王志明,李慶達,汪昊,王宏立,胡軍,趙勝雪
超聲沖擊對65Mn鋼滲鉻層摩擦磨損性能的影響
王志明,李慶達,汪昊,王宏立,胡軍,趙勝雪
(黑龍江八一農(nóng)墾大學 工程學院,黑龍江 大慶 163319)
提高65Mn鋼的固體粉末滲鉻層厚度和耐磨性能。對65Mn鋼進行超聲沖擊(UI)和固體粉末滲鉻(SPC)相結(jié)合的復(fù)合工藝處理。采用X射線衍射儀(XRD)、光學顯微鏡(OM)、掃描電鏡(SEM)和能譜儀(EDS),研究UI+SPC復(fù)合工藝處理后65Mn滲鉻層的物相結(jié)構(gòu)、厚度及元素分布。通過顯微維氏硬度計、摩擦磨損試驗機研究滲鉻層的顯微硬度和摩擦磨損性能。SPC處理試樣的滲層厚度約為45 μm,UI+SPC復(fù)合工藝處理試樣的滲層厚度約為58 μm,相比SPC試樣,滲層厚度提高了13 μm。滲鉻層表面均勻致密,主要相組成為(Cr,Fe)23C6、(Cr,Fe)7C6、Cr2C。UI+SPC試樣滲層表面硬度達1659HV,約為基體表面硬度的6倍,且硬度從表面至心部呈梯度下降。UI+SPC試樣表面滲鉻層具有較好的耐磨性能,平均摩擦系數(shù)為0.170,磨損量約為基材的1/4,其主要磨損機理為粘著磨損和氧化磨損,伴隨著磨粒磨損。UI可有效提高SPC工藝的Cr原子擴散性能,提高滲鉻層厚度。相比于單一的SPC處理試樣,UI+SPC復(fù)合工藝處理試樣滲鉻層的耐磨性顯著提高。UI處理的加入,使SPC試樣的磨損機理由“磨粒+粘著”轉(zhuǎn)化為“粘著、氧化+磨?!薄?/p>
超聲沖擊;固體粉末滲鉻;滲鉻層;磨粒磨損;氧化磨損;粘著磨損
與普通碳鋼相比,65Mn彈簧鋼具有良好的淬透性、較優(yōu)的綜合力學性能、脫碳傾向小和價格低廉等優(yōu)點,被廣泛應(yīng)用于工程機械上,常用作生產(chǎn)彈簧、墊片、刀具、磨床主軸等機械零部件[1-2]。65Mn鋼零部件的服役環(huán)境多數(shù)情況下較為惡劣,主要發(fā)生的失效方式為磨損失效。我國每年因機械零部件磨損失效,造成了巨大的經(jīng)濟和能源損失[3]。如何提高65Mn鋼零部件的耐磨性能,延長其使用壽命,降低成本和能耗,具有重大的意義。目前,國內(nèi)外一些學者常采用堆焊、熔覆、噴涂、化學熱處理、氣相沉積等表面處理技術(shù),來提高機械零部件的耐磨性能[4-8]。
固體粉末滲鉻(Solid Power Chromizing, SPC)作為化學熱處理技術(shù)之一,與氣體滲鉻、離子滲鉻、鹽浴滲鉻工藝相比,具有加工簡單、成本低等優(yōu)點[9]。通過SPC處理,可在鋼構(gòu)件表面獲得滲鉻層,不僅能夠提高鋼構(gòu)件表面的耐腐蝕、耐高溫氧化性能,還可有效提高其表面的耐磨性能[10-11]。Dong等[12]研究表明,通過SPC處理,可使316L鋼的滲鉻層厚度達到75 μm,并顯著提高其耐腐蝕性能。Lin等[13-15]將SPC工藝應(yīng)用于P110鋼的耐磨處理,結(jié)果表明,經(jīng)滲鉻處理的P110鋼與未處理的基材相比,其耐磨性能和耐蝕性能均顯著提高。綜上所述,SPC為提高材料表面耐磨性能提供了一條可行的途徑。然而,SPC工藝仍存在滲層薄、溫度高、時間長等缺點[16]。一些國內(nèi)外研究表明,通過在粉末滲劑中添加稀土元素及其氧化物,能夠有效降低化學熱處理溫度,縮短原子滲入時間,提高滲層厚度[17-18]。但由于稀土元素價格較昂貴,一定程度上限制了其在化學熱處理領(lǐng)域中的應(yīng)用。
