费男女啪啪视频观看| 伦理电影免费视频| 人人妻人人爽人人添夜夜欢视频| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av涩爱| 亚洲av电影在线观看一区二区三区| 少妇被粗大的猛进出69影院| 伦理电影免费视频| 亚洲男人天堂网一区| 制服人妻中文乱码| 深夜精品福利| xxxhd国产人妻xxx| 久久精品人人爽人人爽视色| 日韩欧美精品免费久久| 制服丝袜香蕉在线| www日本在线高清视频| 亚洲国产精品一区二区三区在线| 九色亚洲精品在线播放| 丝袜人妻中文字幕| 黄色 视频免费看| 99香蕉大伊视频| 欧美日韩亚洲高清精品| 菩萨蛮人人尽说江南好唐韦庄| 日日啪夜夜爽| 啦啦啦在线观看免费高清www| 一级爰片在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产视频首页在线观看| 亚洲成av片中文字幕在线观看 | 久久久欧美国产精品| 国产高清国产精品国产三级| 国产探花极品一区二区| 黄色毛片三级朝国网站| 99精国产麻豆久久婷婷| 99久久人妻综合| 成人国产麻豆网| 乱人伦中国视频| av免费在线看不卡| 精品国产一区二区三区四区第35| 一级毛片电影观看| 久久av网站| 欧美日韩视频高清一区二区三区二| 亚洲男人天堂网一区| 久久99热这里只频精品6学生| 久久av网站| 男女国产视频网站| 丁香六月天网| 一级片免费观看大全| 99精国产麻豆久久婷婷| 亚洲av福利一区| 99九九在线精品视频| 精品少妇久久久久久888优播| 国产精品麻豆人妻色哟哟久久| 午夜av观看不卡| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲高清精品| 亚洲精品久久久久久婷婷小说| 2021少妇久久久久久久久久久| 人人妻人人澡人人爽人人夜夜| 青春草亚洲视频在线观看| 精品国产一区二区三区四区第35| 99久久中文字幕三级久久日本| 18禁观看日本| 日本av免费视频播放| 国产精品免费视频内射| 免费观看av网站的网址| 在线观看免费高清a一片| 久久av网站| 久久久精品94久久精品| 国产一区有黄有色的免费视频| 搡女人真爽免费视频火全软件| 老汉色∧v一级毛片| 18在线观看网站| 亚洲精品日本国产第一区| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 亚洲男人天堂网一区| 国产片内射在线| 精品一品国产午夜福利视频| 日本vs欧美在线观看视频| 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| 水蜜桃什么品种好| 永久免费av网站大全| 在现免费观看毛片| 国产免费福利视频在线观看| 中文字幕精品免费在线观看视频| 欧美最新免费一区二区三区| 国产av国产精品国产| 亚洲美女搞黄在线观看| 如何舔出高潮| 黄频高清免费视频| 国产精品女同一区二区软件| 亚洲国产看品久久| 26uuu在线亚洲综合色| 天天影视国产精品| 国产精品无大码| 亚洲精品第二区| av网站免费在线观看视频| 中文字幕精品免费在线观看视频| 波野结衣二区三区在线| 亚洲色图综合在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩成人av中文字幕在线观看| 午夜免费男女啪啪视频观看| 在线观看三级黄色| 欧美精品高潮呻吟av久久| 亚洲精品日韩在线中文字幕| 欧美日韩视频精品一区| 丝袜脚勾引网站| 国产成人精品无人区| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| 亚洲精品视频女| 日韩中文字幕欧美一区二区 | 丁香六月天网| 69精品国产乱码久久久| a 毛片基地| 香蕉丝袜av| 亚洲,一卡二卡三卡| 欧美97在线视频| 中文字幕人妻熟女乱码| 欧美成人午夜精品| 日韩人妻精品一区2区三区| 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 国产片特级美女逼逼视频| 满18在线观看网站| 亚洲四区av| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人 | 国产高清不卡午夜福利| 99久久综合免费| 久久久久久久久久人人人人人人| 亚洲欧美一区二区三区久久| 99国产综合亚洲精品| 日韩免费高清中文字幕av| 欧美日韩一区二区视频在线观看视频在线| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 一本大道久久a久久精品| av.在线天堂| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av高清一级| 我要看黄色一级片免费的| 国产精品一区二区在线观看99| 搡老乐熟女国产| 一区二区日韩欧美中文字幕| 夫妻午夜视频| 精品人妻在线不人妻| 久久影院123| 亚洲在久久综合| 人人妻人人添人人爽欧美一区卜| 亚洲第一青青草原| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美视频二区| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 高清黄色对白视频在线免费看| 国产黄色视频一区二区在线观看| 国产av码专区亚洲av| av卡一久久| 不卡视频在线观看欧美| av在线播放精品| 国产精品一区二区在线观看99| 国产精品熟女久久久久浪| 日韩av在线免费看完整版不卡| 中文乱码字字幕精品一区二区三区| 成年美女黄网站色视频大全免费| a 毛片基地| 男女边摸边吃奶| 亚洲精品第二区| 满18在线观看网站| 女性被躁到高潮视频| 男女下面插进去视频免费观看| 人妻少妇偷人精品九色| 制服丝袜香蕉在线| 欧美日韩av久久| 久久久亚洲精品成人影院| 一边摸一边做爽爽视频免费| 成人黄色视频免费在线看| 久久久久久久国产电影| 亚洲伊人久久精品综合| 久久久久久久亚洲中文字幕| 国产亚洲欧美精品永久| 男人添女人高潮全过程视频| av一本久久久久| 亚洲成av片中文字幕在线观看 | 国产成人欧美| 日韩不卡一区二区三区视频在线| 丝瓜视频免费看黄片| 亚洲一级一片aⅴ在线观看| 男人添女人高潮全过程视频| 国产激情久久老熟女| 国产av一区二区精品久久| 久久热在线av| 老汉色av国产亚洲站长工具| 久久韩国三级中文字幕| 美女脱内裤让男人舔精品视频| 老司机亚洲免费影院| 天天躁夜夜躁狠狠久久av| 午夜激情av网站| 久久精品亚洲av国产电影网| 欧美成人精品欧美一级黄| 精品久久久久久电影网| 久久久a久久爽久久v久久| 久久久国产一区二区| 免费看不卡的av| 观看美女的网站| 精品一品国产午夜福利视频| 午夜福利在线免费观看网站| 午夜日韩欧美国产| 看十八女毛片水多多多| 久久精品国产综合久久久| 波多野结衣av一区二区av| 制服丝袜香蕉在线| av女优亚洲男人天堂| 视频在线观看一区二区三区| 一区二区三区激情视频| 男人操女人黄网站| 日日啪夜夜爽| 国产精品免费大片| 久久av网站| 亚洲国产欧美网| 国产免费福利视频在线观看| 亚洲精品成人av观看孕妇| 五月伊人婷婷丁香| 新久久久久国产一级毛片| 午夜久久久在线观看| 亚洲视频免费观看视频| 啦啦啦在线免费观看视频4| 国产精品二区激情视频| 91精品国产国语对白视频| 香蕉丝袜av| 久久久久国产精品人妻一区二区| 日本av免费视频播放| 亚洲精品一区蜜桃| 亚洲综合色网址| 国产成人一区二区在线| 男男h啪啪无遮挡| 亚洲精品aⅴ在线观看| 免费看av在线观看网站| 亚洲综合色惰| kizo精华| 亚洲色图综合在线观看| 欧美激情高清一区二区三区 | 国产成人精品一,二区| 美女福利国产在线| 中文欧美无线码| 人妻 亚洲 视频| 午夜老司机福利剧场|