• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effective approaches to extending medium-term forecasting of persistent severe precipitation in regional models

    2018-05-24 01:41:43WANGDongHaiandZHAOYanFeng

    WANG Dong-Hai and ZHAO Yan-Feng

    aGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University,Guangzhou, China; bState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

    1. Introduction

    Persistent severe rainfall (PSR) events, with daily precipitation greater than 50 mm and durations of longer than three days (Bao 2007), are a highly damaging weather phenomenon. For example, a 12-day PSR event in the summer of 1998 caused disastrous flooding in the Yangtze River Valley, with direct economic losses of 250 billion Yuan RMB and a death toll of more than 3000 (Huang et al. 1998;Lu 2000). More recently, in January 2008, successive snow storms in southern China resulted in losses of 146 billion Yuan RMB and over 130 fatalities (Wang et al. 2009).Moreover, PSR events have been occurring with increasing frequency and at higher intensity in the last 60 years,especially since 1990 (Chen and Zhai 2013).

    Regional modeling is a key method for the forecasting of mesoscale circulation and precipitation, and an important means for the forecasting of disastrous weather(Jiao et al. 2006). How to use regional models to extend the medium-term forecasting of PSR events based on improved prediction of regional atmospheric circulation is an important avenue of meteorological research, not least because of the advantages it should bring to disaster prevention and mitigation (Brunet et al. 2010). Most previous studies in this regard have focused on the simulation of atmospheric low-frequency circulation via the combination of statistical and dynamical methods (Zhang et al. 1994; Wheeler and Hendon 2004; Chen, Wei and Gong 2012; Zhu and Li 2017a, 2017b), as well as correcting the forecasting error related to atmospheric circulation (Peng,Che, and Chang 2013) and precipitation (Liu et al. 2013).Meanwhile, little research has been conducted on the use of dynamic prediction methods for PSR from the medium-range forecasting perspective.

    In the last few years, based on current understanding of the formation mechanisms of PSR events (Zhao et al.2017) and the method of dynamic extended forecasting in regional models, studies have focused on analyzing the error sources of regional models and evaluating the predictability of multiscale circulation patterns, proposing improved dynamic forecasting methods for the different types of errors in regional models, and creating a theoretical framework for the dynamic extended medium-term forecasting of PSR events (Zhao et al. 2016; Zhao, Wang,and Xu 2017a, 2017b). Here, we summarize the main results from these attempts at improving dynamic extended forecasting.

    2. Methods

    The forecasting errors of a regional model mainly originate from the initial conditions (ICs) and the numerical forecast model itself. Methods geared toward improving these aspects operate in two main ways: minimizing the uncertainty of ICs by improving the observation and data assimilation system, and making the regional model more representative of the real atmosphere by increasing the resolution and improving the dynamical framework(Wang, Du, and Liu 2011). Most short-range forecast errors originate from the IC errors (Du 2002; Pappenberger et al. 2011), and the IC uncertainty causes the uncertainty in the weather forecast (Jung, Miller, and Palmer 2010).On the other hand, the errors of the model itself cover two main components: systematic error and random error (Reynolds, Satter field, and Bishop 2015). Among these, the systematic error results from de ficiencies in the model dynamical structure, such as the parameterization schemes, resolution, and lateral boundary conditions(LBCs). The systematic circulation errors of different predictive timescales vary in their origin (Lorenz 1982; Tibaldi and Molteni 1990; Skamarock 2004). For the forecasting of PSR events, reducing the IC and LBC errors is an effective approach to reducing the forecasting errors when using a high-resolution regional model (Zhao et al. 2016).

    PSR is different from normal rain events because the water vapor and thermodynamic conditions are produced in the context of weather systems with abnormal or less variation (Ding and Reiter 1982; Samel and Liang 2003; Niu, Zhang, and Jin 2012; Piaget et al. 2015). In the case of PSR, the rainfall duration and amount of precipitation are associated with anomalies of large-scale systems that favor the continuous con fluence of moist/warm and dry/cold air (Zhou and Yu 2005; Qian, Fu, and Yan 2007; Wang et al. 2009; Wang, Xia, and Liu 2011);also, the mesoscale convergence line is a good indicator of the area of severe precipitation (Qian, Shan, and Zhu 2012). As shown by evaluations of the forecasting of multiscale circulation patterns, large-scale circulation systems can be better predicted than smaller-scale disturbances (Lorenz 1969; Chen, Wei, and Gong 2010; Dong et al. 2015). Moreover, global models hold an advantage in predicting large-scale variation, while regional models are better in terms of simulating small-scale disturbances (Wang, Yu, and Wang 2012; Schwartz and Liu 2014; Grazzini and Vitart 2015). Thus, improving the efficiency of large-scale forecasts of the forcing fields whilst at the same time retaining the small-scale features in the regional domain is critical for better forecasting PSR events in regional models.

    The methods of spectral nudging (SN), lateral boundary filtering (LBF), and updated initial conditions (UIC)have been used in the regional Weather Research and Forecasting (WRF) model for PSR forecasting (Wang et al. 2016; Zhao et al. 2016; Zhao, Wang, and Xu 2017a,2017b). SN is a scale-selective interior constraint technique (von Storch, Langenberg, and Feser 2000; Miguez-Macho, Stenchikov, and Robock 2004) for the large-scale circulation in the regional model. It con fines itself to the higher altitudes and cases where the local convection at lower levels develop freely when the large-scale systems develop to deeper levels. SN has been applied in WRF(Miguez-Macho, Stenchikov, and Robock 2004, 2005; Liu et al. 2012; Glisan et al. 2013) and many other regional climate models, in regions such as North America(Kanamaru and Kanamitsu 2007; Spero et al. 2014), western Europe (Feser 2006), and East Asia (Cha and Lee 2009;Xu and Yang 2015), and its application has been shown to significantly improve the prediction of regional climate atmospheric circulation and precipitation forecasts. Zhao et al. (2016) and Zhao, Wang, and Xu (2017a, 2017b) used SN in WRF to improve the forecasting of PSR events in southern China. The nudging experiments were mainly against the horizontal winds, geopotential height and potential temperature above the planetary boundary layer with an interval of 6 h, starting from the initial time to the end time of the forecast, and the nudging fields were from the Global Forecast System (GFS) predictions(Figure 1).

