• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Regional earth system modeling: review and future directions

    2018-05-24 01:41:49FilippoGIORGIndGAOXueJieTheAdusSlmInterntionlCentreforTheoretilPhysisTriesteItlyClimteChngeReserhCenterInstituteofAtmospheriPhysisChineseAdemyofSienesBeijingChinUniversityofChineseAdemyofSienesBeijingChin

    Filippo GIORGI nd GAO Xue-Jie,The Adus Slm Interntionl Centre for Theoretil Physis, Trieste, Itly; Climte Chnge Reserh Center, Institute of Atmospheri Physis,Chinese Ademy of Sienes, Beijing, Chin; University of Chinese Ademy of Sienes, Beijing, Chin

    1. Introduction

    Since the pioneering work of Dickinson et al. (1989), Giorgi and Bates (1989) and Giorgi (1990), the field of regional climate modeling has tremendously grown. Today a number of regional climate models (RCMs) from laboratories around the world are used for a wide variety of applications, from process studies at the seasonal to interannual scale, to multicentennial climate projections, with resolutions varying from ~50 km to convection permitting(<5 km) (Giorgi and Gutowski 2015). A number of intercomparison projects, culminating into the international Coordinated Regional Downscaling EXperiment (CORDEX,Giorgi, Jones, and Asrar 2009; Jones, Giorgi, and Asrar 2011;Gutowski et al. 2016), have enabled the RCM community to explore key issues in regional modeling and assess the potential of this technique to produce climate information relevant for impact and adaptation studies. The evolution of regional modeling is discussed in a number of review papers (See Giorgi and Gutowski 2015, and papers cited therein) to which the reader is referred to have an overview of the status of this field of research.

    Here we focus on what is considered to be one of the main future directions in RCM research, namely the development of interactively coupled Regional Earth System Models (RESM) (Giorgi and Gutowski 2015). The great opportunity represented by RCMs in describing the regional interactions across different components of the climate system was already recognized in the early stages of RCM development (Giorgi 1995). This is because many of these interactions take place at spatial scales that are not resolved by global models, and are more closely captured at the high resolution achievable with RCMs. Typical examples are the presence of complex vegetation structures,small river and ocean basins, lakes, tropospheric aerosols,mesoscale atmosphere, and ocean circulation features, etc.

    Recognizing this opportunity, the RCM modeling community has actively engaged in the development of RESM systems usable in different regional contexts. Today several coupled RESMs exist, including varying sets of components, which have been applied to a wide range of different regions (e.g. Peng et al. 2012; Giorgi and Gutowski 2015;Schrum 2017). Some models, in particular, include multiple Earth system components, such as atmosphere, oceans, sea ice, hydrology, and land and/or marine biogeochemistry(Drobinski et al. 2012; Zou and Zhou 2012; Lorenz and Jacob 2014; Sevault et al. 2014; Sein et al. 2015; Sitz et al. 2017).

    In this paper we thus review the status and perspectives of RESM development by first describing the basic modeling structure of a coupled RESM (Section 2), then presenting illustrative examples of studies addressing the regional interactions across different climate system components(Section 3), and finally discussing future directions.

    2. The basic structure of a coupled RESM

    Figure 1 illustrates the basic structure of a coupled RESM.The main components of the model are the atmosphere, ocean, land surface and hydrology, cryosphere,chemosphere (gaseous compounds and aerosols), and biosphere. The atmosphere interacts with the oceans, land,and cryosphere through exchanges of energy and mass;with chemistry/aerosols through processes of emission,transport, and removal; and with the biosphere through its effects on the biogeochemical cycles. Similar interactions are found for the oceans and cryospheric components, with the addition of a direct coupling of oceans and land through river discharge. Atmospheric constituents and aerosols can have strong interactions with the atmosphere and regional climate, as well as the biosphere, both terrestrial and marine, through radiative, microphysical,and chemical processes. It is also important to emphasize that many of the interactions described above are highly non-linear due to the presence of strong feedbacks, such as the ice-albedo one.

    The main difference between the RESM structure of Figure 1 and the structure of global Earth System Models(ESM) is that RESMs, being run only over a limited area domain, require time-dependent lateral boundary conditions for those components regulated by three-dimensional dynamical equations, such as the atmosphere,oceans, and chemosphere. These have to be provided either by global ESMs or by analyses of observations.

    Figure 1. Schematic depiction of a coupled Regional Earth System Model framework and the interactions across it’s different components and GCM drivers (CTM: Chemical transport model). Arrows indicate the flow of information. Blue arrow: the interaction with driving global models; red arrow: the interaction inside the RESM.

    Two technical aspects make coupled modeling particularly difficult. The first is that most often, the different components are run on different spatial grids, resolutions and domains. For example, in order to resolve mesoscale ocean eddies, often the ocean models are run at higher horizontal resolution than the atmospheric counterparts.Therefore variables exchanged at their interfaces (for example, energy fluxes and wind stress at the ocean-atmosphere interface) need to be interpolated from one domain grid to another. This is usually achieved either using ad hoc procedures or general interpolator packages that can actually be quite complex. It should be remembered, however, that there might be errors or excessive approximations in the spatial interpolation introduced as a result of the different scales characteristic of different phenomena. For example, given interface fields may have to be disaggregated or upscaled in the exchange process.These may result in an imbalance across the models, which calls for careful interpolation procedures or suitable correction techniques (e.g. flux correction).

    The second difficulty is related to the different temporal scales of evolution across components. For example,the atmosphere evolves and responds to external forcings much more rapidly than the oceans, which have a higher thermal and dynamical inertia, and thus longer evolution times. In fact, some chemical reactions can occur at extremely fast temporal scales. On the one hand,this implies that each component runs with different time steps, and thus some temporal interpolation is necessary in the information exchange. In the meantime, relatively long simulation times are needed to equilibrate the atmosphere and ocean components which, for a high resolution model, can prove to be a daunting computational task. This problem has been often bypassed through the so-called asynchronous coupling, in which ocean and atmosphere components are not coupled at each time step, but at different temporal scales.

    Without going into greater technical detail, it is clear that the development of a fully coupled comprehensive RESM system is a formidable modeling task, which has been so far approached by incremental steps in which various components have been incrementally added to a base modeling framework. This has resulted in studies addressing different interactions across the components,as will be reviewed in the next section.

    3. Illustrative examples of coupled regional modeling studies

    3.1. Atmosphere-ocean coupling

    The development of the first coupled atmosphere-ocean RCMs (AORCMs) is relatively recent, late 2000s and early 2010s, however a number of coupled AORCMs are already available (e.g. Schrum 2017). An issue central to regional ocean-atmosphere coupling is weather the coupling itself improves the simulation of climate features compared to the uncoupled atmospheric model. This has been clearly shown for extreme weather phenomena, such as tropical cyclones (Bao et al. 2000; Bender and Ginis 2000; Bender et al. 2010), or in highly convective regions, such as the maritime continent (Aldrian et al. 2005; Seo, Miller, and Roads 2007; Wei et al. 2014), or the South Atlantic (Byrne et al. 2015; Ratnam et al. 2015).

    A region where air-sea coupling is particularly important is the Indian ocean, and for this reason several coupled RCM development efforts focused on the Indian ocean basin. Among them, Krishna, Hoerling, and Rajagopalan(2005), Seo et al. (2008, 2009), Ratnam et al. (2009), Samala et al. (2013), Samson et al. (2014), and Di Sante (2017)built AORCMs coupling different atmospheric and ocean regional model components. Their studies indeed found that, compared to the stand alone atmospheric RCMs, the coupled models improved the simulation of the patterns and intraseasonal variability of the South Asia monsoon precipitation, as well as the simulation of tropical storms,due to the effect of air-sea coupling. It thus appears that coupled AORCMs can be especially useful in regional tropical climate settings.

    A similar result was also found for the East Asia monsoon, where air-sea coupling significantly improved the simulation of the monsoon’s evolution and variability(Zou and Zhou 2013, 2016). For example as shown in Figure 2, the temporal correlation coefficients of precipitation anomaly between observed and simulated over the Western North Pacific and South China Sea are 0.14 and 0.37 before the coupling, and 0.50 and 0.55 after the coupling, respectively (Zou and Zhou 2013). Several other efforts have indeed been devoted to the development of coupled atmosphere-ocean regional models for the East Asia region (Lin, Qian, and Zhang 2006; Fang et al. 2009;Yao and Zhang 2009; Li and Zhou 2010).

