• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    When and how will the Millennium Silk Road witness 1.5 °C and 2 °C warmer worlds?

    2018-05-24 01:41:47ZHOUTinJunSUNNingZHANGWenXiCHENXioLongPENGDongDongLIDongHunRENLiWenndZUOMeng

    ZHOU Tin-Jun, SUN Ning, ZHANG Wen-Xi, CHEN Xio-Long, PENG Dong-Dong, LI Dong-Hun,REN Li-Wen nd ZUO Meng

    aLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; bUniversity of Chinese Academy of Sciences, Beijing, China;

    cClimate Change Research Center, Chinese Academy of Sciences, Beijing, China

    1. Introduction

    The Silk Road is a historically important international trade route between China and the Mediterranean. As a network of trade routes, formally established during the Han Dynasty of China around 130 BCE (before common era) to open trade with the west, the Millennium Silk Road has served as a thoroughfare from east to west and linked the regions of the ancient world in commerce. Because China’s silk comprised a large proportion of the trade along this ancient road, in 1877 it was named the ‘Silk Road’by the German geographer and traveler Ferdinand von Richthofen. Western China and central Asia are positioned centrally along the Silk Road (Figure 1), and together are regarded as the Millennium Silk Road core region (hereinafter, the SRC region), important in linking the Eurasian continent’s east and west coasts. The SRC region, consisting of five provinces of Northwest China (Xinjiang, Qinghai,Ningxia, Shaanxi, and Gansu) and five central Asian countries (Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan,and Tajikistan) (Figure 1(a)), is dominated by arid and semi-arid climate (Figure 1(b)). The development of society and economy here relies heavily on water resources,and is one of the ‘hot spots’ in climate research identified as particularly sensitive to climate change. Reliable information on climate change in the SRC region is of crucial importance to the successful implementation of ‘the Belt and Road Initiatives (The Silk Road Economic Belt and the 21st-century Maritime Silk Road is a development strategy proposed by Chinese Government that focuses on connectivity and cooperation between Eurasian countries.)’.However, to date, the availability of such information has been quite limited.

    Recent decades have seen a wetting trend along with warming conditions in some regions of the Millennium Silk Road. Efforts have been devoted to understanding observed past changes. A warming trend larger than the global mean during recent decades has been found for Northwest China (Hu et al. 2014; Li, Chen, and Shi 2012).Meanwhile, associated with the increased specific humidity and southward displacement of the Asian subtropical westerly jet, a significant wetting trend has been seen in this region (Peng and Zhou 2017). Many factors have been suggested to affect the climate of central Asia, including the interannual variability of the Asian westerly jet (Zhao et al. 2014), El Ni?o–Southern Oscillation (Mariotti 2007),the Indian summer monsoon (Wei et al. 2017), and circumglobal teleconnection (Ding and Wang 2005; Huang et al. 2015). These studies generally focused on interpreting observed climate changes, whereas less effort has been devoted to climate change projection (Huang et al. 2014;Wang et al. 2017), as compared to the many publications on the projection of East and South Asian climate change(Chen, Xu, and Yao 2015; Chen and Zhou 2015; Chen and Zhou 2017; Guo et al. 2016, 2017; He and Zhou 2015; Kitoh et al. 2013; Li, Zou, and Zhou 2017; Peng et al. 2016; Xu et al. 2017; Zou and Zhou 2015, 2016).

    The parties of the United Nations Framework Convention on Climate Change (UNFCCC) signed the Paris Agreement in December 2015. The Paris Agreement stated a long-term goal for climate protection as ‘holding the increase in the global average temperature to well below 2.0 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change.’ (UNFCCC 2015).As a result of the Paris Agreement, there is considerable interest in the scientific community to provide input on the projected climate impacts under a climate warming scenario that stabilizes at 1.5 °C, in terms of water availability, temperature and precipitation extremes, as well as ecological and agricultural impacts (Hulme 2016; King,Karoly, and Henley 2017; Li et al. 2018; Mitchell et al. 2016;Schleussner et al. 2016a, 2016b). For China specifically,extreme precipitation days (annual number of days with precipitation greater than 50 mm) and total precipitation during days when daily precipitation exceeds the 99th percentile, are projected to increase by 25.81% and 69.14%,respectively, with respect to the 1971–2000 base period, as determined by model ensemble data from phase 5 of the Coupled Model Intercomparison Project (CMIP5; Guo et al. 2016). The Intergovernmental Panel on Climate Change(IPCC) has accepted an invitation from the UNFCCC to provide a special report on the impacts of global warming of 1.5 °C above pre-industrial levels. However, information on climate change over the regions of the Millennium Silk Road in a 1.5 and 2 °C global warming world remains quite limited. Accordingly, this study aims to answer the following questions: (1) How will temperature and precipitation change over the SRC region in the coming century under different warming scenarios? (2) When will the Millennium Silk Road witness warming of 1.5 and 2 °C? (3) How will the mean state and extreme climate events change over the SRC region in a 1.5 and 2 °C global warming future?