    The LBF method refers to the use of low-pass filtering to retain the regional large-scale circulation from the GFS predictions (Figure 1). In Zhao et al. 2016; its application began in the third-day forecasts and harmonic filtering was selected for spatial field scale separation. The filtering wave selection was based on the dynamical features of the regional large-scale circulation for PSR events (Zhao et al.2017), and the high-frequency waves were reserved by 50%. For the ICs, the UIC method is effective at retaining the large-scale forecasts of the GFS predictions and the small-scale features of the WRF forecasts, by using multi-scale blending (MSB) (Zhao, Wang, and Xu 2017a, 2017b)for 15-day forecasts in WRF. The UIC method was applied to forecasts every three days based on the SN method, with a 12-h running-in period (Figure 1). SN was applied in the first three days, MBS was executed at 2.5 days, and then a new SN was initiated after 12 h of model adaptation.The 15-day forecasts comprised five three-day forecasts.

    Figure 1. Flow diagram of the SN, LBF, and UIC forecast.

    3. Sample case studies

    The methods of the SN and LBF were used in Zhao et al.(2016) to forecast three PSR events during the pre- flood(0000 UTC 19 to 0000 UTC 22 May 2013) and post- flood(0000 UTC 15 to 0000 UTC 19 July 2012) season in South China, and during the Mei-yu period over the Yangtze River Valley (0000 UTC 5 to 0000 UTC 8 July 2013). The anomaly correlation coefficient (ACC) of the 500-hPa geopotential height fields for the different forecast lead times are shown in Figure 2. The improvement by the SN and SN + LBF methods during the PSR periods was re flected mainly in lower-value phases of the ACC at 1–5-day lead times(Figure 2(a)–(c)), whereas the improvement by the LBF was more obvious at 7–11-day lead times (Figure 2(d)–(f)). The averaged ACCs for PSR periods over the different forecast lead times showed that the SN and SN + LBF methods produced stable enhancement, with the SN + LBF method yielding a better forecast at 7–11-day lead times. All the improvements of the new forecasts methods were based on the better GFS forecasts.

    Figure 2. Averaged anomaly correlation coefficients of the 500-hPa geopotential height fields for Domain 1 (15°–55°N, 70°–130°E) at lead times of (a) 1 day, (b) 3 days, (c) 5 days, (d) 7 days, (e) 9 days, and (f) 11 days prior to three PSR events in the pre- flood season in South China, the post- flood season in South China, and the Mei-yu period over the Yangtze–Huaihe river basin, respectively. The abscissa is the forecasting day, with the last four days for the PSR period (beginning at the dotted line). Source: Zhao et al. (2016).

    Figure 3. Accumulative rainfall distribution of PSR during 0000 UTC 30 June to 0000 UTC 6 July 2016 for the observation (OBS), and in the forecast experiments at different lead times ((a1–a3) 3 days; (b1–b3) 5 days; (c1–c3) 7 days) and using the different experiment schemes((a1–c1) control (CTL); (a2–c2) SN + UIC). Panels a3–c3 are the NCEP GFS forecasts. Source: Zhao, Wang, and Xu (2017a).

    The SN and UIC methods (SN + UIC) were used to investigate one of the most devastating flooding events in China since 1998: the case during 0000 UTC 30 June to 0000 UTC 6 July 2016 (Zhao, Wang, and Xu 2017a) (Figure 3). The SN + UIC approach improved the rain band’s range of this PSR event (above 100 mm) at 5–7-day lead times (Figure 3(b2)–(c2)), and the accumulated rainfall above 200 mm at the 3-day lead time (Figure 3(a2)). In addition, the larger the magnitude and longer the lead time, the more obvious the improvement. For the GFS forecasts, the rain band’s range of accumulated rainfall from 50 to 100 mm was wider than that in the observation, and the accumulated rainfall above 100 mm was not forecasted well at 3–5-day lead times (Figure 3(a3)–(b3)). The improvement by the SN + UIC method was based on the new ICs, which combines the advantages of the GFS and WRF forecasts and then improves the accumulated rainfall (especially heavy rainfall) and the rain band’s range forecasts. Furthermore, the SN + UIC method decreased the root-mean-square error (RMSE) for the related meteorological variables in the PSR period, such as the geopotential height, relative humidity, and temperature.

    Numerical predictions of four PSR events during the pre- flood season in South China (case 1, 0000 UTC 12 May–0000 UTC 15 May 2011; case 2, 0000 UTC 4 June–0000 UTC 8 June 2011; case 3, 0000 UTC 6 May–0000 UTC 10 May 2013; and case 4, 0000 UTC 19 May–0000 UTC 22 May 2013) were also investigated using the SN + UIC method (Zhao, Wang, and Xu 2017b). The results showed that the SN + UIC approach improved the prediction of daily precipitation for moderate, heavy, and torrential rain(10–100 mm d?1) (Figure 4). The improvement in the 24-h precipitation threat score by using the SN + UIC method was mainly re flected at 3–7-day lead times for moderate and heavy rain (10–49.9 mm d?1) (Figure 4(b)–(d)), and achieved slightly better forecasts in terms of the relative improvement rate of RMSE for accumulated rainfall (6.2%)and relative humidity (5.67%).