    In addition, Seo, Miller, and Roads (2007) found that air-sea mesoscale interactions improved the simulation of frontal systems and associated precipitation patterns over the Eastern Pacific Sector, while different models have shown good performance in reproducing air-sea mesoscale interactions in coastal upwelling regions (Ribeiro,Soares, and de Oliveira 2011; Putrasahan, Miller, and Seo 2013; Li et al. 2014a, 2014b).

    Another region for which coupled regional modeling has been particularly active is the Mediterranean basin,where several AORCMs have been developed as part of the European project CIRCE (Gualdi et al. 2013) as well as the MED-CORDEX initiative (Ruti et al. 2016), towards the purpose of building fully coupled RESMs. Among such AORCMs are those of Djurdjevic and Rajkovic (2008); Somot et al.(2008); Artale et al. (2010); Elizalde et al. 2010; Drobinski et al. (2012); Sevault et al. (2014). The Mediterranean basin is an optimal setting for regional coupling because many air sea interactions occur at the mesoscale, for example in the generation of deep water and extreme meteorological events (e.g. Lebeaupin Brossier et al. 2015), and because it is a semi-enclosed sea, thus reducing the importance of the provision of ocean lateral boundary conditions.Coupled AORCMs for the Mediterranean have been run for twenty- first century projections, and have indicated that the coupling can indeed modulate significantly the climate change signal from the uncoupled models (e.g.Somot et al. 2008; Dubois et al. 2012).

    Finally, since the early years of RCM development, a number of studies have investigated the interactions between atmosphere and lakes via the use of coupled RCM-lake models. This has been done for lakes in the continental U.S. (e.g. Hostetler, Bates, and Giorgi 1993; Bates,Hostetler, and Giorgi 1995; Martynov et al. 2012; Notaro et al. 2013), Central Asia (e.g. Small et al. 1999; Turuncoglu et al. 2013), Africa (e.g. Thiery et al. 2015; Diallo, Giorgi, and Stordal 2017), and Europe (e.g. Mironov et al. 2010).

    Figure 2. Precipitation anomaly over (a) the Western North Pacific(WNP, 10°N–25°N, 120°E–150°E) and (b) South China Sea (SCS,5°N–20°N, 110°E–120°E) (units: %). Black line: CMAP observations;Red line: simulation by the atmosphere-ocean coupled RegCM3-LICOM2.0; Blue line: control run with RegCM3 (atmosphere only).Source: Zou and Zhou (2013).

    3.2. Regional coupling with the cryosphere

    An important component of coupled RCM development is the cryosphere. Traditionally, land surface schemes used in RCMs have included interactive snow modules,so we will not focus on snow, but on specific models of cryospheric systems, such as sea ice and glacier models. Coupled regional atmosphere-ocean-sea ice models have been developed for cold climate regions, such as the Arctic (e.g. Curry and Lynch 2002; Roberts et al. 2008), the Antarctic (Bailey and Lynch 2000), the North Sea and Baltic Sea basins (e.g. Gustafsson, Nyberg, and Omstedt 1998;Hagedorn, Lehmann, and Jacob 2000; Doscher et al. 2002;Schrum et al. 2003; Lehmann, Lorenz, and Jacob 2004; Van Pham et al. 2014; Su et al. 2014; Wang et al. 2015a), and the Caspian Sea (e.g. Turuncoglu et al. 2013).

    Many of these developments have occurred within the context of multi-model intercomparison projects(e.g. Raschke et al. 2001; Curry and Lynch 2002; Rinke et al. 2006), and the models have been applied to a variety of studies, from analyses of atmosphere-ocean-sea ice coupling (Rinke et al. 2003; Mikolajewicz et al. 2005; D?scher et al. 2010; D?scher and Koenigk 2013; Gr?ger et al. 2015) to future climate projections (Kjellstr?m, D?scher, and Meier 2005; Meier 2006; Bülow et al. 2014; Meier 2015; Koenigk,Do¨Scher, and Nikulin 2011; Schrum et al. 2016). All these studies clearly indicated that the interactive sea ice component substantially increases both the model varibility and the inter-model spread in the simulated response to future warming. This is mostly because of the model representation of sea ice thermodynamical processes and their response to external forcings and air-sea-ice interactions (Schrum 2017).

    The development of interactive land glaciers, to date,has received less attention, mostly because of the scale mismatch between glacier processes and the resolution of RCMs (Kotlarski et al. 2010). This will likely require either the use of sub-grd scale parameterizations of land surface processes, or the move to very high resolution convection-permitting models.

    More generally, increased development and testing of coupled atmosphere-ocean-cryosphere RCMs will be necessary to better describe the complex and highly non-linear interactions between the climate and the cryosphere in order to enhance the reliability of climate projections in cold-climate regions.

    Figure 3. Changes of dust column burden in December–January–February–March (DJFM) and April–May (AM) in the end of twenty- first century (2091–2100 in relative 1991–2000) over northern China under A1B scenario as simulated by RegCM3 driven by MIROC3.2_hires(units: mg m?2). Source: Zhang et al. (2016).

    3.3. Atmosphere-chemistry/aerosol coupling

    One of the areas that has received considerable attention is the interactive coupling of regional climate and chemistry/aerosol models. This is because tropospheric aerosols can exert a radiative forcing sufficient to significantly affect regional climates, especially in tropical regions. The first simplified aerosol model coupled to an RCM was developed by Qian and Giorgi (1999), who found that the direct radiative forcing of anthropogenic sulfate aerosols over East Asia is sufficient to produce a statistically significant cooling and decrease of precipitation over the region. This pioneering work was followed by a series of further RCM-based studies of direct and indirect effects of sulfate and organic aerosols over East Asia (e.g. Qian et al. 2001, 2003;Giorgi, Bi, and Qian 2003; Li et al. 2009; Ji et al. 2011, 2015;Wang et al. 2015b), as well as mineral dust emitted from the Gobi desert (e.g. Zhang et al. 2009, 2016; and Figure 3;Han et al. 2013; Ji et al. 2016b), which con firmed the important role that anthropogenic aerosol emissions have in modulating the highly polluted climate of East Asia.

    Similar experiments have been conducted also over the Africa continent, where biomass burning and Saharan dust are important environmental and climate concerns.A series of coupled RCM-aerosol based studies investigated the role of biomass burning aerosols and mineral dust emissions on the West Africa monsoon precipitation(Konare et al. 2008; Solmon et al. 2008; Ji et al. 2016a).They found that the aerosol can significantly affect the monsoon development through the competing effect of surface cooling and elevated heat pumping, the former leading to an inhibition of the inland penetration of the monsoon rain band, and the latter leading to a contrary effect. Depending on the aerosol optical properties, one effect was dominant over the other, demonstrating the importance of accurately characterizing aerosol characteristics, both microphysical and optical, in order to best represent aerosol effects on regional climate.

    Coupled RCM-based simulations of aerosol-climate interactions were also conducted over the European region, for example by Nabat et al. (2014, 2015) and Zanis et al. (2012), who showed that direct and semi-direct aerosol effects are key ingredients necessary to explain the spatio-temporal structure of solar radiation and temperature over Europe.

    Within the context of coupled RCM-based aerosol modeling, it should be mentioned that highly simplified aerosol models have been mostly used in climate-type applications due to the computational requirements of running more complex microphysical and chemical schemes.However, efforts are under way to interactively couple within RESM systems full three-dimensional chemistry modules which will allow a more re fined representation of chemistry-climate interactions (e.g. Shalaby et al. 2012).

    3.4. Atmosphere-biosphere coupling

    Coupling of biosphere and atmosphere components in RESMs is important because the surface characteristics can substantially affect regional and local climates. Numerous studies have addressed the effect of land surface changes in RCMs (e.g. Giorgi and Gutowski 2015), but these were imposed and thus no two-way interactions between climate and land use was allowed. Some advanced land surface modules, such as CLM (Oleson et al. 2008), include the capability of describing vegetation dynamics in response to climate input, as well as the presence of crops with annexed technology options. These land modules have been incorporated in different RCMs, and thus would allow the simulation of two-way biosphere-atmosphere interactions. Alternatively, dynamical vegetation/bioeochemistry models can be coupled to RCMs, as done for example by Smith et al. (2011) over Europe, Shi et al. (forthcoming) over China and Wang et al. (2017) over Africa.