近年來,表面自納米化技術(shù)已成為國內(nèi)外學者研究的熱點。通過表面機械研磨處理(Surface Mecha-nicalAttrition Treatment, SMAT)、超聲沖擊(Ultrasonic Impact, UI)、高能噴丸(High Energy Shot Peening, HESP)等表面處理技術(shù),可使金屬表面發(fā)生劇烈的塑性變形,促使材料表面粗晶逐步細化至納米晶,形成梯度納米結(jié)構(gòu)層,該納米結(jié)構(gòu)層可有效提高原子動力學擴散性能和化學反應(yīng)速率[19-22]。張聰慧等[23]研究表明,高能噴丸處理后的AZ91D鎂合金滲鋁層較未噴丸處理的滲鋁層厚度明顯增加,耐蝕性能顯著提高。Laleh等[24]對SMAT處理后的316L不銹鋼進行了表面滲氮處理,結(jié)果表明,SMAT處理后,試樣的滲氮層較未處理試樣的滲氮層厚度提高了1倍,且SMAT試樣具有較高的耐磨、耐腐蝕性能。綜上所述,表面自納米化工藝與化學熱處理工藝相結(jié)合的復(fù)合工藝,在提高化學熱處理原子動力學擴散性能、增加滲層厚度方面,效果十分顯著。本研究將UI處理技術(shù)與SPC工藝相結(jié)合,在65Mn鋼表面制備滲鉻耐磨層,研究UI處理對滲鉻層微觀形貌、厚度及耐磨性能的影響,并分析其摩擦磨損機理,為拓展UI處理工藝在材料表面耐磨處理領(lǐng)域的進一步應(yīng)用,提供科學理論依據(jù)。
試驗選取65Mn鋼作為基體材料,其主要化學成分見表1。用電火花切割試樣尺寸為25 mm×20 mm×4 mm。采用250#—800#耐水砂紙對試樣逐級打磨至表面光滑,保證樣品具有相同的表面粗糙度。然后依次浸于丙酮、無水乙醇溶液和去離子水中,超聲清洗15 min,洗凈,烘干。
采用HI-T002015A型超聲沖擊設(shè)備對65Mn鋼試樣進行UI處理,UI工藝原理如圖1所示。通過沖擊頭往復(fù)沖擊試樣表面,使得試樣表面發(fā)生塑性變形[25]。試驗參數(shù):沖擊振幅為30 μm,沖擊頻率為20 kHz,輸入電流為0.2 A,沖擊時間為5 min,單頭沖擊,沖擊頭直徑為6 mm,沖擊頭行走速度為5 mm/s。
表1 65Mn鋼的化學成分
Tab.1 Chemical composition of 65Mn steel wt%
圖1 超聲沖擊工藝原理
采用JQF1100-40型箱式氣氛爐對65Mn基材和UI試樣進行SPC處理,SPC工藝原理如圖2所示。滲鉻劑成分(質(zhì)量分數(shù))為:Cr粉50%,Al2O3粉末46%,NH4Cl粉末4%。3種粉末通過球磨機均勻混合,將配制好的滲鉻劑放入箱式爐內(nèi)加熱至200 ℃,保溫2 h,烘干處理后使用。將基材、UI試樣和配制好的滲劑放入坩堝內(nèi),通過耐火砂、黏土、水玻璃3種混合物密封后,放入箱式爐中[14]。試驗參數(shù):溫度為1000 ℃,保溫時間為8 h,升溫速率為8 ℃/min。
圖2 固體粉末滲鉻工藝原理
采用島津XRD-7000S/L型X射線衍射儀(XRD)表征經(jīng)不同工藝處理前后的試樣相結(jié)構(gòu),衍射角范圍為10°~80°,掃描步長為0.02°,掃描速度為6 (°)/min。采用萊卡DM4000M光學顯微鏡(OM)和日立S-3400N型掃描電鏡(SEM)觀察滲鉻層表面和截面形貌。采用EDS能譜儀測試滲鉻層表面和截面的元素成分。采用TMVS-1型顯微維氏硬度計對試樣表面和截面的顯微硬度進行測量,載荷為9.8 g,保壓15 s,同一平面選取間隔3 mm的5個點測試,結(jié)果取平均值;截面方向以10 μm為間隔,測試2個平面,結(jié)果取平均值。采用MMU-10型微機控制端面摩擦磨損試驗機測試試樣的摩擦磨損性能,摩擦副選用直徑為5 mm的Si3N4球,試驗參數(shù):載荷為20 N,轉(zhuǎn)速為220 r/min,磨損時間為2 h。
SPC和UI+SPC處理后,65Mn鋼表面的SEM形貌如圖3所示??梢钥闯觯瑵B鉻層表面均勻致密,且出現(xiàn)大小無規(guī)則的突起。由EDS元素分析結(jié)果(見表2)可知,滲層表面具有含量較高的Cr元素,少量的C、Fe、O元素(Si含量忽略不計),產(chǎn)生突起的原因可能是Cr與基體中的C反應(yīng)生成碳鉻化合物所致。對比兩種工藝處理后試樣滲層的表面形貌可知,UI+SPC試樣滲層表面出現(xiàn)較多微小的孔洞,這是因為經(jīng)UI處理后,試樣表面晶粒得到細化,晶界增加,提高了原子之間的反應(yīng)速率??锥串a(chǎn)生的原因主要是活化Cr原子從基體向內(nèi)部擴散時,在與C原子反應(yīng)生成碳化鉻的過程中,原子的空位遷移以及NH4Cl分解為氣體所致[26]。試樣表面的XRD分析結(jié)果如圖4所示。由圖4可知,經(jīng)SPC和UI+SPC處理后的滲層,具有相同的相結(jié)構(gòu),主要相組成為Cr2C、(Cr,Fe)23C6、(Cr,Fe)7C6,進一步驗證了滲層表面突起成分為碳鉻化合物。由于Cr原子和Fe原子具有相近的原子半徑,因此Cr原子易與Fe原子形成α相固溶體,在高溫下Cr原子易與C原子發(fā)生反應(yīng),形成硬質(zhì)相碳鉻化合物[27-29]。