    4. Concluding remarks

    This paper summarizes the improvements generated by a selection of methods (SN, LBF, and UIC) in extending the forecasting of PSR events in China using the WRF model.In addition, relevant case simulations are analyzed and verified.

    The improvements for precipitation generated by these methods are mainly re flected at lead times of 3–7 days for moderate and heavy rain forecasts; plus, the larger the magnitude and longer the lead time, the more significant the improvement–especially when using the SN + UIC approach. For regional large-scale circulation, the improvement through use of SN is apparent mainly in the lower-value phases of the ACC at 1–5-day lead times, while the improvement via the LBF method is more obvious at 7–11-day lead times. In addition, the SN + UIC method decreases the RMSE for the geopotential height, relative humidity,and temperature in the PSR period, and the improvements for the relative humidity may make a greater contribution to the better performance of the SN + UIC method in the precipitation forecasts.

    Figure 4. Averaged threat scores at lead times of (a) 1 day, (b) 3 days, (c) 5 days and (d) 7 days prior to four PSR events during the pre- flood season in South China based on different methods. Source: Zhao, Wang, and Xu (2017b).

    Case studies show that achieving a more efficient use of large-scale forecasts of the global model whilst at the same time retaining the small-scale features in the regional domain is critical for better forecasting PSR events in China using a regional model. In view of the universality of the principles behind the improvements generated by the methods mentioned in this paper, it should be possible to apply them in other regional models for extending the forecasting range for PSR events and other disastrous weather, thus further enhancing disaster prevention and mitigation capabilities. Future work should focus on identifying the optimum con figuration of parameterization schemes and investigating in detail the function of the methods mentioned here, as well as designing a new skill score that can be used for better quantitative verification and analysis. Finally, more cases and long-term statistical studies in different areas with more in-depth dynamic and thermodynamic analysis are needed to fully assess the advantages of these methods of improvement.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Natural Science Foundation of China [grant number 41775097], [grant number 91437221], the National Key Basic Research Program of China [grant number 2012CB417204], and the China Special Fund for Meteorological Research in the Public Interest [grant number GYHY201506002].

    References

    Bao, M. 2007. “The Statistical Analysis of the Persistent Heavy Rain in the Last 50 Years over China and Their Backgrounds on the Large-scale Circulation.”Chinese Journal of Atmospheric Sciences (in Chinese)31: 779–792.

    Brunet, G., M. Shapiro, B. Hoskins, M. Moncrieff, R. Dole, G. N.Kiladis, B. Kirtman, et al. 2010. “Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction.”Bulletin of the American Meteorological Society91: 1397–1406.

    Cha, D. H., and D. K. Lee. 2009. “Reduction of Systematic Errors in Regional Climate Simulations of the Summer Monsoon over East Asia and the Western North Pacific by Applying the Spectral Nudging Technique.”Journal of Geophysical Research114: D14108.

    Chen, G. J., F. Y. Wei, and Y. F. Gong. 2012. “An Extended-range Forecast Method for the Persistent Heavy Rainfall over the Yangtze Huaihe River Valley in Summer Based on the Lowfrequency Oscillation Characteristics.”Chinese Journal of Atmospheric Sciences (in Chinese)36: 633–644.

    Chen, G. J., F. Y. Wei, and Y. F. Gong. 2010. “Assessing the Extended Range Forecast Error of NCEP/CFS in the Summer of East Asia.”Journal of Applied Meteorological Science (in Chinese)21:659–670.

    Chen, Y., and P. M. Zhai. 2013. “Persistent Extreme Precipitation Events in China during 1951–2010.”Climate Research57:143–155.

    Ding, Y. H., and E. R. Reiter. 1982. “A Relationship between Planetary Waves and Persistent Rain- and Thunderstorms in China.”Theoretical & Applied Climatology31: 221–252.

    Dong, Y., S. D. Liu, D. H. Wang, Y. F. Zhao. 2015. “Assessment on Forecasting Skills of GFS Model for Two Persistent Rainfalls over Southern China GFS.”Meteorological Monthly Science (in Chinese)41: 45–51.

    Du, J. 2002. “Present Situation and Prospects of Ensemble Numerical Prediction.”Journal of Applied Meteorological Science (in Chinese)13: 16–28.

    Feser, F. 2006. “Enhanced Detectability of Added Value in Limited-area Model Results Separated into Different Spatial Scales.”Monthly Weather Review134: 2180–2190.

    Glisan, J. M., W. J. Gutowski, J. J. Cassano, M. E. Higgins. 2013.“Effects of Spectral Nudging in WRF on Arctic Temperature and Precipitation Simulations.”Journal of Climate26: 3985–3999.

    Grazzini, F., and F. Vitart. 2015. “Atmospheric Predictability and Rossby Wave Packets.”Quarterly Journal of the Royal Meteorological Society141: 2793–2802.

    Huang, R. H., Y. H. Xu, P. F. Wang, L. T. Zhou. 1998. “The Features of the Catastrophic Flood over the Changjiang River Basin during the Summer of 1998 and Cause Exploration.”Climatic and Environmental Research (in Chinese)3: 300–313.

    Jiao, H. Y., J. D. Gong, B. Zhou, S. R. Zhao. 2006. “An Overview of the Development of Weather Forecasting.”Journal of Applied Meteorological Science (in Chinese)17: 594–602.

    Jung, T., M. Miller, and T. Palmer. 2010. “Diagnosing the Origin of Extended-range Forecast Errors.”Monthly Weather Review138: 2434–2446.

    Kanamaru, H., and M. Kanamitsu. 2007. “Scale-selective Bias Correction in a Downscaling of Global Analysis Using a Regional Model.”Monthly Weather Review135: 334–350.