    Figure 1. The (a) topography (units: m) and (b) annual mean precipitation amount (units: mm yr?1) over the Eurasian continent.The thick black lines indicate the Silk Road core region.

    2. Data and methods

    The historical simulations and projections under different Representative Concentration Pathways (RCPs) from coupled climate models in CMIP5 (Taylor, Stouffer, and Meehl 2012) are analyzed. The models used in the construction of the analysis fields given in this study vary with the research focus, since we hope to use as many model results as possible to reduce the uncertainties. As summarized in Table 1, data from 24 models are used to calculate the regional average annual mean surface air temperature (SAT) and precipitation under all four RCP scenarios (RCP2.6, RCP4.5,RCP6.0, and RCP8.5), shown in Figure 2. The projected SAT under two RCPs (RCP4.5 and RCP8.5) is derived from 40 CMIP5 climate/earth system models (Table 1) and used to calculate the 1.5 and 2 °C threshold-crossing times shown in Figure 3. Taking 2 °C warming for example, this is de fined as the SAT anomalies larger than 2 °C relative to the mean state during 1861–1890 in the historical simulation. To reduce the uncertainty in calculating the threshold-crossing time due to interannual variability, a nine-year running average is used to smooth the time series of SAT anomalies. Then, the 2 °C threshold-crossing time is de fined as thefirst year when the SAT anomalies reach 2 °C. The model outputs are remapped onto a 5° × 5° grid by bilinear interpolation for reliable large-scale information.

    Table 1. Details of the CMIP5 models. All the models are used to derive the 1.5 and 2 °C threshold-crossing time in Figure 4. The models in italic type provide projections under all four RCP scenarios, and are thus used in Figures 2 and 3. The models in bold type are used to derive the extreme indices in Figures 6 and 7, based on daily data availability.

    The data from the 24 models in bold type in Table 1 are used to derive the extreme indices presented later in the paper because daily data is only provided by these models. The standard de finitions of the extreme indices are adapted from the Expert Team on Climate Change Detection and Indices (Zhang et al. 2011). Two indices are used in our analysis. The first is ‘consecutive dry days’ (CDD),which is de fined as the largest number of consecutive days with daily precipitation less than 1 mm. The second is‘extreme heat event’, which is de fined as the annual count of days when the daily maximum temperature is greater than 35 °C. The extreme indices are calculated on the native grids of the individual models and then regridded to a common resolution of 1° × 1° to derive multi-model ensembles.

    In our analysis, to account for future deviations from the current climate, a common reference period of 1986–2005 is referred to as the baseline scenario. The results for the 1.5 and 2 °C warming scenarios are aggregated from the nine-year windows centered on the years when 1.5 and 2 °C warming above pre-industrial levels (1861–90)is reached. The climate changes in a 1.5 or 2 °C warmer world are calculated for each model separately to derive multi-model ensembles.

    Figure 2. Projected changes in annual mean surface air temperature and precipitation over the Silk Road core (SRC)region (outlined in black in Figure 1). Changes are relative to the 1986–2005 mean, with nine-year smoothing applied. Thick lines show the multi-model mean, and shading the interquartile ranges. Dotted (dashed) lines show the timing of 1.5 °C (2 °C)warming over the SRC region and the corresponding changes in the multi-model mean.

    Figure 3. Projected changes in annual mean surface air temperature and precipitation over the global land region(66°S–75°N). Changes are relative to the 1986–2005 mean, with nine-year smoothing applied. Thick lines show the multi-model mean, and shading the interquartile ranges. Dotted (dashed)lines show the timing of 1.5 °C (2 °C) warming over the global land region and the corresponding changes in the multi-model mean.