為研究超聲沖擊處理對滲鉻層厚度的影響,對SPC和UI+SPC處理后試樣的截面形貌進行觀察,并對截面元素成分進行EDS線掃描元素分析。滲鉻層截面形貌和線掃描分析結(jié)果如圖5所示。由圖5a、b可以看出,SPC和UI+SPC樣品截面,滲鉻層為均勻、連續(xù)、致密的亮白層,與基體結(jié)合緊密,該結(jié)果與文獻[11]的研究結(jié)果相近。由圖5c、d可知,SPC樣品的滲層厚度為45 μm,UI+SPC樣品的滲層厚度可達58 μm,厚度增加13 μm。這是因為試樣經(jīng)UI處理后,表面發(fā)生強烈的塑性變形,此過程中,65Mn鋼表面晶粒發(fā)生滑移、位錯、層錯,使得晶界增加,引入了大量的缺陷和界限,增加了Cr原子動力學擴散性能,使Cr原子易于從試樣表面向基體內(nèi)部擴散,促使?jié)B層生長[30-32]。由圖5c、d還可以看出,滲層由外向內(nèi)依次為明亮的富鉻層、黑暗的過渡層和基體。這是因為Cr原子的擴散系數(shù)小于C原子,滲層的生長取決于Cr原子向基體內(nèi)部的擴散速度。Cr原子向內(nèi)擴散過程中,與基體中的C原子反應(yīng),生成碳化鉻。當滲鉻層達到一定厚度時,阻礙了Cr原子向內(nèi)擴散,Cr原子的擴散速率下降,即形成梯度變化的黑暗過渡層[33]。由圖5e、f可以看出,SPC和UI+SPC試樣滲層元素的分布趨勢差別不大。Cr元素和C元素從表面到內(nèi)部呈逐漸下降的趨勢,F(xiàn)e元素從表面到內(nèi)部呈逐漸上升的趨勢。對比兩種滲層Cr元素的分布趨勢可知,SPC試樣滲層中,Cr元素含量在距表面42 μm左右處趨于平穩(wěn),UI+SPC試樣滲層的Cr元素含量在距表面55 μm左右處趨于平穩(wěn)。該結(jié)果進一步驗證了UI處理能有效提高Cr原子向基體內(nèi)部的擴散能力,促進滲層生長。
圖3 滲鉻層表面形貌
表2 滲鉻層表面EDS分析
Tab.2 EDS analysis of chromized layer wt%
圖4 試樣表面XRD圖譜
2.3.1 摩擦系數(shù)和磨損量
試樣摩擦系數(shù)隨時間的變化情況如圖7所示。結(jié)果表明,65Mn基材的摩擦系數(shù)最高,且波動較大,平均摩擦系數(shù)為0.260。這是由于65Mn鋼基材的表面硬度較低,與較硬摩擦副Si3N4球?qū)δr,使大量磨屑脫落,粘附在磨痕表面,導致摩擦系數(shù)波動較大,磨損較嚴重。SPC試樣表面的摩擦系數(shù)較平緩,前5 min內(nèi),摩擦系數(shù)急劇上升至0.247左右,隨后緩慢下降至0.156左右。隨著磨損的進行,摩擦系數(shù)趨于平緩,其平均摩擦系數(shù)為0.205。UI+SPC試樣表面的摩擦系數(shù)在前10 min內(nèi),先急劇上升至0.224左右,隨后緩慢下降至0.136左右。隨著磨損的進行,摩擦系數(shù)趨于平緩,其平均摩擦系數(shù)為0.170。這是因為SPC試樣和UI+SPC試樣具有較高的表面硬度,對磨時,少量磨屑脫落,經(jīng)預(yù)磨期摩擦系數(shù)上升后,隨著磨損的進行,對磨表面粗糙度降低,摩擦系數(shù)下降,然后輕微波動。由磨損量(如圖8所示)可知,65Mn基材具有最大的磨損量,為6.452 mg,SPC和UI+SPC處理試樣具有較低的磨損量,分別為2.163、1.675 mg。綜上可知,滲鉻層具有良好的抗磨作用,且UI+SPC處理可進一步提高滲鉻層的耐磨性能,這主要是歸因于其高硬度碳化鉻的形成和UI工藝的引入。