    Liu, L., J. Chen, L. Cheng, C. Z. Lin, and Z. P. Wu. 2013. “Study of the Ensemble-Based Forecast of Extremely Heavy Rainfalls in China:Experiments for July 2011 Cases.”Acta Meteorologica Sinica (in Chinese)71: 853–866.

    Liu, P., A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes.2012. “Differences between Downscaling with Spectral and Grid Nudging Using WRF.”Atmospheric Chemistry and Physics12: 3601–3610.

    Lorenz, E. N. 1969. “The Predictability of a Flow Which Possesses Many Scales of Motion.”Tellus21: 289–307.

    Lorenz, E. N. 1982. “Atmospheric Predictability Experiments with a Large Numerical Model.”Tellus34: 505–513.

    Lu, R. Y. 2000. “Anomalies in the Tropics Associated with the Heavy Rainfall in East Asia during the Summer of 1998.”Advances in Atmospheric Sciences17: 205–220.

    Miguez-Macho, G., G. L. Stenchikov, and A. Robock. 2004.“Spectral Nudging to Eliminate the Effects of Domain Position and Geometry in Regional Climate Model Simulations.”Journal of Geophysical Research109: 1025–1045.

    Miguez-Macho, G., G. L. Stenchikov, and A. Robock. 2005.“Regional Climate Simulations over North America:Interaction of Local Processes with Improved Large-scale Flow.”Journal of Climate18: 1025–1045.

    Niu, R. Y., Z. G. Zhang, and R. H. Jin. 2012. “The Atmospheric Circulation Features of Two Persistent Heavy Rainfalls over Southern China in the Summer of 2010.”Journal of Applied Meteorological Science (in Chinese)23: 385–394.

    Pappenberger, F., H. Cloke, A. Persson, and D. Demeritt. 2011.“‘HESS Opinions’ on Forecast (in) Consistency in a Hydrometeorological Chain. Curse or Blessing?.”Hydrology and Earth System Sciences15: 2391–2400.

    Peng, X., Y. Che, and J. Chang. 2013. “A Novel Approach to Improve Numerical Weather Prediction Skills by Using Anomaly Integration and Historical Data.”Journal of Geophysical Research Atmospheres118: 8814–8826.

    Piaget, N., P. Froidevaux, P. Giannakaki, F. Gierth, O. Martius,M. Riemer, G. Wolf, C. M. Grams. 2015. “Dynamics of a Local Alpine Flooding Event in October 2011. Moisture Source and Large-Scale Circulation.”Quarterly Journal of the Royal Meteorological Society141: 1922–1937.

    Qian, W. H., J. Fu, and Z. Yan. 2007. “Decrease of Light Rain Events in Summer Associated with a Warming Environment in China during 1961–2005.”Geophysical Research Letters34: L11705.

    Qian, W. H., X. L. Shan, and Y. F. Zhu. 2012. “Capability of Regionalscale Transient Wind Anomalies to Indicate Regional Heavy Rains.”Chinese Journal of Geophysics (in Chinese)55: 1513–1522.

    Reynolds, C. A., E. A. Satter field, and C. H. Bishop. 2015. “Using Forecast Temporal Variability to Evaluate Model Behavior.”Monthly Weather Review143: 4785–4804.

    Samel, A. N., and X. Z. Liang. 2003. “Understanding Relationships between the 1998 Yangtze River Flood and Northeast Eurasian Blocking.”Climate Research23: 149–158.

    Schwartz, C. S., and Z. Liu. 2014. “Convection-permitting Forecasts Initialized with Continuously Cycling Limited-area 3DVAR, Ensemble Kalman Filter, and ‘Hybrid’ Variationalensemble Data Assimilation Systems.”Monthly Weather Review142: 716–738.

    Skamarock, W. C. 2004. “Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra.”Monthly Weather Review132:3019–3032.

    Spero, T. L., M. J. Otte, J. H. Bowden, and C. G. Nolte. 2014.“Improving the Representation of Clouds, Radiation, and Precipitation Using Spectral Nudging in the Weather Research and Forecasting Model.”Journal of Geophysical Research Atmospheres119: 11682–11694.

    von Storch, H., H. Langenberg, and F. Feser. 2000. “A Spectral Nudging Technique for Dynamical Downscaling Purposes.”Monthly Weather Review128: 3664–3673.

    Tibaldi, S., and F. Molteni. 1990. “On the Operational Predictability of Blocking.”Tellus A42: 343–365.

    Wang, D. H., J. Du, and C. J. Liu. 2011. “Recognizing and Dealing with the Uncertainty in Weather and Climate Forecasts.”Meteorological Monthly (in Chinese)37: 385–391.

    Wang, D. H., C. J. Liu, Y. Liu, F. Y. Wei, N. Zhao, Z. N. Jiang, Y. Ying,et al. 2009. “A Preliminary Analysis of Features and Causes of the Snow Storm Event over the Southern Areas of China in January 2008.”Journal of Meteorological Research23: 374–386.

    Wang, D. H., R. D. Xia, and Y. Liu. 2011. “A Preliminary Study of the Flood Causing Rainstorm during the First Rainy Season in South China in 2008.”Acta Meteorologica Sinica (in Chinese)69: 137–148.

    Wang, S. L., X. D. Xu, H. W. Kang, S. Zhang, and X. Zhang. 2016.“Simulation of Continuous Rainfall over South China in Early 2008 with the Spectral Nudging Method and the Periodicity Characteristics of the Water Vapor Channel.”Chinese Journal of Atmospheric Sciences (in Chinese)40: 476–488.

    Wang, S. Z., E. T. Yu, and H. J. Wang. 2012. “A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-way Nesting Approach.”Advances in Atmospheric Sciences29: 731–743.