    3. Results

    We begin the analysis from the projected changes of annual mean SAT and precipitation over the SRC region (Figure 2). Analysis of the changes over the SRC region is carried out along with a comparison with the changes averaged over the global land area and entire globe (Figures 3 and 4). Warming over the SRC region under different emission scenarios generally follows that of the global mean, but the magnitude is larger (Figures 3 and 4; also see Figure 12.5 in IPCC AR5, albeit the numbers of models used are slightly different). By the end of the twenty- first century,the multi-model ensemble mean projects a warming of~1.5, 2.9, 3.6, and 6.0 °C under RCP2.6, 4.5, 6.0, and 8.5,respectively, relative to the 1986–2005 baseline (Figure 2).These warming magnitudes are around 0.2–0.8 °C greater than the global land average, and 0.5–2.0 °C greater than the global mean (Figures 3 and 4). The more severe the emissions scenario, the greater the difference in warming.Such an amplification of warming in dry regions is related to the positive land surface feedback, as reported in Huang et al. (2017).

    The annual mean precipitation amount increases consistently across all RCPs, although the model spread is large(Figure 2(b)). The percentage increases are faster than the global average (Figures 3(b) and 4(b)). For example, the annual mean precipitation amount is projected to increase by ~14% with respect to 1986–2005 over the SRC region by the end of the twenty- first century, as compared to ~6.5%for the global land area and ~6.8% for the global mean,under RCP8.5 (compare Figure 2(b) with Figures 3(b) and 4(b)).

    But when will the Millennium Silk Road reach a 1.5 and 2 °C warming? The respective timings under different emission scenarios and the corresponding changes are shown in Figure 2. Also, more specifically, we show the spatial patterns of the 1.5 and 2 °C threshold-crossing time under the RCP4.5 and RCP8.5 scenarios over the Eurasian continent in Figure 5. For the multi-model ensemble mean, the 1.5 °C threshold-crossing time in the SRC region is projected to be reached before 2020, under all the emission scenarios.The 2 °C threshold is projected to be breached no later than 2030. Under RCP8.5, this could be as early as 2022. It is unsurprising to see an expected earlier threshold-crossing time under the higher emission scenarios. However,it should be noted that there is large spread among the CMIP5 models in the projection of the 1.5 and 2 °C threshold-crossing times (not shown), which can be explained in terms of different climate sensitivities to anthropogenic forcing in different models (Chen and Zhou 2016).

    Figure 4. Projected changes in annual mean surface air temperature and precipitation over the globe. Changes are relative to the 1986–2005 mean, with nine-year smoothing applied. Thick lines show the multi-model mean, and shading the interquartile ranges. Dotted (dashed) lines show the timing of 1.5 °C (2 °C) warming over the globe and the corresponding changes in the multi-model mean. Note that 2 °C warming will not be reached under RCP2.6.

    Figure 5. The (a, c) 1.5 °C and (b, d) 2 °C threshold-crossing time under the (a, b) RCP4.5 and (c, d) RCP8.5 scenarios over the Eurasian continent. The black outline denotes the Silk Road core region.

    The threshold-crossing time over the SRC region is earlier than that over the global land area or global mean(compare Figure 2(a) with Figures 3(a) and 4(a)). Under the RCP8.5 scenario, for example, a regional 1.5 °C (2 °C)warming over the SRC region is breached in 2010 (2022),whereas over the global land area and for the global mean the years are 2015 (2028) and 2025 (2039), respectively.

    But how will the pattern of annual mean SAT and precipitation change over the regions of the Millennium Silk Road under the 1.5 and 2 °C global warming scenarios? Based on Figure 6, we examine the multi-model ensemble mean changes of annual mean SAT between the 1.5 or 2.0 °C warmer world relative to the base period (1986–2005).Crucially, although generally a warmer and wetter climate mean state is expected under the 1.5 and 2 °C global warming scenarios, the specific changes between a 1.5 and 2 °C warmer world are regionally dependent. For instance, a 1.5 °C warmer world induces a regional annual mean warming of 1.24 °C relative to the 1986–2005 base period over the SRC region, with an interquartile range of 0.92–1.63 °C. Compared with the 1.5 °C warmer world,however, the additional 0.5 °C under global warming of 2 °C leads to a further warming by 0.73 °C (interquartile range is 0.49–0.94 °C, similarly hereinafter) over the SRC region, which is much greater than the global mean level.The annual mean precipitation amount increases by 4.77% (2.31%–8.59%) under warming of 1.5 °C relative to the baseline, but the extra 0.5 °C under warming of 2 °C brings a further 2.72% (0.47%–3.82%) increase in precipitation over the SRC region. The spatial pattern features significant increases against model uncertainty between the two warming levels in the eastern part of the Silk Road(Figure 6(f)).