    Some early studies of regional biophysical feedbacks have been conducted (e.g. Zhang et al. 2014; Wang et al.2017), but generally these studies present the difficulty of needing long spin-up times to bring the biosphere model to equilibrium with the RCM’s climate. This is clearly an area of research that will receive increasing attention, as anthropogenic climate change and other human activities continue to substantially alter the natural biogeochemical cycle of the Earth.

    4. Future directions in RESM development

    Clearly, the development of RESMs is still in its beginning stages, and will undoubtedly receive increasing attention in the next years. It presents some important technical difficulties, such as the interface of models running on different grid and having a wide range of characteristics times of evolution, and the provision of lateral boundary conditions for the different components of the system. The former problem can be best addressed with the use of general-purpose interpolators, a few of which are available as community tools. The latter may require some more ad hoc solutions, especially concerning the ocean and chemistry components. In both cases, however, attention should be given to the implications of interpolating variables associated with phenomena characterized by different spatial and temporal scales.

    Several coupled atmosphere-ocean-sea ice-aerosol/chemistry RESMs have been developed, but they have been tested mostly over specific domains. Much more work and intercomparison studies are needed to assess the transferability of these coupled models in different regional settings and to obtain general conclusions concerning the importance of the representation of coupled processes. In particular, the inclusion of interactive biosphere has been limited so far, but the interest in this aspect of coupled modeling is indeed growing in view of the role it will play especially within the context of future climate change, which may lead to pronounced changes in natural ecosystems.

    In our opinion, the next challenge in RESM modeling is the inclusion of the human factor. Human activities such as land-use change and greenhouse gas and aerosol emissions, are currently considered in most model experiments as external players in the climate system, either as forcings or as receptors (e.g. impacts). However, there is a two-way interaction between human societies and the natural environment, whereby on the one hand human populations may migrate in response to climatic, environmental and socio-economic stresses, and on the other hand adaptation policies to respond to climate change may in turn affect climate. In an era where humans are now a key component of the climate system, these processes will have to be included in the next generation of earth system models.RESMs can be an optimal test-bed for this model development because it can focus on specific regional interactions,and the lessons learned from this exercise can eventually be extended and generalized to global models.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Key Research and Development Program of China [grant number 2016YFA0600704], the National Natural Science Foundation of China [grant number Y71301U801].

    Notes on contributors

    Filippo Giorgiis the head of the Earth System Physics Section at Abdus Salam International Centre for Theoretical Physics.His main research interests focus on climate modeling and climate change. His recent publications include papers inClimate Dynamics,Journal of Advances in Modeling Earth Systems,Bulletin of the American Meteorological Society,Climatic Change,Journal of Geophysical Researchand other journals.

    Xue-Jie Gaois a senior research scientist at Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences. His main research interests focus on regional climate modeling and climate change. His recent publications include papers inInternational Journal of Climatology,Climate Research,Advances in Atmospheric Science,Atmospheric and Oceanic Science Lettersand other journals.

    References

    Aldrian, E., D. V. Sein, D. Jacob, L. D. Gates, and R. Podzun. 2005.“Modelling Indonesian Rainfall with a Coupled Regional Model.”Climate Dynamics25: 1–17.

    Artale, V., S. Calmanti, A. Carillo, A. Dell’Aquila, M. Herrmann,G. Pisacane, P. M. Ruti, et al. 2010. “An Atmosphere–Ocean Regional Climate Model for the Mediterranean Area:Assessment of a Present Climate Simulation.”Climate Dynamics35: 721–740.

    Bailey, D. A., and A. H. Lynch. 2000. “Development of an Antarctic Regional Climate System Model. Part I: Sea Ice and Large-Scale Circulation.”Journal of Climate13: 1337–1350.

    Bao, J. W., J. M. Wilczak, J. K. Choi, and L. H. Kantha. 2000.“Numerical Simulations of Air–Sea Interaction under High Wind Conditions Using a Coupled Model: A Study of Hurricane Development.”Monthly Weather Review128: 2190–2210.

    Bates, G. T., S. W. Hostetler, and F. Giorgi. 1995. “Two-Year Simulation of the Great Lakes Region with a Coupled Modeling System.”Monthly Weather Review123: 1505–1522.

    Bender, M. A., and I. Ginis. 2000. “Real-Case Simulations of Hurricane–Ocean Interaction Using a High-Resolution Coupled Model: Effects on Hurricane Intensity.”Monthly Weather Review128: 917–946.

    Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A.Vecchi, S. T. Garner, and I. M. Held. 2010. “Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes.”Science327: 454–458.

    Bülow, K., C. Dieterich, H. Heinrich, S. Hüttl-Kabus, B. Klein, B.Mayer, H. E. M. Meier, et al. 2014. “Comparison of 3 Coupled Models in the North Sea Region under Todays and Future Climate Conditions.”KLIWAS Schriftenreihe27.

    Byrne, D., L. Papritz, I. Frenger, M. Munnich, and N. Gruber.2015. “Atmospheric Response to Mesoscale Sea Surface Temperature Anomalies: Assessment of Mechanisms of Coupling Strength in a High Resolution Coupled Model over the South Atlantic.”Journal of the Atmospheric Sciences72:135–153.

    Curry, J. A., and A. H. Lynch. 2002. “Comparing Arctic Regional Climate Model.”Eos, Transactions American Geophysical Union83: 87–88.

    Di Sante, F. 2017. “Assessing the Role of Local Air–Sea Interactions over the South Asia Region in Simulating the Indian Summer Monsoon (ISM) Using the New Earth System Model RegCM–ES.” PhD Thesis,University of Trieste, 137 pp.

    Diallo, I., F. Giorgi, and F. Stordal. 2017. “In fluence of Lake Malawi on Regional Climate from a Double Nested Regional Climate Model Experiment.”Climate Dynamics12: 1–15.

    Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates. 1989. “A Regional Climate Model for the Western United–States.”Climatic Change15: 383–422.

    Djurdjevic, V., and B. Rajkovic. 2008. “Verification of a Coupled Atmosphere–Ocean Model Using Satellite Observations over the Adriatic Sea.”Annales Geophysicae26: 1935–1954.

    D?scher, R., and T. Koenigk. 2013. “Arctic Rapid Sea Ice Loss Events in Regional Coupled Climate Scenario Experiments.”O(jiān)cean Science9: 217–248.

    Doscher, R., U. Willén, C. Jones, A. Rutgersson, H. E. M. Meier, U.Hansson, and L. P. Graham. 2002. “The Development of the Regional Coupled Ocean–Atmosphere Model RCAO.”Boreal Environment Research7: 183–192.

    D?scher, R., K. Wyser, H. E. M. Meier, M. Qian, and R. Redler. 2010.“Quantifying Arctic Contributions to Climate Predictability in a Regional Coupled Ocean-Ice-Atmosphere Model.”Climate Dynamics34: 1157–1176.

    Drobinski, P., A. Anav, C. L. Lebeaupin Brossier, G. Samson, M.Stéfanon, S. Bastin, M. Baklouti, et al. 2012. “Model of the Regional Coupled Earth System (MORCE). Application to Process and Climate Studies in Vulnerable Regions.”Environmental Modelling & Software35: 1–18.

    Dubois, C., S. Somot, S. Calmanti, A. Carillo, M. Déqué, A.Dell’Aquilla, and A. Elizalde. 2012. “Future Projections of the Surface Heat and Water Budgets of the Mediterranean Sea in an Ensemble of Coupled Atmosphere-Ocean Regional Climate Models.”Climate Dynamics39: 1859–1884.

    Elizalde, A., D. Sein, U. Mikolajewick, and D. Jacob. 2010.“Technical Report: Atmosphere–Ocean–Hydrology Coupled Regional Climate Model.”Max Planck Institute for Meteorology51 pp.

    Fang, Y. J., Y. C. Zhang, J. P. Tang, and X. J. Ren. 2009. A Regional Air–Sea Coupled Model and Its Application over East Asia in the Summer of 2000.Advances in Atmospheric Sciences27:583–593.

    Giorgi, F. 1990. “Simulation of Regional Climate Using a Limited Area Model Nested in a General Circulation Model.”Journal of Climate3: 941–963.

    Giorgi, F. 1995. “Perspectives for Regional Earth System Modeling.”Global and Planetary Change10: 23–42.

    Giorgi, F., C. Jones, and G. R. Asrar. 2009. “Addressing Climate Information Needs at the Regional Level: The CORDEX Framework.”World Meteorological Organization (WMO)Bulletin58: 175–183.