    Wheeler, M. C., and H. H. Hendon. 2004. “An All-season Realtime Multivariate MJO Index: Development of an Index for Monitoring and Prediction.”Monthly Weather Review132:1917–1932.

    Xu, Z., and Z. L. Yang. 2015. “A New Dynamical Downscaling Approach with GCM Bias Corrections and Spectral Nudging.”Journal of Geophysical Research Atmospheres120: 3063–3084.

    Zhang, J. J., W. J. Li, X. D. Xu, and J. Miao. 1994. “The Experiment of DERF with T42L9 Model for DEKAD and Monthly Mean Circulation Anomaly during the Summer Heavy Rainfall Period in 1991.”Acta Meteorologica Sinica (in Chinese)52:180–186.

    Zhao, Y. F., D. H. Wang, Z. M. Liang, and J. J. Xu. 2016. “Improving Numerical Experiments on Persistent Severe Rainfall Events in Southern China Using Spectral Nudging and Filtering Schemes.”Quarterly Journal of the Royal Meteorological Society142: 3115–3127.

    Zhao, Y. F., D. H. Wang, Z. M. Liang, and J. J. Xu. 2017. “On the Dynamics of the Large-scale Circulation during the Persistent Severe Rainfall Events in Southern China.”Journal of the Meteorological Society of Japan95: 111–125.

    Zhao, Y. F., D. H. Wang, and J. J. Xu. 2017a. “Improving the Regional Model Forecasting of Persistent Severe Rainfall over the Yangtze River Valley Using the Spectral Nudging and Update Cycle Methods: A Case Study.”Atmospheric Science Letters18: 96–102.

    Zhao, Y. F., D. H. Wang, and J. J. Xu. 2017b. “An Attempt to Improve the Forecasting of Persistent Severe Rainfall Using the Spectral Nudging and Update Cycle Methods.”Weather and Forecasting32: 713–723.

    Zhou, T. J., and R. C. Yu. 2005. “Atmospheric Water Vapor Transport Associated with Typical Anomalous Summer Rainfall Patterns in China.”Journal of Geophysical Research Atmospheres110: 211–211.

    Zhu, Z., and T. Li. 2017a. “Extended-Range Forecasting of Chinese Summer Surface Air Temperature and Heat Waves.”Climate Dynamics: 1–15. doi:10.1007/s00382-017-3733-7.

    Zhu, Z., and T. Li. 2017b. “Statistical Extended-Range Forecast of Winter Surface Air Temperature and Extremely Cold Days over China.”Quarterly Journal of the Royal Meteorological Society704 (143): 1528–1538.