圖5 滲鉻層截面形貌和EDS線掃描分析
圖6 滲鉻層顯微梯度硬度
2.3.2 磨痕形貌和磨損機理
為確定試樣的磨損機理,利用SEM和EDS分析試樣的磨痕形貌和元素含量。基材磨損形貌及其局部放大見圖9a。由圖9a可知,65Mn基材具有較寬的磨痕,磨痕表面出現(xiàn)明顯的塑性變形,磨損較為嚴重。通過觀察局部放大形貌可知,磨痕表面發(fā)生塑性變形,伴隨著細長粘著凹坑的出現(xiàn)。這是由于在摩擦過程中,在載荷的作用下,具有較高硬度的Si3N4球與基材發(fā)生冷焊和粘接,伴隨犁削滑動作用,接點不斷剪斷和再形成,發(fā)生粘著磨損和輕微的磨粒磨損[13,35]?;哪ズ郾砻鍱DS分析見表3。由表3可知,區(qū)域2的Si元素含量相比區(qū)域1明顯增加,說明在磨損過程中,Si3N4磨球中的Si元素發(fā)生轉(zhuǎn)移,在區(qū)域2發(fā)生堆積。由此可知,65Mn基材的磨損機理主要為粘著磨損,并伴隨著輕微的磨粒磨損[36]。
圖7 試樣摩擦系數(shù)
圖8 試樣的磨損量
由SPC表面磨損形貌(見圖9b)可以看出,磨痕較窄,表面光滑。從局部放大圖可觀察出,磨痕表面呈現(xiàn)與滑動方向一致的微小犁溝,同時犁溝表面有輕微的塑性變形[37]。這是因為磨損過程中,在Si3N4磨球的擠壓和硬質(zhì)磨屑的犁削作用下,試樣表面出現(xiàn)了犁溝和塑性變形。由表4可知,區(qū)域2含有較高的Cr元素,為裸露的滲鉻層;區(qū)域1犁溝處Fe元素含量較高,Cr元素含量較低。綜上所述,SPC試樣的磨損機理主要為磨粒磨損,并伴隨著粘著磨損。
由UI+SPC表面磨損形貌(見圖9c)可以看出,與其他2種試樣的磨痕相比,其磨痕最窄,表面出現(xiàn)了鱗片狀的分層現(xiàn)象。通過SEM局部放大圖可見,磨痕表面出現(xiàn)薄片狀磨屑脫落,鱗片狀表層出現(xiàn)明顯的裂紋。薄片狀磨屑脫落主要是因為UI+SPC試樣表面具有較高的硬度,UI處理使得試樣表面韌性降低,在磨損過程中,片狀磨屑脫落,在磨痕表面發(fā)生冷焊粘接,符合粘著磨損機理。由EDS分析結(jié)果(表5)可知,區(qū)域1鱗片狀表層含有較高的O元素和Si元素。主要原因在于,在載荷的作用下,摩擦升溫,發(fā)生了氧化反應(yīng)。同時Si3N4磨球的Si元素轉(zhuǎn)移至磨痕表面,形成了Si和Cr的氧化物層,在磨損表面起到保護層的作用,可降低摩擦系數(shù)和磨損量。但隨著滑動摩擦的進行,氧化層被破壞,出現(xiàn)裂紋,其中一部分片狀磨屑脫落,另一部分破碎為細小的硬質(zhì)磨屑,并粘附在磨痕表面[14-15,38-39]。綜上所述,UI+SPC試樣的磨損機理主要為粘著磨損和氧化磨損,伴隨著磨粒磨損。
圖9 試樣磨痕形貌
表3 65Mn基材磨痕表面EDS分析
Tab.3 EDS analysis of wear morphology of 65Mn substrate wt%
表4 SPC試樣磨痕表面EDS分析
Tab.4 EDS analysis of wear morphology of SPC sample wt%
由以上分析可知,UI工藝的引入在提高基體硬度、細化晶粒的同時,也適當降低了其韌性。當發(fā)生磨損時,滲層相對容易脫落,促進了粘著磨損的發(fā)生。同時,由于晶粒細化作用增加了滲層氧化的概率,進而使SPC試樣由原來的“磨粒+粘著”磨損機理轉(zhuǎn)化為UI+SPC試樣的“粘著、氧化+磨?!蹦p機理。
表5 UI+SPC試樣磨痕表面EDS分析
Tab.5 EDS analysis of wear morphology of UIT+SPC sample wt%
為進一步研究3種試樣的耐磨性能,對3種試樣磨損的對磨球進行SEM觀察。Si3N4對磨球的磨損形貌如圖10所示。由圖10可知,基材對磨球的磨損區(qū)域最大,SPC對磨球次之,UI+SPC對磨球最小。該結(jié)果與摩擦系數(shù)和磨損量的試驗結(jié)果一致,進一步驗證了UI工藝的引入有助于增加SPC工藝的滲層厚度。
圖10 Si3N4對磨球磨損形貌