    Giorgi, F., and G. T. Bates. 1989. “The Climatological Skill of a Regional Model over Complex Terrain.”Monthly Weather Review117: 2325–2347.

    Giorgi, F., and W. J. Gutowski. 2015. “Regional Dynamical Downscaling and the CORDEX Initiative.”Annual Review of Environment and Resources40: 467–490.

    Giorgi, F., X. Q. Bi, and Y. Qian. 2003. “Indirect versus Direct Effects of Anthropogenic Sulfate on the Climate of East Asia as Simulated with a Regional Coupled Climate–Chemistry/Aerosol Model.”Climatic Change58: 345–376.

    Gr?ger, M., C. Dieterich, M. H. E. Meier, and S. Schimanke. 2015.“Thermal Air-Sea Coupling in Hindcast Simulations for the North Sea and Baltic Sea on the NW European Shelf.”Tellus a:Dynamic Meteorology and Oceanography67: 26911.

    Gualdi, S., S. Somot, L. Li, V. Artale, M. Adani, A. Bellucci, A.Braun, et al. 2013. “The CIRCE Simulations: Regional Climate Change Projections with Realistic Representation of the Mediterranean Sea.”Bulletin of the American Meteorological Society94: 65–81.

    Gustafsson, N., L. Nyberg, and A. Omstedt. 1998. “Coupling of a High-Resolution Atmospheric Model and an Ocean Model for the Baltic Sea.”Monthly Weather Review126: 2822–2846.

    Gutowski, W. J., F. Giorgi, B. Timbal, A. Frigon, D. Jacob, H. Kang,K. Raghavan, et al. 2016. “WCRP Coordinated Regional Downscaling EXperiment (CORDEX): a Diagnostic MIP for CMIP6.”Geoscientific Model Development9: 4087–4095.

    Hagedorn, R., A. Lehmann, and D. Jacob. 2000. “A Coupled High Resolution Atmosphere-Ocean Model for the BALTEX Region.”Meteorologische Zeitschrift9: 7–20.

    Han, Z. W., J. W. Li, W. D. Guo, Z. Xiong, and W. Zhang. 2013.“A Study of Dust Radiative Feedback on Dust Cycle and Meteorology over East Asia by a Coupled Regional Climate–Chemistry–Aerosol Model.”Atmospheric Environment68:54–63.

    Hostetler, S. W., G. T. Bates, and F. Giorgi. 1993. “Interactive Coupling of a Lake Thermal Model with a Regional Climate Model.”Journal of Geophysical Research: Atmospheres98:5045–5057.

    Ji, Z. M., G. L. Wang, J. S. Pal, and M. Yu. 2016a. “Potential Climate Effect of Mineral Aerosols over West Africa. Part I: Model Validation and Contemporary Climate Evaluation.”Climate Dynamics46: 1223–1239.

    Ji, Z. M., S. C. Kang, D. F. Zhang, C. Z. Zhu, J. Wu, and Y. Xu. 2011.“Simulation of the Anthropogenic Aerosols over South Asia and Their Effects on Indian Summer Monsoon.”Climate Dynamics36: 1633–1647.

    Ji, Z. M., S. C. Kang, Q. G. Zhang, Z. Y. Cong, P. F. Chen, and M.Sillanp??. 2016b. “Investigation of Mineral Aerosols Radiative Effects over High Mountain Asia in 1990–2009 Using a Regional Climate Model.”Atmospheric Research179: 484–496.

    Ji, Z. M., S. C. Kang, Z. Y. Cong, Q. G. Zhang, and T. D. Yao. 2015.“Simulation of Carbonaceous Aerosols over the Third Pole and Adjacent Regions: Distribution, Transportation, Deposition,and Climatic Effects.”Climate Dynamics45: 2831–2846.

    Jones, C., F. Giorgi, and G. Asrar. 2011. “The Coordinated Regional Downscaling Experiment: CORDEX–An International Downscaling Link to CMIP5.”CLIVAR Exchanges56: 34–40.

    Kjellstr?m, E., R. D?scher, and H. E. M. Meier. 2005. “Atmospheric Response to Different Sea Surface Temperatures in the Baltic Sea: Coupled versus Uncoupled Regional Climate Model Experiments.”Nordic Hydrology36: 612–623.

    Koenigk, T., R. D?Scher, and G. Nikulin. 2011. “Arctic Future Scenario Experiments with a Coupled Regional Climate Model.”Tellus a: Dynamic Meteorology and Oceanography63:69–86.

    Konare, A., A. S. Zakey, F. Solmon, F. Giorgi, S. Rauscher, S. Ibrah,and X. Q. Bi. 2008. “A Regional Climate Modeling Study of the Effect of Desert Dust on the West African Monsoon.”Journal of Geophysical Research113: 23.

    Kotlarski, S., D. Jacob, R. Podzun, and F. Paul. 2010. “Representing Glaciers in a Regional Climate Model.”Climate Dynamics34:27–46.

    Krishna, K. K., M. Hoerling, and B. Rajagopalan. 2005. “Advancing Dynamical Prediction of Indian Monsoon Rainfall.”Geophysical Research Letters32: L0874.

    Lebeaupin Brossier, C. L., S. Bastin, K. Béranger, and P. Drobinski.2015. “Regional Mesoscale Air–Sea Coupling Impacts and Extreme Meteorological Events Role on the Mediterranean Sea Water Budget.”Climate Dynamics44: 1029–1051.

    Lehmann, A., P. Lorenz, and D. Jacob. 2004. “Modeling the Exceptional Baltic Sea In flow Events in 2002–2003.”Geophysical Research Letters31: L21308.

    Li, H., M. Kanamitsu, S.-Y. Hong, K. Yoshimura, D. R. Cayan, and V. Misra. 2014a. “A High Resolution Ocean-Atmosphere Coupled Downscaling of the Present Climate over California.”Climate Dynamics42: 701–714.

    Li, H., M. Kanamitsu, S.-Y. Hong, K. Yoshimura, D. R. Cayan, V.Misra, and L. Sun. 2014b. “Projected Climate Change Scenario over California by a Regional Ocean-Atmosphere Coupled Model System.”Climatic Change122: 413–425.

    Li, S., T. J. Wang, B. L. Zhuang, and Y. Han. 2009. “Indirect Radiative Forcing and Climatic Effect of the Anthropogenic Nitrate Aerosol on Regional Climate of China.”Advances in Atmospheric Sciences26: 543–552.

    Li, T., and G. Q. Zhou. 2010. “Preliminary Results of a Regional Air–Sea Coupled Model over East Asia.”Chinese Science Bulletin55: 2295–2305.

    Lin, H. J., Y. F. Qian, and Y. C. Zhang. 2006. “A Regional Coupled Air-Ocean Wave Model and the Simulation of the South China Sea Summer Monsoon of 1998.”International Journal of Climatology6: 2041–2056.

    Lorenz, P., and D. Jacob. 2014. “BALTIMOS–A Coupled Modeling System for the Baltic Sea and Its Drainage Basin.”Theoretical and Applied Climatology118: 715–727.

    Martynov, A., L. Sushama, R. Laprise, K. Winger, and B. Dugas.2012. “Interactive Lakes in the Canadian Regional Climate Model, Version 5: The Role of Lakes in the Regional Climate of North America.”Tellus a: Dynamic Meteorology and Oceanography64: 16226.

    Meier, H. E. M. 2006. “Baltic Sea Climate in the Late Twenty-First Century: A Dynamical Downscaling Approach Using Two Global Models and Two Emission Scenarios.”Climate Dynamics27: 39–68.

    Meier, H. E. M. 2015. “Projected Change-Marine Physics.” Chapter 13 inBaltic Sea Climate Change Assessment.Berlin: Springer-Verlag.

    Mikolajewicz, U., D. V. Sein, D. Jacob, T. K?nigk, R. Podzun, and T. Semmler. 2005. “Simulating Arctic Sea Ice Variability with a Coupled Regional Atmosphere-Ocean-Sea Ice Model.”Meteorologische Zeitschrift14: 793–800.

    Mironov, D., E. Heise, E. Kourzeneva, B. Ritter, N. Schneider,and A. Terzhevik. 2010. “Implementation of the Lake Parameterisation Scheme FLake into the Numerical Weather Prediction Model COSMO.”Boreal Environment Research15:218–230.