    一进一出抽搐动态| 久久久久国产一级毛片高清牌| videosex国产| 人人妻人人看人人澡| 免费电影在线观看免费观看| 可以在线观看毛片的网站| 91麻豆精品激情在线观看国产| 国产亚洲精品一区二区www| 久久久久国内视频| 少妇粗大呻吟视频| 国产精品免费一区二区三区在线| 色综合亚洲欧美另类图片| 麻豆成人av在线观看| 中文字幕久久专区| 非洲黑人性xxxx精品又粗又长| 国产一区二区激情短视频| 日本黄色视频三级网站网址| 三级男女做爰猛烈吃奶摸视频| 黑人巨大精品欧美一区二区mp4| 国产成人aa在线观看| 久久久水蜜桃国产精品网| 97碰自拍视频| 色噜噜av男人的天堂激情| 日韩 欧美 亚洲 中文字幕| 男女下面进入的视频免费午夜| 亚洲精品美女久久久久99蜜臀| 亚洲 欧美 日韩 在线 免费| 88av欧美| 精品欧美国产一区二区三| 国产成人一区二区三区免费视频网站| 国产精品野战在线观看| 国产精品久久久久久亚洲av鲁大| 国产精品日韩av在线免费观看| 日韩欧美免费精品| 国产亚洲欧美98| 一级毛片高清免费大全| 国产午夜福利久久久久久| av在线播放免费不卡| 久久人妻福利社区极品人妻图片| 国产69精品久久久久777片 | 操出白浆在线播放| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 国产免费av片在线观看野外av| 日韩av在线大香蕉| 精品久久久久久久久久久久久| 少妇熟女aⅴ在线视频| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 午夜激情福利司机影院| 亚洲一区二区三区不卡视频| 美女午夜性视频免费| 日本免费a在线| 可以在线观看的亚洲视频| 桃红色精品国产亚洲av| 18美女黄网站色大片免费观看| 99在线视频只有这里精品首页| 午夜福利视频1000在线观看| 最近最新免费中文字幕在线| 淫秽高清视频在线观看| 亚洲熟女毛片儿| 高清在线国产一区| 日本三级黄在线观看| 美女 人体艺术 gogo| 亚洲人成电影免费在线| 久9热在线精品视频| aaaaa片日本免费| 法律面前人人平等表现在哪些方面| 久久人妻av系列| 日本三级黄在线观看| 亚洲精品美女久久av网站| 中亚洲国语对白在线视频| 欧美性猛交╳xxx乱大交人| 最近在线观看免费完整版| 制服诱惑二区| 一进一出抽搐动态| 中文字幕精品亚洲无线码一区| 97超级碰碰碰精品色视频在线观看| 狠狠狠狠99中文字幕| 亚洲国产精品sss在线观看| 久久久久久久久免费视频了| 精品久久久久久成人av| 久久久久久亚洲精品国产蜜桃av| 黄色丝袜av网址大全| 50天的宝宝边吃奶边哭怎么回事| 美女扒开内裤让男人捅视频| 超碰成人久久| 亚洲美女黄片视频| 亚洲av美国av| 午夜影院日韩av| 久久久久亚洲av毛片大全| 19禁男女啪啪无遮挡网站| 三级毛片av免费| 妹子高潮喷水视频| 国产视频一区二区在线看| 91字幕亚洲| 三级男女做爰猛烈吃奶摸视频| 中文字幕人成人乱码亚洲影| 欧美大码av| 最近在线观看免费完整版| 国产精品久久久人人做人人爽| 国产午夜精品论理片| 99国产精品一区二区蜜桃av| 一级毛片高清免费大全| 正在播放国产对白刺激| 可以在线观看的亚洲视频| 真人做人爱边吃奶动态| 听说在线观看完整版免费高清| 9191精品国产免费久久| 国产视频内射| 国产亚洲欧美98| 午夜精品久久久久久毛片777| 女警被强在线播放| av片东京热男人的天堂| 香蕉国产在线看| 免费观看人在逋| 欧美又色又爽又黄视频| 色老头精品视频在线观看| 欧美最黄视频在线播放免费| а√天堂www在线а√下载| 亚洲美女视频黄频| 精品国产超薄肉色丝袜足j| 欧美三级亚洲精品| 亚洲午夜精品一区,二区,三区| 亚洲va日本ⅴa欧美va伊人久久| 午夜日韩欧美国产| 一级毛片精品| 一二三四在线观看免费中文在| 久久欧美精品欧美久久欧美| 国产av不卡久久| 精品欧美国产一区二区三| 91大片在线观看| 亚洲午夜理论影院| 久久婷婷成人综合色麻豆| 亚洲精品在线观看二区| 欧美又色又爽又黄视频| 国产精品久久久久久久电影 | 亚洲免费av在线视频| 黄片大片在线免费观看| 51午夜福利影视在线观看| 久久香蕉激情| 人人妻人人澡欧美一区二区| 成人三级做爰电影| 两个人视频免费观看高清| 天天添夜夜摸| 91九色精品人成在线观看| 99国产精品一区二区蜜桃av| 色综合站精品国产| 丰满人妻一区二区三区视频av | 日本三级黄在线观看| 中出人妻视频一区二区| 99久久精品热视频| 国产单亲对白刺激| 免费搜索国产男女视频| 这个男人来自地球电影免费观看| 国产精华一区二区三区| 亚洲18禁久久av| 丝袜美腿诱惑在线| 老司机深夜福利视频在线观看| 成人国语在线视频| 亚洲成a人片在线一区二区| 1024视频免费在线观看| 久久精品国产清高在天天线| 亚洲中文av在线| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩亚洲国产一区二区在线观看| 精品第一国产精品| 一区二区三区国产精品乱码| 一二三四在线观看免费中文在| 人妻夜夜爽99麻豆av| 国产片内射在线| 国产精品 国内视频| 欧美中文日本在线观看视频| 一本久久中文字幕| 亚洲 国产 在线| 国产爱豆传媒在线观看 | 国内精品一区二区在线观看| 丝袜人妻中文字幕| 男女视频在线观看网站免费 | 97碰自拍视频| 一卡2卡三卡四卡精品乱码亚洲| 91麻豆精品激情在线观看国产| 亚洲成人国产一区在线观看| av在线天堂中文字幕| 亚洲av熟女| 一边摸一边抽搐一进一小说| 三级毛片av免费| 看黄色毛片网站| 欧美性长视频在线观看| 国内精品一区二区在线观看| 国产精品久久久久久久电影 | 久久久精品大字幕| 日日爽夜夜爽网站| 天堂av国产一区二区熟女人妻 | 999久久久精品免费观看国产| 久久精品aⅴ一区二区三区四区| 国产99白浆流出| 午夜a级毛片| 黑人巨大精品欧美一区二区mp4| 成人18禁在线播放| 看片在线看免费视频| 男女那种视频在线观看| 一级a爱片免费观看的视频| 