1)超聲沖擊處理可細化65Mn鋼表面晶粒,促使65Mn鋼表面晶粒發(fā)生滑移、位錯、層錯,使得晶界增加,引入大量的缺陷和界限。超聲沖擊處理為粉末滲鉻工藝中Cr原子的滲入提供了更多的擴散通道,增強了Cr原子的動力學擴散性能。
2)滲鉻層截面金相顯微組織表明,超聲沖擊處理對粉末滲鉻工藝滲層厚度的增加具有促進作用,復(fù)合工藝的滲鉻層厚度相比單一滲鉻工藝提高了13 μm,驗證了超聲沖擊工藝提高滲鉻層厚度的可行性。
3)超聲沖擊處理可有效提高滲鉻層的耐磨性能,復(fù)合工藝處理試樣具有較小的摩擦系數(shù)和磨損量。對比磨損機理表明,超聲沖擊處理的引入提高了基體硬度,降低其韌性,導致滲層脫落和粘著磨損的發(fā)生,晶粒細化增加了滲層的氧化概率。超聲沖擊處理使SPC試樣的磨損機理由原來的“磨粒+粘著”轉(zhuǎn)化為UI+SPC試樣的“粘著、氧化+磨?!?。
4)超聲沖擊處理對提高化學熱處理金屬材料的摩擦磨損性能具有積極作用,但需要合理選擇超聲沖擊工藝參數(shù),使金屬獲得較合適的韌性和晶粒度,以期達到復(fù)合工藝材料抗磨性能的最優(yōu)化。
[1] 張偉林, 趙靖宇, 王光輝, 等. 鹽浴氮碳共滲對65Mn彈簧鋼耐磨性的影響[J]. 表面技術(shù), 2017, 46(2): 127-132.
ZHANG Wei-lin, ZHAO Jing-yu, WANG Guang-hui, et al. Effects of Salt Bath Nitrocarburizing on Wear Resistance of 65Mn Spring Steel[J]. Surface Technology, 2017, 46(2): 127-132.
[2] 郭杰, 劉利國, 孟國慶, 等. QPQ技術(shù)提高65Mn鋼耐磨性的工藝參數(shù)優(yōu)化[J]. 金屬熱處理, 2014, 39(2): 116-120.
GUO Jie, LIU Li-guo, MENG Guo-qing, et al. Optimiza-tion of QPQ Process Parameters of 65Mn Steel for Impro-ving Its Wear Resistance[J]. Heat Treatment of Metals, 2014, 39(2): 116-120.
[3] KE W M, ZHANG F C, YANG Z N, et al. Micro- Characterization of Macro-Sliding Wear for Steel[J]. Materials Characterization, 2013, 82: 120-129.
[4] ZHOU Zi-li, YUAN Wu-hua, FANG Tie-hui, et al. High Temperature Wear Resistance of Cobalt-Based Cladding Layer Surfacing on H13 Steel[J]. Key Engineering Mate-rials, 2019, 815: 81-88.
[5] HE Bin-feng, MA Da-yan, MA Fei, et al. Microstructures and Wear Properties of TiC Coating Produced by Laser Cladding on Ti-6Al-4V with TiC and Carbon Nanotube Mixed Powders[J]. Ferroelectrics, 2019, 547(1): 217-225.
[6] ZHANG Liu-yan, YANG Shui-mei, LV Xiao, et al. Wear and Corrosion Resistance of Cold-Sprayed Cu-Based Composite Coatings on Magnesium Substrate[J]. Journal of Thermal Spray Technology, 2019, 28(6): 1212-1224.