    Nabat, P., S. Somot, M. Mallet, A. Sanchez-Lorenzo, and M. Wild.2014. “Contribution of Anthropogenic Sulfate Aerosols to the Changing Euro-Mediterranean Climate since 1980.”Geophysical Research Letters41: 5605–5611.

    Nabat, P., S. Somot, M. Mallet, F. Sevault, M. Chiacchio, and M.Wild. 2015. “Direct and Semi–Direct Aerosol Radiative Effect on the Mediterranean Climate Variability Using a Coupled Regional Climate System Model.”Climate Dynamics44: 1127–1155.

    Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V.Bennington. 2013. “In fluence of the Laurentian Great Lakes on Regional Climate.”Journal of Climate26: 789–804.

    Oleson, K. W., G. Y. Niu, Z. L. Yang, D. M. Lawrence, P. E. Thornton,P. J. Lawrence, R. St?ckli, et al. 2008. “Improvements to the Community Land Model and Their Impact on the Hydrological Cycle.”Journal of Geophysical Research: Biogeosciences113:G01021.

    Peng, S. Q., D. L. Liu, Z. B. Sun, and Y. Li. 2012. “Recent Advances in Regional Air-Sea Coupled Models.”Science China Earth Sciences55: 1391–1405.

    Van Pham, T., J. Brauch, C. Dieterich, B. Frueh, and B. Ahrens. 2014.“New Coupled-Atmosphere-Ocean-Ice System COSMO-CLM/NEMO: Assessing Air Temperature Sensitivity over the North and Baltic Seas.”O(jiān)ceanologia56: 167–189.

    Putrasahan, D., A. J. Miller, and H. Seo. 2013. “Regional Coupled Ocean–Atmosphere Downscaling in the Southeast Pacific:Impacts on Upwelling, Mesoscale Air–Sea Fluxes, and Ocean Eddies.”O(jiān)cean Dynamics63: 463–488.

    Qian, Y., and F. Giorgi. 1999. “Interactive Coupling of Regional Climate and Sulfate Aerosol Models over Eastern Asia.”Journal of Geophysical Research: Atmospheres104: 6477–6499.

    Qian, Y., F. Giorgi, Y. Huang, W. L. Chameides, and C. Luo. 2001.“Simulation of Anthropogenic Sulfur over East Asia with a Regional Coupled Chemistry–Climate Model.”Tellus B:Chemical and Physical Meteorology53: 171–191.

    Qian, Y., L. R. Leung, S. J. Ghan, and F. Giorgi. 2003. “Regional Climate Effects of Aerosols over China: Modeling and Observation.”Tellus B55: 914–934.

    Raschke, E., J. Meywerk, K. Warrach, U. Andrea, S. Bergstr?m, F.Beyrich, F. Bosveld, et al. 2001. “The Baltic Sea Experiment(BALTEX): a European Contribution to the Investigation of the Energy and Water Cycle of a Large Drainage Basin.”Bulletin of the American Meteorological Society82: 2389–2413.

    Ratnam, J. V., F. Giorgi, A. Kaginalkar, and S. Cozzini. 2009.“Simulation of the Indian Monsoon Using RegCM3–ROMS Regional Coupled Model.”Climate Dynamics33: 119–139.

    Ratnam, J. V., Y. Morioka, S. K. Behera, and T. Yamagata. 2015. “A Model Study of Regional Air-Sea Interaction in the Austral Summer Precipitation over Southern Africa.”Journal of Geophysical Research - Atmospheres120: 2342–2357.

    Ribeiro, F. N. D., J. Soares, and A. P. de Oliveira. 2011. “A Coupled Numerical Model to Investigate the Air-Sea Interaction at the Coastal Upwelling Area of Cabo Frio, Brazil.”Environmental Fluid Mechanics11: 651–668.

    Rinke, A., K. Dethloff, J. J. Cassano, J. H. Christensen, J. A. Curry, P.Du, E. Girard, et al. 2006. “Evaluation of an Ensemble of Arctic Regional Climate Models: Spatiotemporal Fields during the SHEBA Year.”Climate Dynamics26: 459–472.

    Rinke, A., R. Gerdes, K. Dethloff, T. Kandlbinder, M. Karcher,F. Kauker, S. Frickenhaus, C. K?berle, and W. Hiller. 2003.“A Case Study of the Anomalous Arctic Sea Ice Conditions during 1990: Insights from Coupled and Uncoupled Regional Climate Model Simulations.”Journal of Geophysical Research108: 4275.

    Roberts, A., J. E. Walsh, L. Hinzman, R. Doescher, A. Sumi, M.Holland, J. Cassano, W. Maslowski, W. Gutowski, and J. Hel.2008. “Towards a Community Arctic System Model.”Ice and Climate News10: 14–15.

    Ruti, P., S. Somot, F. Giorgi, C. Dubois, E. Flaounas, A. Obermann,A. Dell’Aquila, et al. 2016. “Med-CORDEX Initiative for Mediterranean Climate Studies.”Bulletin of the American Meteorological Society97: 1187–1208.

    Samala, B. K., C. Nagaraju, S. Banerjee, A. Kaginalkar, and M. Dalvi.2013. “Study of the Indian Summer Monsoon Using WRF–ROMS Regional Coupled Model Simulations.”Atmospheric Science Letters14: 20–27.

    Samson, G., S. Masson, M. Lengaigne, M. G. Keerthi, J. Vialard,S. Pous, G. Madec, et al. 2014. “The NOW Regional Coupled Model: Application to the Tropical Indian Ocean Climate and Tropical Cyclone Activity.”Journal of Advances in Modeling Earth Systems6: 700–722.

    Schrum, C. 2017. “Regional Climate Modeling and Air-Sea Coupling.”In Oxford Research Encyclopedia of Climate Science.doi:10.1093/acrefore/9780190228620.013.3.

    Schrum, C., J. Lowe, H. E. M. Meier, I. Grabemann, J. Holt, M.Mathis, T. Pohlmann, M. D. Skogen, A. Sterl, and S. Wakelin.2016. “Projected Change - North Sea.” InNorth Sea Regional Climate Change Assessment, edited by M. Quante and F.Colijn, 175–217. Berlin: Springer-Verlag. doi: 10.1007/978-3-319-39745-0_6.

    Schrum, C., U. Hubner, D. Jacob, and R. Podzun. 2003. “A Coupled Atmosphere-Ice-Ocean Model for the North Sea and the Baltic Sea.”Climate Dynamica21: 123–145.

    Sein, D. V., U. Mikolajewicz, M. Gr?ger, I. Fast, W. Cabos, J. G. Pinto,S. Hagemann, T. Semmler, A. Izquierdo, and D. Jacob. 2015.“Regionally Coupled Atmosphere-Ocean, Sea Ice, Marine Biogeochemistry Model ROM. 1. Description and Validation.”Journal of Advances in Modeling Earth Systems7: 268–304.

    Seo, H., A. J. Miller, and J. O. Roads. 2007. “The Scripps Coupled Ocean-Atmosphere Regional (SOARS) Model, with Applications in the Eastern Pacific Sector.”Journal of Climate20: 381–402.

    Seo, H., R. Murtugudde, M. Jochum, and A. J. Miller. 2008.“Modeling of Mesoscale Coupled Ocean–Atmosphere Interaction and Its Feedback to Ocean in the Western Arabian Sea.”O(jiān)cean Modelling25: 120–131.

    Seo, H., S. P. Xie, R. Murtugudde, M. Jochum, and A. J. Miller.2009. “Seasonal Effects of Indian Ocean Freshwater Forcing in a Regional Climate Model.”Journal of Climate22: 6577–6596.

    Sevault, F., S. Somot, A. Alias, C. Dubois, C. Lebeaupin-Brossier,P. Nabat, F. Adloff, M. Déqué, and B. Decharme. 2014. “A Fully Coupled Mediterranean Regional Climate System Model: Design and Evaluation of the Ocean Component for the 1980–2012 Period.”Tellus a: Dynamic Meteorology and Oceanography66: 23967.

    Shalaby, A. K., A. S. Zakey, A. B. Taw fik, F. Solmon, F. Giorgi,F. Stordal, S. Sillman, R. A. Zaveri, and A. L. Steiner. 2012.“Implementation and Evaluation of Online Gas–Phase Chemistry within a Regional Climate Model (RegCM–CHEM4).”Geoscientific Model Development5: 741–760.

    Shi, Y., Y. Miao, E. Amir, and G. L. Wang. forthcoming. “Modeling the Dynamic Vegetation–Climate System over China Using a Coupled Regional Model.”Journal of Climate.