国产精品久久久久久久电影 | 99国产综合亚洲精品| 亚洲精品中文字幕一二三四区| 亚洲七黄色美女视频| 久久久久久久午夜电影| 亚洲av电影在线进入| 色在线成人网| 国产男靠女视频免费网站| 黄色成人免费大全| 91在线观看av| 国产野战对白在线观看| 国产激情偷乱视频一区二区| 久久久久免费精品人妻一区二区| 99国产精品99久久久久| 成人国产综合亚洲| 亚洲全国av大片| 亚洲成人中文字幕在线播放| 99久久精品热视频| 国产黄a三级三级三级人| 少妇裸体淫交视频免费看高清 | 老汉色∧v一级毛片| 少妇熟女aⅴ在线视频| 久久久久久久久中文| 欧美不卡视频在线免费观看 | 国产三级中文精品| 国产成年人精品一区二区| 2021天堂中文幕一二区在线观| 亚洲精品在线观看二区| 一进一出好大好爽视频| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩无卡精品| 99久久国产精品久久久| 19禁男女啪啪无遮挡网站| 可以在线观看毛片的网站| 亚洲免费av在线视频| 高潮久久久久久久久久久不卡| 免费观看精品视频网站| 老熟妇乱子伦视频在线观看| 成人精品一区二区免费| 人人妻人人看人人澡| 午夜福利18| 国产一区二区在线观看日韩 | 男男h啪啪无遮挡| 正在播放国产对白刺激| 在线观看舔阴道视频| 一级黄色大片毛片| 精品国产亚洲在线| 在线观看舔阴道视频| 久久午夜亚洲精品久久| 亚洲成a人片在线一区二区| 欧美丝袜亚洲另类 | 国产成人av教育| 欧美黄色淫秽网站| 在线播放国产精品三级| 亚洲免费av在线视频| 免费在线观看亚洲国产| 国内少妇人妻偷人精品xxx网站 | 精华霜和精华液先用哪个| 我的老师免费观看完整版| 亚洲,欧美精品.| 中文字幕熟女人妻在线| av欧美777| 国产高清视频在线观看网站| 亚洲欧美日韩无卡精品| 99国产极品粉嫩在线观看| 黄片小视频在线播放| 给我免费播放毛片高清在线观看| xxxwww97欧美| 日本熟妇午夜| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 在线观看日韩欧美| 麻豆一二三区av精品| 黄色丝袜av网址大全| 午夜精品一区二区三区免费看| 久久精品国产99精品国产亚洲性色| 成人国产综合亚洲| 在线国产一区二区在线| 国产视频一区二区在线看| 精品电影一区二区在线| av免费在线观看网站| 久久人妻福利社区极品人妻图片| 色综合站精品国产| a级毛片a级免费在线| 男人的好看免费观看在线视频 | 午夜精品久久久久久毛片777| √禁漫天堂资源中文www| 老熟妇仑乱视频hdxx| 岛国在线免费视频观看| 精品欧美一区二区三区在线| xxx96com| 伊人久久大香线蕉亚洲五| 国产精品九九99| av片东京热男人的天堂| 国产单亲对白刺激| 精品久久久久久久久久免费视频| 一本大道久久a久久精品| 99久久99久久久精品蜜桃| 亚洲欧美精品综合久久99| 大型av网站在线播放| 久久精品91无色码中文字幕| 99热只有精品国产| 五月伊人婷婷丁香| 亚洲狠狠婷婷综合久久图片| 黄片大片在线免费观看| 18禁裸乳无遮挡免费网站照片| 成人亚洲精品av一区二区| 韩国av一区二区三区四区| 在线观看免费视频日本深夜| 曰老女人黄片| 国产一区二区三区视频了| 欧美在线黄色| 久久精品影院6| 69av精品久久久久久| 中出人妻视频一区二区| 亚洲专区字幕在线| 亚洲中文日韩欧美视频| 日本熟妇午夜| 12—13女人毛片做爰片一| 欧美黑人欧美精品刺激| 这个男人来自地球电影免费观看| 99热6这里只有精品| 久久性视频一级片| 国产精品爽爽va在线观看网站| 99热只有精品国产| 天堂动漫精品| 宅男免费午夜| 精品久久久久久久毛片微露脸| 两性夫妻黄色片| cao死你这个sao货| 国产午夜精品久久久久久| 国产亚洲av嫩草精品影院| 制服丝袜大香蕉在线| 18禁美女被吸乳视频| 99riav亚洲国产免费| 在线观看免费午夜福利视频| 别揉我奶头~嗯~啊~动态视频| 久久热在线av| 两性午夜刺激爽爽歪歪视频在线观看 | 禁无遮挡网站| 亚洲精品色激情综合| 亚洲五月婷婷丁香| 日本黄大片高清| 9191精品国产免费久久| 丁香六月欧美| 超碰成人久久| 99热这里只有精品一区 | 欧美黑人欧美精品刺激| 日本a在线网址| 久久九九热精品免费| 久久午夜综合久久蜜桃| 我的老师免费观看完整版| 国内精品一区二区在线观看| 成人特级黄色片久久久久久久| 18禁国产床啪视频网站| 99国产精品一区二区蜜桃av| xxxwww97欧美| 久久久久免费精品人妻一区二区| 曰老女人黄片| 亚洲片人在线观看| 久久精品91蜜桃| 亚洲欧美精品综合一区二区三区| 嫩草影视91久久| 嫩草影院精品99| 国产区一区二久久| 一二三四在线观看免费中文在| 在线观看日韩欧美| a在线观看视频网站| 久9热在线精品视频| 高潮久久久久久久久久久不卡| 91九色精品人成在线观看| 亚洲专区字幕在线| 变态另类成人亚洲欧美熟女| 亚洲美女黄片视频| 在线永久观看黄色视频| 精品午夜福利视频在线观看一区| 日韩成人在线观看一区二区三区| 国产成人av教育| 免费在线观看影片大全网站| 国产成人影院久久av| 亚洲熟女毛片儿| 在线观看美女被高潮喷水网站 | 极品教师在线免费播放| 白带黄色成豆腐渣| 国产精品影院久久| 免费看a级黄色片| 中文字幕av在线有码专区| av福利片在线观看| www.