[7] KUSMANOV S A, TAMBOVSKIY I V, KORABLEVA S S, et al. Enhancement of Wear and Corrosion Resistance in Medium Carbon Steel by Plasma Electrolytic Nitriding and Polishing[J]. Journal of Materials Engineering and Performance, 2019, 28(9): 5425-5432.
[8] HUSSEIN M, ADESINA A, KUMAR M, et al. Investiga-tions ofCorrosion, and Wear Properties of TiN PVD Coating on Ti6Al4V Alloy for Dental Application[J]. Key Engineering Materials, 2019, 813: 1-6.
[9] 馬朝平, 胡建軍, 劉妤. 材料表面滲金屬技術(shù)的研究進展[J]. 重慶理工大學學報(自然科學), 2016, 30(10): 65-70.
MA Chao-ping, HU Jian-jun, LIU Yu. Research Progress of Metallic Cementation Technology on Material Surface[J]. Journal of Chongqing University of Technology (Natural Science), 2016, 30(10): 65-70.
[10] ZHOU Y B, CHEN H, ZHANG H, et al. Preparation and Oxidation of an Y2O3-Dispersed Chromizing Coating by Pack Cementation at 800 ℃[J]. Vacuum, 2008, 82(8): 748-753.
[11] HU Jian-jun, ZHANG Yu-qing, YANG Xian, et al. Effect of Pack-Chromizing Temperature on Microstructure and Performance of AISI 5140 Steel with Cr-Coatings[J]. Surface and Coatings Technology, 2018, 344: 656-663.
[12] DONG Zhi-hao, ZHOU Tong, LIU Jie, et al. Effects of Pack Chromizing on the Microstructure and Anticorrosion Properties of 316L Stainless Steel[J]. Surface and Coatings Technology, 2019, 366: 86-96.
[13] LIN Nai-ming, XIE Fa-qin, YANG Hui-jun, et al. Assess-ments on Friction and Wear Behaviors of P110 Steel and Chromizing Coating Sliding Against Two Counterparts under Dry and Wet Conditions[J]. Applied Surface Science, 2012, 258(11): 4960-4970.
[14] LIN Nai-ming, XIE Fa-qin, ZHOU Jun, et al. Microstruc-tures and Wear Resistance of Chromium Coatings on P110 Steel Fabricated by Pack Cementation[J]. Journal of Central South University of Technology, 2010, 17(6): 1155-1162.
[15] LIN Nai-ming, XIE Fa-qin, TANG Bin. Corrosion Resis-tance of Chromizing Coating in Simulated Oilfield Stratum Water[J]. Rare Metal Materials and Engineering, 2012, 41(S2): 658-662.
[16] 趙曉博. 低溫固體粉末滲鉻機理的研究[D]. 濟南: 山東大學, 2011: 2-9.
ZHAO Xiao-bo. The Research of Low Temperature Solid Power Chromizing Mechanism[D]. Jinan: Shandong Univer-sity, 2011: 2-9.
[17] 唐相國, 代明江, 韋春貝, 等. 不同稀土摻雜固體滲鉻對Cr-RE滲層結(jié)構(gòu)及性能的影響[J]. 表面技術(shù), 2018, 47(10): 157-164.
TANG Xiang-guo, DAI Ming-jiang, WEI Chun-bei, et al. Influence of Solid Chromizing Doped with Various Rare Earths on Microstructures and Properties of Cr-RE Coatings Fabricated by Pack Cementation[J]. Surface Technology, 2018, 47(10): 157-164.
[18] 程亮, 李強, 董鮮峰, 等. 稀土元素釔對粉末冶金制備V-5Cr-5Ti合金微觀組織的影響[J]. 粉末冶金材料科學與工程, 2015, 20(1): 14-18.
CHENG Liang, LI Qiang, DONG Xian-feng, et al. Effect of Yttrium on Microstructure of V-5Cr-5Ti Alloys Prepared by Powder Metallurgy[J]. Materials Science and Enginee-r-ing of Powder Metallurgy, 2015, 20(1): 14-18.
[19] WANG Shu-feng, LI Hui-qi, CHEN Xiang, et al. Impro-ving Microstructure and Wear Resistance of Plasma Clad Fe-Based Alloy Coating by a Mechanical Vibration Technique during Cladding[J]. Materials Science and Engineering: A, 2010, 528(1): 397-401.
[20] WANG P F, HAN Z, LU K. Enhanced Tribological Performance of a Gradient Nanostructured Interstitial- Free Steel[J]. Wear, 2018, 402-403: 100-108.
[21] SAHU J N. Development of Hard and Wear Resis-tant Surface Coating on Ni-Cr-Mo Steel by Surface Mechano-Chemical Carburization Treatment (SMCT)[J]. Journal of Materials Processing Technology, 2019, 263: 285-295.