    Sitz, L. E., F. Sante, R. Farneti, R. Fuentes-Franco, E. Coppola, L.Mariotti, M. Reale, et al. 2017. “Description and Evaluation of the Earth System Regional Climate Model (RegCM–ES).”Journal of Advances in Modeling Earth Systems.doi:10.1002/2017MS000933.

    Small, E. E., L. C. Sloan, S. Hostetler, and F. Giorgi. 1999.“Simulating the Water Balance of the Aral Sea with a Coupled Regional Climate–Lake Model.”Journal of Geophysical Research: Atmospheres104: 6583–6602.

    Smith, B., P. Samuelsson, A. Wramneby, and M. Rummukainen.2011. “A Model of the Coupled Dynamics of Climate,Vegetation and Terrestrial Ecosystem Biogeochemistry for Regional Applications.”Tellus a: Dynamic Meteorology and Oceanography63: 87–106.

    Solmon, F., M. Mallet, N. Elguindi, F. Giorgi, A. Zakey, and A. Konaré.2008. “Dust Aerosol Impact on Regional Precipitation over Western Africa, Mechanisms and Sensitivity to Absorption Properties.”Geophysical Research Letters35: L24705.

    Somot, S., F. Sevault, M. Déqué, and M. Crépon. 2008. “21st Century Climate Change Scenario for the Mediterranean Using a Coupled Atmosphere–Ocean Regional Climate Model.”Global and Planetary Change63: 112–126.

    Su, J., H. Yang, T. Pohlmann, A. Ganske, B. Klein, H. Klein, and N. Narayan. 2014. “A Regional Coupled Atmosphere-Ocean Model System REMO/HAMSOM for the North Sea.”KLIWAS SchriftenreiheKLIWAS-60

    Thiery, W., E. L. Davin, H. J. Panitz, M. Demuzere, S. Lhermitte, and N. van Lipzig. 2015. “The Impact of the African Great Lakes on the Regional Climate.”Journal of Climate28: 4061–4085.

    Turuncoglu, U. U., G. Giuliani, N. Elguindi, and F. Giorgi. 2013.“Modeling the Caspian Sea and Its Catchment Area Using a Coupled Regional Atmosphere–Ocean Model (RegCM–ROMS): Model Design and Preliminary Results.”Geoscientific Model Development6: 283–299.

    Wang, G., K. F. Ahmed, L. You, M. Yu, J. Pal, and Z. Ji. 2017.“Projecting Regional Climate and Cropland Changes Using a Linked Biogeophysical-Socioeconomic Modeling Framework:1. Model Description and an Equilibrium Application over West Africa.”Journal of Advances in Modeling Earth Systems9:354–376. doi:10.1002/2016MS000712.

    Wang, S., C. Dieterich, R. D?scher, A. H?glund, R. Hordoir,H. E. M. Meier, P. Samuelsson, and S. Schimanke. 2015a.“Development and Evaluation of a New Regional Coupled Atmosphere-Ocean Model in the North Sea and Baltic Sea.”Tellus a: Dynamic Meteorology and Oceanography67: 24284.

    Wang, T. J., B. L. Zhuang, S. Li, J. Liu, M. Xie, C. Q. Yin, Y. Zhang,et al. 2015b. “The Interactions between Anthropogenic Aerosols and the East Asian Summer Monsoon Using RegCCMS.”Journal of Geophysical Research: Atmospheres120:5602–5621.

    Wei, J., P. Malanotte-Rizzoli, E. A. B. Eltahir, P. Xue, and D. Xu.2014. “Coupling of a Regional Atmospheric Model (RegCM3)and a Regional Ocean Model (FVCOM) over the Maritime Continent.”Climate Dynamics43: 1575–1594.

    Yao, S., and Y. Zhang. 2009. “Simulation of China Summer Precipitation Using a Regional Air-Sea Coupled Model.”Acta Meteorologica Sinica24: 203–214.

    Zanis, P., C. Ntogras, A. Zakey, I. Pytharoulis, and T. Karacostas.2012. “Regional Climate Feedbacks of Anthropogenic Aerosols over Europe Using RegCM3.”Climate Research52: 267–278.

    Zhang, D. F., A. Zakey, X. J. Gao, F. Giorgi, and F. Solmon. 2009.“Simulation of Dust Aerosol and Its Regional Feedbacks over East Asia Using a Regional Climate Model.”Atmospheric Chemistry and Physics9: 1095–1110.

    Zhang, D. F., X. J. Gao, A. Zakey, and F. Giorgi. 2016. “Effects of Climate Changes on Dust Aerosol over East Asia from RegCM3.”Advances in Climate Change Research7 (3): 145–153.

    Zhang, W. X., C. Jansson, P. A. Miller, B. Smith, and P. Samuelsson.2014. “Biogeophysical Feedbacks Enhance the Arctic Terrestrial Carbon Sink in Regional Earth System Dynamics.”Biogeosciences11: 5503–5519.

    Zou, L. W., and T. J. Zhou. 2012. “A Review of Development and Application of Regional Ocean–Atmosphere Coupled Model.”Advances in Earth Science27 (8): 857–865.

    Zou, L. W., and T. J. Zhou. 2013. “Can a Regional Ocean–Atmosphere Coupled Model Improve the Simulation of the Interannual Variability of the Western North Pacific Summer Monsoon?”Journal of Climate26: 2353–2367.

    Zou, L. W., and T. J. Zhou. 2016. “A Regional Ocean–Atmosphere Coupled Model Developed for CORDEX East Asia: Assessment of Asian Summer Monsoon Simulation.”Climate Dynamics47:3627–3640.