自偷自拍.com| 天天添夜夜摸| 首页视频小说图片口味搜索| 亚洲av五月六月丁香网| 亚洲片人在线观看| 性色av乱码一区二区三区2| 窝窝影院91人妻| 国产精品综合久久久久久久免费| 五月玫瑰六月丁香| 午夜老司机福利片| 黄色毛片三级朝国网站| 村上凉子中文字幕在线| 亚洲国产精品成人综合色| 久久久久国内视频| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣巨乳人妻| 女人爽到高潮嗷嗷叫在线视频| 国产又黄又爽又无遮挡在线| 一二三四社区在线视频社区8| 欧美日韩亚洲国产一区二区在线观看| 午夜久久久久精精品| 亚洲最大成人中文| 午夜福利18| 97人妻精品一区二区三区麻豆| 国产蜜桃级精品一区二区三区| 日韩欧美一区二区三区在线观看| 免费在线观看完整版高清| 高清毛片免费观看视频网站| 久久香蕉激情| 99热6这里只有精品| 亚洲专区字幕在线| 久久精品影院6| 亚洲人与动物交配视频| 级片在线观看| 2021天堂中文幕一二区在线观| 大型av网站在线播放| aaaaa片日本免费| 亚洲成av人片在线播放无| 亚洲成人中文字幕在线播放| 久久久精品欧美日韩精品| 99久久精品国产亚洲精品| 成人18禁高潮啪啪吃奶动态图| 岛国在线观看网站| 18禁国产床啪视频网站| 亚洲人与动物交配视频| 久久草成人影院| 欧美成人免费av一区二区三区| av福利片在线| 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 国产精品一及| 久久久久九九精品影院| 精品熟女少妇八av免费久了| www日本在线高清视频| 国产高清激情床上av| 99在线视频只有这里精品首页| 91九色精品人成在线观看| 男人舔女人下体高潮全视频| 亚洲av第一区精品v没综合| 最新在线观看一区二区三区| 亚洲av电影不卡..在线观看| 国产精品亚洲av一区麻豆| 精品电影一区二区在线| 国产精华一区二区三区| 亚洲欧美日韩东京热| 亚洲人成77777在线视频| 人妻丰满熟妇av一区二区三区| 草草在线视频免费看| 国产97色在线日韩免费| 色哟哟哟哟哟哟| 久久久久久久精品吃奶| 女人爽到高潮嗷嗷叫在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 午夜激情福利司机影院| 妹子高潮喷水视频| 亚洲中文av在线| 欧美另类亚洲清纯唯美| 我的老师免费观看完整版| 日本a在线网址| 欧美丝袜亚洲另类 | 欧美日韩国产亚洲二区| 日日夜夜操网爽| 在线观看舔阴道视频| 他把我摸到了高潮在线观看| 在线观看日韩欧美| 欧美激情久久久久久爽电影| 亚洲精品中文字幕在线视频| 亚洲18禁久久av| 欧美人与性动交α欧美精品济南到| 欧美国产日韩亚洲一区| 亚洲国产精品合色在线| 丰满人妻一区二区三区视频av | 国产成人精品久久二区二区91| 人妻丰满熟妇av一区二区三区| 久久久国产欧美日韩av| 久久这里只有精品19| 欧美日韩精品网址| 国内毛片毛片毛片毛片毛片| 国产精品 欧美亚洲| 两个人的视频大全免费| 国产精品久久久久久精品电影| 精品国产美女av久久久久小说| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 一进一出好大好爽视频| 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 99久久精品国产亚洲精品| 啦啦啦观看免费观看视频高清| 老熟妇乱子伦视频在线观看| 男女午夜视频在线观看| 亚洲成av人片在线播放无| 精品久久久久久久人妻蜜臀av| 91九色精品人成在线观看| 一进一出好大好爽视频| 久久久久国内视频| 两人在一起打扑克的视频| 9191精品国产免费久久| 亚洲18禁久久av| 老司机福利观看| 美女大奶头视频| 久久人妻福利社区极品人妻图片| 亚洲av中文字字幕乱码综合| 欧美黑人精品巨大| 成人欧美大片| 国产精品爽爽va在线观看网站| 怎么达到女性高潮| 淫秽高清视频在线观看| 亚洲国产欧美网| 18美女黄网站色大片免费观看| 精品福利观看| 国产精品美女特级片免费视频播放器 | 岛国在线观看网站| 波多野结衣高清作品| 欧美大码av| www日本在线高清视频| 黄片大片在线免费观看| 色哟哟哟哟哟哟| 91成年电影在线观看| 国产真实乱freesex| 国产真实乱freesex| 男男h啪啪无遮挡| 亚洲国产欧美网| 亚洲男人天堂网一区| 精品日产1卡2卡| 国产三级在线视频| 一本一本综合久久| 少妇熟女aⅴ在线视频| 大型av网站在线播放| 国产又黄又爽又无遮挡在线| 午夜影院日韩av| 久久久久国内视频| 国产精品电影一区二区三区| 国产在线观看jvid| 久99久视频精品免费| 国产又色又爽无遮挡免费看| 成熟少妇高潮喷水视频| 日韩欧美一区二区三区在线观看| 黄色丝袜av网址大全| 亚洲成av人片在线播放无| 国产片内射在线| 黄色女人牲交| 高清在线国产一区| 亚洲成人久久性| 狠狠狠狠99中文字幕| 国产久久久一区二区三区| av中文乱码字幕在线| 18禁黄网站禁片免费观看直播| 老熟妇仑乱视频hdxx| 我要搜黄色片| 欧美中文综合在线视频| 国产精品99久久99久久久不卡| 国产av在哪里看| 亚洲黑人精品在线| 久久久水蜜桃国产精品网| www国产在线视频色| av福利片在线观看| 麻豆国产97在线/欧美 | 成人av一区二区三区在线看| 久久人妻av系列| 国产视频一区二区在线看| 亚洲18禁久久av| 又大又爽又粗| 99精品在免费线老司机午夜| 老鸭窝网址在线观看| 黄色丝袜av网址大全| 嫩草影视91久久| 两个人视频免费观看高清| 窝窝影院91人妻| 国产精品久久久人人做人人爽| 在线看三级毛片| 无限看片的www在线观看| 午夜免费成人在线视频| 嫩草影视91久久| av视频在线观看入口| 亚洲第一电影网av| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av在线大香蕉| 在线国产一区二区在线| 国产精品一及| 别揉我奶头~嗯~啊~动态视频| 国产精品免费视频内射| 久久性视频一级片| 好男人电影高清在线观看| 久9热在线精品视频| 亚洲一区二区三区色噜噜| 国产精品永久免费网站| tocl精华| 夜夜躁狠狠躁天天躁| 深夜精品福利| 国产v大片淫在线免费观看| 国产高清激情床上av| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 级片在线观看| 久久精品影院6| 久久久久久久久中文| 国产成人精品久久二区二区91| 在线观看免费视频日本深夜| 国产伦人伦偷精品视频| 狂野欧美白嫩少妇大欣赏| 在线a可以看的网站| 久久精品成人免费网站|