[22] 李慶達, 王志明, 郭建永, 等. 自納米化結(jié)構(gòu)金屬材料摩擦磨損研究現(xiàn)狀[J]. 表面技術(shù), 2020, 49(3): 85-96.
LI Qing-da, WANG Zhi-ming, GUO Jian-yong, et al. Research Status on Friction and Wear of Self-NanostructureMetal Materials[J]. Surface Technology, 2020, 49(3): 85-96.
[23] ZHANG Cong-hui, SONG Guo-dong, WANG Jing, et al. Influence of Surface Nanocrystallization on Aluminizing Behavior of AZ91D Magnesium Alloy[J]. 稀有金屬材料與工程, 2020, 49(2): 447-453.
ZHANG Cong-hui, SONG Guo-dong, WANG Jing, et al. Influence of Surface Nanocrystallization on Aluminizing Behavior of AZ91D Magnesium Alloy[J]. Rare Metal Materials and Engineering, 2020, 49(2): 447-453.
[24] LALEH M, KARGAR F, VELASHJERDI M. Low- Temperature Nitriding of Nanocrystalline Stainless Steel and Its Effect on Improving Wear and Corrosion Resis-tance[J]. Journal of Materials Engineering and Perfor-mance, 2013, 22(5): 1304-1310.
[25] YU J H, LEE K Y, SHIM D S, et al. Metal Embedding and Ultrasonic Nanocrystal Surface Modification Technology for Super Wear-Resistant Mechanical Parts[J]. The Inter-na-tional Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 951-962.
[26] 齊濤, 郭喜平. 鈮硅化物基合金Si-Y2O3共滲涂層的組織形成[J]. 中國有色金屬學報, 2009, 19(10): 1822-1828.
QI Tao, GUO Xi-ping. Structure Formation of Si-Y2O3Co-Deposition Coatings on Nb-Silicide-Based Alloy[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(10): 1822-1828.
[27] CAO Hui-liang, LUO C P, LIU Jiang-wen, et al. Phase Transformations in Low-Temperature Chromized 0.45wt.%C Plain Carbon Steel[J]. Surface and Coatings Technology, 2007, 201(18): 7970-7977.
[28] HU Jian-jun, MA Chao-ping, YANG Xian, et al. Microstructure Evolution during Continuous Cooling in AISI 5140 Steel Processed by Induction Heating Chromi-zing[J]. Journal of Materials Engineering and Perfor-mance, 2017, 26(11): 5530-5537.
[29] ZENG W, HU G, YANG H R, et al. Evolution of the Micros--tructure and Properties of Pre-Boronized Coatings during Pack- Cementation Chromizing[J]. Coatings, 2020, 10(2): 159.
[30] WANG Z B, LU J, LU K. Wear and Corrosion Properties of a Low Carbon Steel Processed by Means of SMAT Followed by Lower Temperature Chromizing Treatment[J].Surface and Coatings Technology, 2006, 201(6): 2796- 2801.
[31] WANG Z B, LU J, LU K. Chromizing Behaviors of a Low Carbon Steel Processed by Means of Surface Mechanical Attrition Treatment[J]. Acta Materialia, 2005, 53(7): 2081-2089.
[32] 楊浩, 孟堃, 王遠, 等. 噴丸處理對45鋼表面Al+注入層抗高溫氧化性的影響[J]. 中國表面工程, 2019, 32(3): 30-35.
YANG Hao, MENG Kun, WANG Yuan, et al. Effects of Shot Peening on High Temperature Oxidation Resistance of 45 Steel Surface with Al+Implantation[J]. China Surface Engineering, 2019, 32(3): 30-35.
[33] 王洪孔, 鄭可, 高潔, 等. γ-TiAl合金表面TiC滲鍍層的摩擦磨損性能[J]. 中國表面工程, 2018, 31(6): 28-34.
WANG Hong-kong, ZHENG Ke, GAO Jie, et al. Wear Properties of TiC Permeation Layer Prepared on γ-TiAl Alloy[J]. China Surface Engineering, 2018, 31(6): 28-34.
[34] 劉峰, 黃林科, 陳豫增. 納米晶金屬材料中相變與晶粒長大的共生現(xiàn)象[J]. 金屬學報, 2018, 54(11): 1525- 1536.
LIU Feng, HUANG Lin-ke, CHEN Yu-zeng. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. Acta Metallurgica Sinica, 2018, 54(11): 1525-1536.
[35] 魏祥飛, 張平則, 魏東博, 等. γ-TiAl合金表面Cr-W共滲合金層的摩擦磨損性能研究[J]. 金屬學報, 2013, 49(11): 1406-1410.