    亚洲成人久久爱视频| 最近2019中文字幕mv第一页| 久久久国产一区二区| 身体一侧抽搐| 久久鲁丝午夜福利片| 欧美日韩视频高清一区二区三区二| 成人高潮视频无遮挡免费网站| 精品一区二区三卡| 亚洲精品国产成人久久av| 男女国产视频网站| 男女国产视频网站| 色视频在线一区二区三区| 男女国产视频网站| 久久人人爽av亚洲精品天堂 | 男女无遮挡免费网站观看| av专区在线播放| 亚洲第一区二区三区不卡| 成人毛片a级毛片在线播放| 高清在线视频一区二区三区| 久久久精品免费免费高清| 免费黄频网站在线观看国产| 亚洲三级黄色毛片| 精品久久久噜噜| 乱码一卡2卡4卡精品| 狠狠精品人妻久久久久久综合| 蜜桃久久精品国产亚洲av| 亚洲天堂国产精品一区在线| av黄色大香蕉| 日本一本二区三区精品| 国产久久久一区二区三区| 亚洲精品乱码久久久v下载方式| av在线app专区| 国产色婷婷99| 欧美老熟妇乱子伦牲交| 三级经典国产精品| av免费观看日本| 亚洲av一区综合| 99热6这里只有精品| 夜夜爽夜夜爽视频| 成人亚洲精品一区在线观看 | 国产黄片美女视频| 黄片wwwwww| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 麻豆久久精品国产亚洲av| 高清日韩中文字幕在线| 性色avwww在线观看| 欧美成人午夜免费资源| 日本熟妇午夜| av播播在线观看一区| 亚洲国产欧美人成| 欧美xxxx黑人xx丫x性爽| 国产v大片淫在线免费观看| 亚洲,欧美,日韩| 午夜日本视频在线| 亚洲精品乱码久久久久久按摩| 最近最新中文字幕大全电影3| 一区二区三区免费毛片| 最近的中文字幕免费完整| 亚洲婷婷狠狠爱综合网| 欧美日韩视频高清一区二区三区二| 在线观看免费高清a一片| 最近手机中文字幕大全| 狂野欧美白嫩少妇大欣赏| 婷婷色av中文字幕| 久久久久久久国产电影| 又爽又黄a免费视频| 成人欧美大片| 色5月婷婷丁香| 在线a可以看的网站| 身体一侧抽搐| 中文欧美无线码| 国产成人福利小说| 搡老乐熟女国产| 免费少妇av软件| 国国产精品蜜臀av免费| 天美传媒精品一区二区| 国产免费视频播放在线视频| 久久久久网色| 少妇人妻精品综合一区二区| 久久人人爽人人片av| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 亚洲精品一二三| 国产成人精品福利久久| 欧美日韩一区二区视频在线观看视频在线 | 国产精品久久久久久精品古装| 老女人水多毛片| av福利片在线观看| 亚州av有码| 下体分泌物呈黄色| 免费av观看视频| 深夜a级毛片| 免费观看性生交大片5| 干丝袜人妻中文字幕| 国产成人freesex在线| 欧美日韩精品成人综合77777| 一个人观看的视频www高清免费观看| 丝瓜视频免费看黄片| 99视频精品全部免费 在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文资源天堂在线| 亚洲熟女精品中文字幕| 一个人观看的视频www高清免费观看| 高清在线视频一区二区三区| 国内精品美女久久久久久| 日本猛色少妇xxxxx猛交久久| 熟女人妻精品中文字幕| 在线播放无遮挡| 国产一区二区三区av在线| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| 日日啪夜夜爽| 精品熟女少妇av免费看| 高清av免费在线| 久久精品夜色国产| 欧美激情国产日韩精品一区| 久久精品久久久久久噜噜老黄| 亚洲精品影视一区二区三区av| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 久久久精品欧美日韩精品| 又爽又黄无遮挡网站| 国产成人精品福利久久| 中国三级夫妇交换| 亚洲成人久久爱视频| 人人妻人人爽人人添夜夜欢视频 | 黄色一级大片看看| 国产成人免费观看mmmm| av女优亚洲男人天堂| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 好男人视频免费观看在线| 又黄又爽又刺激的免费视频.| av网站免费在线观看视频| 国产精品女同一区二区软件| 午夜精品国产一区二区电影 | 亚洲,一卡二卡三卡| av线在线观看网站| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 午夜精品国产一区二区电影 | 亚洲国产精品成人综合色| 涩涩av久久男人的天堂| 午夜福利网站1000一区二区三区| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 亚洲成人av在线免费| 久久久国产一区二区| 成年免费大片在线观看| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 99热全是精品| 大香蕉久久网| 亚洲自偷自拍三级| 99热这里只有是精品在线观看| 成年版毛片免费区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产老妇伦熟女老妇高清| 免费看不卡的av| 看非洲黑人一级黄片| 禁无遮挡网站| 18+在线观看网站| 国内揄拍国产精品人妻在线| 在线 av 中文字幕| 国产伦在线观看视频一区| 少妇人妻 视频| 99久国产av精品国产电影| 国产精品不卡视频一区二区| 99久久精品热视频| 久久久久精品性色| 国产探花极品一区二区| 一本色道久久久久久精品综合| 欧美xxxx性猛交bbbb| 亚洲欧美日韩东京热| 七月丁香在线播放| 免费黄色在线免费观看| 国产精品.久久久| av又黄又爽大尺度在线免费看| 久久人人爽人人片av| 网址你懂的国产日韩在线| 大片电影免费在线观看免费| 欧美3d第一页| 免费观看在线日韩| 我要看日韩黄色一级片| 亚洲不卡免费看| 欧美精品一区二区大全| 亚洲色图综合在线观看| 日韩视频在线欧美| 久久国产乱子免费精品| 亚洲最大成人手机在线| 十八禁网站网址无遮挡 | 亚洲美女视频黄频| 乱系列少妇在线播放| 大香蕉久久网| 夫妻午夜视频| 直男gayav资源| 国产乱人视频| 毛片一级片免费看久久久久| 国产伦精品一区二区三区四那| 26uuu在线亚洲综合色| 中文乱码字字幕精品一区二区三区| 波多野结衣巨乳人妻| 一区二区av电影网| 99热6这里只有精品| 老司机影院毛片| 欧美国产精品一级二级三级 | 成人鲁丝片一二三区免费| 99视频精品全部免费 在线| 嫩草影院精品99| videos熟女内射| 久久久午夜欧美精品| av国产久精品久网站免费入址| 看黄色毛片网站| 亚洲av成人精品一二三区| 最近2019中文字幕mv第一页| 国产高清不卡午夜福利| 亚洲精品国产色婷婷电影| 99久久人妻综合| 亚洲精品亚洲一区二区| 成人无遮挡网站| 免费av观看视频| 一级毛片 在线播放| 欧美丝袜亚洲另类| 国产黄片美女视频| 亚洲精品国产成人久久av| 精品亚洲乱码少妇综合久久| 国产亚洲5aaaaa淫片| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 亚洲精品色激情综合| 啦啦啦啦在线视频资源| 大话2 男鬼变身卡| 在线观看免费高清a一片| 国产精品国产av在线观看| 日韩制服骚丝袜av| 欧美丝袜亚洲另类| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 国产日韩欧美在线精品| 亚洲精品日韩在线中文字幕| 爱豆传媒免费全集在线观看| 久久久久国产精品人妻一区二区| 噜噜噜噜噜久久久久久91| 一二三四中文在线观看免费高清| 狂野欧美激情性bbbbbb| 精品视频人人做人人爽| 夫妻性生交免费视频一级片| 国产一区二区在线观看日韩| 久久久久久久久久人人人人人人| 国产精品成人在线| 三级男女做爰猛烈吃奶摸视频| 亚洲一级一片aⅴ在线观看| 国产精品嫩草影院av在线观看| 免费黄网站久久成人精品| 国产成人精品久久久久久| 久久久久久久久大av| 男人爽女人下面视频在线观看| 看黄色毛片网站| 99久久精品一区二区三区| 在线观看美女被高潮喷水网站| 一本一本综合久久| 成人一区二区视频在线观看| 国产爱豆传媒在线观看| 亚洲国产欧美人成| 热re99久久精品国产66热6| 一个人看视频在线观看www免费| 亚洲欧洲国产日韩| 99久国产av精品国产电影| 久久久欧美国产精品| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| av天堂中文字幕网| 少妇裸体淫交视频免费看高清| 久久久久久久亚洲中文字幕| 免费播放大片免费观看视频在线观看| 国产亚洲一区二区精品| 91久久精品电影网| 六月丁香七月| 中国美白少妇内射xxxbb| 久久国产乱子免费精品| 国产中年淑女户外野战色| 波野结衣二区三区在线| 成人漫画全彩无遮挡| 新久久久久国产一级毛片| 欧美日韩视频精品一区| 国产美女午夜福利| 欧美三级亚洲精品| 国产成人a∨麻豆精品| 国产伦在线观看视频一区| 麻豆国产97在线/欧美| 尤物成人国产欧美一区二区三区| 日韩中字成人| 热re99久久精品国产66热6| 在线观看av片永久免费下载| 最近手机中文字幕大全| 女人久久www免费人成看片| 免费大片18禁| 老女人水多毛片| 一区二区三区精品91| 