    Changes in climate extremes may have larger impacts than mean-state changes. But how will extreme climate events change over the regions of the Millennium Silk Road in a 1.5 and 2 °C global warming future? Based on Figure 7, we examine the multi-model ensemble median changes in CDD between a 1.5 or 2.0 °C warmer world and the baseline period (1986–2005). The changes in CDD with warming exhibit a dipole pattern over Eurasia, featuring longer dry spells in the Asian monsoon–Mediterranean region and shorter dry spells in the vast northeastern Asia. The SRC region lies between, thus exhibiting longer dry spells in the southwestern part and shorter ones in the northeastern part. Among the SRC subregions, the reduction in CDD over the regions of Qinghai Province and northern Xinjiang Province is significant. The additional 0.5 °C under the warming of 2 °C increases (decreases) CDD by up to six ( five) days in the southwestern (northeastern)part of SRC region.

    Based on Figure 8, we further examine the changes in extreme heat between a 1.5 or 2.0 °C warmer world and the baseline period (1986–2005). The changes in extreme heat events associated with warming exhibit a uniform increase over the SRC region, especially over central Asia (38°–50°N,50°–70°E) and Xinjiang Province (38°–45°N, 65°–90°E).Changes over most of the SRC region are statistically significant at the 0.1% level, except those in Qinghai Province and southern Gansu Province. The additional 0.5 °C under warming of 2 °C increases the number of extreme heat days by 4.2 over the whole SRC region, and by up to 8 days in the southwestern part of the SRC region.

    Figure 7. Multimodel ensemble median changes in consecutive dry days (a) between a 1.5 °C warmer world and the 1986–2005 baseline period, (b) between a 2 °C warmer world and the baseline period, and (c) between a 2 and 1.5 °C warmer world. Projections under RCP8.5 are employed. Dots denote where at least twothirds of the models agree in the sign of change.

    Figure 8. Multi-model ensemble median changes in extreme heat(a) between a 1.5 °C warmer world and the 1986–2005 baseline period, (b) between a 2 °C warmer world and the baseline period,and (c) between a 2 and 1.5 °C warmer world. Projections under RCP8.5 are employed. Dots denote where the changes reach the 0.001 significance level.

    4. Summary and concluding remarks

    Western China and central Asia are positioned centrally along the Silk Road, and are together referred to as the Millennium SRC region. This region encompasses arid and semi-arid climate and is thus sensitive to climate change.The Belt and Road Initiative is a sophisticated network of trade corridors, power plants, and industrial infrastructure that will share the bene fits of more than $1 trillion in economic development. Thus, information on the potential change in climate over the SRC region is of crucial importance to planning future economic activities and hence the successful implementation of the Belt and Road Initiative.In this study, both mean and extreme climate changes projected by the ensemble mean of CMIP5 models are presented. The major findings are summarized in Table 2, but explained in slightly more detail as follows:

    (1) By the end of the twenty- first century, the multi-model ensemble mean projects a warming of~1.5, 2.9, 3.6, and 6.0 °C under RCP2.6, 4.5, 6.0,and 8.5, respectively, with respect to the 1986–2005 baseline. These warming magnitudes are around 0.2–0.8 °C greater than the global land average, and 0.5–2.0 °C greater than the global mean. Annual mean precipitation increases consistently across all RCPs. Under RCP8.5, the annual mean precipitation amount increases by ~14%with respect to 1986–2005 over the SRC region by the end of twenty- first century, as compared to ~6.5% for the global land area and ~6.8% for the globe as a whole.

    (2) The Millennium Silk Road is projected to witness a 1.5 and 2 °C warming earlier than the global land area and the global average. A regional warming of 1.5 °C (2 °C) over the SRC region is reached before 2020 (2030) under all the emission scenarios. The 2020s and 2030s see a 2 °C warming world, depending on whether RCP8.5 or RCP4.5 is used in the projection.