WEI Xiang-fei, ZHANG Ping-ze, WEI Dong-bo, et al. Friction and Wear Properties of Surface Plasma Cr-W Alloying Layer of γ-TiAl Alloy[J]. Acta Metallurgica Sinica, 2013, 49(11): 1406-1410.
[36] WEN Ming, WEN Cui-e, HODGSON P D, et al. Wear Behaviour of Pure Ti with a Nanocrystalline Surface Layer[J]. Applied Mechanics and Materials, 2011, 66-68: 1500-1504.
[37] BAKSHI S D, SINHA D, CHOWDHURY S G, et al. Sur-face and Sub-Surface Damage of 0.20wt% C-martensite during Three-body Abrasion[J]. Wear, 2018, 394-395: 217-227.
[38] LIU Yong, JIN Bin, LI De-jiang, et al. Wear Behavior of Nanocrystalline Structured Magnesium Alloy Induced by Surface Mechanical Attrition Treatment[J]. Surface and Coatings Technology, 2015, 261: 219-226.
[39] LIN Nai-ming, ZHAO Lu-lu, LIU Qiang, et al. Prepara-tion of Titanizing Coating on AISI 316 Stainless Steel by Pack Cementation to Mitigate Surface Damage: Estima-tions of Corrosion Resistance and Tribological Behavior[J]. Journal of Physics and Chemistry of Solids, 2019, 129: 387-400.
Effect of Ultrasonic Impact on the Friction and Wear Properties of Chromized Layer of 65Mn Steel
,,,,,
(College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China)
This paper aims to improve the solid powder chromized layer thickness and wear resistance of 65Mn steel. The composite process of ultrasonic impact (UI) and solid powder chromizing (SPC) is carried out on 65Mn steel. The phase structure, thickness, and element distribution of the 65Mn chromized layer after UI + SPC treatments are studied by X-ray diffractometer (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The microhardness and friction- wear properties of the chromized layer after UI + SPC treatments are investigated by the microhardness tester and friction-wear tester. The results demonstrate that the thickness of the chromizing layer is 45 μm by the UI treatment and the thickness is 58 μm by the UI + SPC treatment, 13 μm thicker than the former. The surface structure of chromized layer is uniform and compact, and the main phase composition is (Cr,Fe)23C6, (Cr,Fe)7C6and Cr2C. The surface hardness of the chromized layer reaches 1659HV by UI+SPC treatment, which is about six times of the surface hardness of the substrate, and the hardness distribution of the chromized layer show gradient descent from the surface to the inside. The surface chromized layer of the 65Mn steel has good anti-wear properties after UI + SPC treatment. The average friction coefficient is 0.170, and its wear weightlessness is about one-fourth of the that of the substrate. The dominating wear mechanism of UI+SPC sample is adhesive wear and oxidation wear, associated with slight abrasive wear. UI can effectively enhance the Cr atom diffusion property of SPC process and improve the thickness of chromized layer. Compared with SPC treatment, the wear resistance of the sample is significantly improved by UI+SPC treatment. With the addition of UI treatment, the wear mechanism of SPC samples changes from “abrasive + adhesive” to “adhesive, oxidation + abrasive”.
ultrasonic impact; solid power chromizing; chromized layer; abrasive wear; oxidative wear; adhesive wear
2021-03-19;
2021-05-25
WANG Zhi-ming (1997—), Male, Master’s degree, Research focus: friction, wear and protection of agricultural machinery material.
李慶達(1982—),男,博士,教授,主要研究方向為金屬材料的摩擦磨損與防護。
Corresponding author:LI Qing-da (1982—), Male, Doctor, Professor, Research focus: friction, wear and protection of metal material.
王志明, 李慶達, 汪昊, 等.超聲沖擊對65Mn鋼滲鉻層摩擦磨損性能的影響[J]. 表面技術(shù), 2022, 51(1): 52-59.
TG115.5+8;TH117.1
A
1001-3660(2022)01-0052-08
10.16490/j.cnki.issn.1001-3660.2022.01.005
2021-03-19;
2021-05-25
黑龍江省自然科學優(yōu)秀青年基金(YQ2019E032);國家重點研發(fā)計劃子課題(2017YFC1601905—04)
Fund:Supported by Natural Science Excellent Youth Foundation of Heilongjiang Province (YQ2019E032); National Key Research and Development Program Sub-topics (2017YFC1601905—04)
王志明(1997—),男,碩士研究生,主要研究方向為農(nóng)機材料的摩擦磨損與防護。
WANG Zhi-ming, LI Qing-da, WANG Hao, et al. Effect of Ultrasonic Impact on the Friction and Wear Properties of Chromized Layer of 65Mn Steel[J]. Surface Technology, 2022, 51(1): 52-59.