国产精品人妻久久久影院| 欧美最新免费一区二区三区| 日韩制服骚丝袜av| 国产精品久久久久久精品电影小说 | 亚洲av不卡在线观看| 白带黄色成豆腐渣| 成人国产麻豆网| 在现免费观看毛片| 免费av观看视频| 国产成人91sexporn| 国产成人aa在线观看| 人妻制服诱惑在线中文字幕| 免费不卡的大黄色大毛片视频在线观看| 哪个播放器可以免费观看大片| 一个人观看的视频www高清免费观看| 超碰97精品在线观看| 青春草国产在线视频| 女人久久www免费人成看片| av一本久久久久| 国产精品嫩草影院av在线观看| 特级一级黄色大片| xxx大片免费视频| 一级黄片播放器| 亚洲国产精品999| 亚洲精品色激情综合| 亚洲av不卡在线观看| 亚洲精品自拍成人| 婷婷色综合www| 日韩,欧美,国产一区二区三区| 一边亲一边摸免费视频| 亚洲精品国产av蜜桃| 亚洲欧美一区二区三区黑人 | 又爽又黄a免费视频| 国内精品美女久久久久久| 欧美性猛交╳xxx乱大交人| 一级爰片在线观看| 99热国产这里只有精品6| 国产精品熟女久久久久浪| 欧美激情国产日韩精品一区| 777米奇影视久久| 亚洲国产成人一精品久久久| 欧美精品一区二区大全| 天天躁日日操中文字幕| 国产午夜精品一二区理论片| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网| 亚洲国产高清在线一区二区三| 久久久精品欧美日韩精品| 狠狠精品人妻久久久久久综合| 国产成人午夜福利电影在线观看| 免费观看在线日韩| 少妇人妻久久综合中文| videossex国产| 亚洲欧美成人精品一区二区| 美女国产视频在线观看| 免费在线观看成人毛片| 国产伦理片在线播放av一区| 一区二区av电影网| 51国产日韩欧美| 老司机影院毛片| 久久久精品欧美日韩精品| 又爽又黄a免费视频| 久久99精品国语久久久| 午夜福利视频1000在线观看| 看免费成人av毛片| 精品一区在线观看国产| 涩涩av久久男人的天堂| 国产精品福利在线免费观看| 禁无遮挡网站| 久久久久国产网址| 久久久久久久午夜电影| 久久久久久久国产电影| 在线观看av片永久免费下载| 一个人观看的视频www高清免费观看| 久久精品国产亚洲av涩爱| 亚洲精品国产色婷婷电影| 国产欧美日韩精品一区二区| 国产男女内射视频| 黄色欧美视频在线观看| 一级片'在线观看视频| 免费人成在线观看视频色| 精品久久久久久久久av| 午夜视频国产福利| 精品一区在线观看国产| 色5月婷婷丁香| 少妇裸体淫交视频免费看高清| 国产精品不卡视频一区二区| 综合色丁香网| 国产毛片a区久久久久| 一级毛片久久久久久久久女| 91精品一卡2卡3卡4卡| 国产亚洲最大av| 国产在线男女| 欧美性感艳星| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 伊人久久精品亚洲午夜| 国精品久久久久久国模美| 九草在线视频观看| 97热精品久久久久久| 最近中文字幕2019免费版| 美女cb高潮喷水在线观看| 国产免费福利视频在线观看| 亚洲欧美中文字幕日韩二区| 日日啪夜夜撸| 蜜桃亚洲精品一区二区三区| 亚洲欧洲国产日韩| 最近最新中文字幕大全电影3| 国产精品人妻久久久影院| 日韩电影二区| 日韩强制内射视频| 一个人看视频在线观看www免费| 免费观看性生交大片5| 大香蕉久久网| 能在线免费看毛片的网站| 熟女电影av网| 亚洲国产色片| 免费看a级黄色片| 超碰97精品在线观看| 26uuu在线亚洲综合色| 精品亚洲乱码少妇综合久久| 精品午夜福利在线看| 男人添女人高潮全过程视频| 91久久精品国产一区二区三区| 亚洲无线观看免费| 欧美激情在线99| 国产男女超爽视频在线观看| 日韩亚洲欧美综合| 久久精品人妻少妇| 国产69精品久久久久777片| 国产 一区精品| 免费黄网站久久成人精品| 99久久中文字幕三级久久日本| 午夜精品一区二区三区免费看| 久久久久久久午夜电影| 国产探花极品一区二区| 国模一区二区三区四区视频| 国产女主播在线喷水免费视频网站| 99热6这里只有精品| 亚洲天堂av无毛| 国产在线一区二区三区精| 亚州av有码| 日韩一区二区视频免费看| 久久影院123| 久久鲁丝午夜福利片| 欧美成人a在线观看| 日本-黄色视频高清免费观看| 日韩亚洲欧美综合| 一区二区三区精品91| 国产欧美日韩一区二区三区在线 | 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 久久精品国产亚洲av涩爱| 国产精品久久久久久av不卡| 男人和女人高潮做爰伦理| 国产在线男女| 国产av国产精品国产| 老司机影院毛片| 热99国产精品久久久久久7| 久久热精品热| 免费看av在线观看网站| 亚洲伊人久久精品综合| 99久久精品一区二区三区| 欧美日韩视频高清一区二区三区二| 成人亚洲精品一区在线观看 | 国产精品一二三区在线看| 少妇被粗大猛烈的视频| 亚洲人成网站高清观看| 我的女老师完整版在线观看| 99久久人妻综合| 亚洲欧美成人综合另类久久久| 免费看av在线观看网站| 国产精品久久久久久精品电影| 大又大粗又爽又黄少妇毛片口| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 日本一二三区视频观看| 日产精品乱码卡一卡2卡三| 狠狠精品人妻久久久久久综合| 高清日韩中文字幕在线| 秋霞伦理黄片| 狂野欧美激情性xxxx在线观看| 欧美人与善性xxx| 久久午夜福利片| 永久免费av网站大全| 麻豆精品久久久久久蜜桃| 成人国产麻豆网| 男人添女人高潮全过程视频| 偷拍熟女少妇极品色| 夫妻性生交免费视频一级片| 欧美xxxx性猛交bbbb| 精品国产乱码久久久久久小说| 真实男女啪啪啪动态图| 精品久久久久久久久av| 亚洲欧美日韩东京热| 禁无遮挡网站| 中文欧美无线码| 伊人久久国产一区二区| 激情五月婷婷亚洲| 国产精品.久久久| 久久久久网色| av免费观看日本| av在线老鸭窝| 免费大片18禁| 高清午夜精品一区二区三区| 国产精品国产三级国产专区5o| 国产精品秋霞免费鲁丝片| 成人欧美大片| 卡戴珊不雅视频在线播放| 精品国产一区二区三区久久久樱花 | 一边亲一边摸免费视频| 一个人看视频在线观看www免费| 国产免费一区二区三区四区乱码| 日韩人妻高清精品专区| 欧美 日韩 精品 国产| 丰满人妻一区二区三区视频av| 看黄色毛片网站| 欧美成人a在线观看| 欧美精品一区二区大全| 中文字幕免费在线视频6| 亚洲av免费在线观看| 午夜免费男女啪啪视频观看| 国产免费视频播放在线视频| 亚洲欧美一区二区三区黑人 | 国产亚洲精品久久久com| 免费看a级黄色片| 蜜桃久久精品国产亚洲av| 九色成人免费人妻av| 九草在线视频观看| 国产精品一区www在线观看| 日本与韩国留学比较| videos熟女内射| 综合色av麻豆| 男女无遮挡免费网站观看| 99九九线精品视频在线观看视频| 国产熟女欧美一区二区| 97精品久久久久久久久久精品| 亚洲欧美成人综合另类久久久| 一级毛片aaaaaa免费看小| 欧美激情在线99| 边亲边吃奶的免费视频| 亚洲欧美日韩另类电影网站 | 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品国产av在线观看| 久久韩国三级中文字幕| 亚洲经典国产精华液单| 色播亚洲综合网| 亚洲av二区三区四区| 国语对白做爰xxxⅹ性视频网站| 欧美+日韩+精品| 久久久亚洲精品成人影院| 美女cb高潮喷水在线观看| 边亲边吃奶的免费视频| 麻豆精品久久久久久蜜桃| 看免费成人av毛片| 综合色丁香网| 大香蕉久久网| 春色校园在线视频观看| 亚洲国产高清在线一区二区三| 中文乱码字字幕精品一区二区三区| 国产精品国产三级专区第一集| 晚上一个人看的免费电影| 精品国产三级普通话版| 国产亚洲av片在线观看秒播厂| 一级片'在线观看视频| 青春草视频在线免费观看| 一级毛片电影观看| 美女视频免费永久观看网站| 精品久久久久久久久亚洲| 晚上一个人看的免费电影| 国内揄拍国产精品人妻在线| 伊人久久国产一区二区| 成人国产av品久久久| 国产免费福利视频在线观看| 久久久久精品性色| 午夜日本视频在线| 麻豆乱淫一区二区| 少妇人妻一区二区三区视频| 久久精品国产亚洲网站| 亚洲精品日韩在线中文字幕| 免费在线观看成人毛片| 亚洲自拍偷在线| 在线亚洲精品国产二区图片欧美 | 免费不卡的大黄色大毛片视频在线观看| 亚洲美女视频黄频| 日韩欧美一区视频在线观看 | 国产男女内射视频| 精品酒店卫生间| 国产精品久久久久久精品电影小说 | 国产一区二区三区av在线| 亚洲av成人精品一区久久| 永久免费av网站大全| 久久久久久久国产电影| a级毛片免费高清观看在线播放| 亚洲无线观看免费| 午夜福利视频1000在线观看| 精品久久久久久久久亚洲| 赤兔流量卡办理| 97热精品久久久久久| av播播在线观看一区| 欧美97在线视频| av卡一久久| 只有这里有精品99| 中文字幕久久专区| 天天躁日日操中文字幕| 国产精品偷伦视频观看了| 国产免费又黄又爽又色| 亚洲国产精品成人综合色| 亚洲av日韩在线播放| 国产91av在线免费观看| 噜噜噜噜噜久久久久久91| 国产精品一区二区性色av| 国产久久久一区二区三区| 一级二级三级毛片免费看|