    (3) A 1.5 °C warmer world is projected to induce a regional annual mean warming of 1.24 °C over the SRC region relative to the 1986–2005 baseline period, with an interquartile range of 0.92–1.63 °C. The extra 0.5 °C under global warming of 2 °C leads to a further warming by 0.73 °C (0.49–0.94 °C), which is much greater than the global mean level. The annual mean precipitation amount increases by 4.77% (2.31%–8.59%) at the 1.5 °C warming level, with the extra 0.5 °C under warming of 2 °C expected to induce an additional 2.72% (0.47%–3.82%) increase in precipitation.

    (4) Changes in CDD are regionally dependent, with longer (shorter) dry spells in the southwestern(northeastern) part. The additional 0.5 °C under warming of 2 °C increases (decreases) the CDD by up to six ( five) days in the southwestern(northeastern) part of the SRC region. A uniform increase in extreme heat is seen across the SRC region under the 1.5 °C warming scenario, with the additional 0.5 °C under the 2 °C global warming scenario significantly increasing the number of extreme heat events.

    In summary, our comparison of mean and extreme climate changes under 1.5 °C and 2 °C global warming scenarios highlight the impacts that can be avoided by achieving global warming of half a degree lower. If we pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, as compared to holding the increase in the global average temperature to well below 2.0 °C, a further warming of 0.73 °C (0.49–0.94 °C), as well as increased extreme heat events, could be avoided in the SRC region, at a cost of a reduced increase of 2.72%(0.47%–3.82%) in annual precipitation.

    Table 2. Projected changes over the SRC region under global warming of 1.5 °C relative to the 1986–2005 baseline period and the extra 0.5 °C warming relative to 1.5 °C warming using CMIP5 models. The numbers in parentheses represent inter–quartile ranges of projected changes.

    Acknowledgments

    We appreciate the World Climate Research Programme Working Group on Coupled Modeling for organizing the CMIP5 project and releasing the model data.

    Funding

    This work is jointly supported by the National Natural Science Foundation of China [grant numbers 41330423, 41420104006,and 41605057].

    References

    Chen, X. C., Y. Xu, and Y. Yao. 2015. “Changes in Climate Extremes over China in a 2 °C, 3 °C, and 4 °C Warmer World.”Chinese Journal of Atmospheric Sciences39 (6): 1123–1135.doi:10.3878/j.issn.1006-9895.1502.14224. (in Chinese).

    Chen, X. L., and T. Zhou. 2015. “Distinct Effects of Global Mean Warming and Regional Sea Surface Warming Pattern on Projected Uncertainty in the South Asian Summer Monsoon.”Geophysical Research Letters42: 9433–9439.doi:10.1002/2015GL066384.

    Chen, X. L., and T. Zhou. 2016. “Uncertainty in Crossing Time of 2 °C Warming Threshold over China.”Science Bulletin61 (18):1451–1459. doi:10.1007/s11434-016-1166-z.

    Chen, X. L., and T. Zhou. 2017. “Surface Air Temperature Projection under 1.5 °C Warming Threshold Based on Corrected Pattern Scaling Technique.”Advances in Earth Science32 (4): 435–445.doi:10.11867/j.issn.1001-8166.2017.04.0435. (in Chinese).

    Ding, Q., and B. Wang. 2005. “Circumglobal Teleconnection in the Northern Hemisphere Summer.”Journal of Climate18(17): 3483–3505. doi:10.1175/JCLI3473.1.

    Guo, X., J. Huang, Y. Luo, Z. Zhao, and Y. Xu. 2016. “Projection of Precipitation Extremes for Eight Global Warming Targets by 17 CMIP5 Models.”Natural Hazards84 (3): 2299–2319.

    Guo, X., J. Huang, Y. Luo, Z. Zhao, and Y. Xu. 2017. “Projection of Heat Waves over China for Eight Different Global Warming Targets Using 12 CMIP5 Models.”Theoretical and Applied Climatology128 (3): 507–522.

    He, C., and T. Zhou. 2015. “Responses of the Western North Pacific Subtropical High to Global Warming under RCP4.5 and RCP8.5 Scenarios Projected by 33 CMIP5 Models: The Dominance of Tropical Indian Ocean – Tropical Western Pacific SST Gradient.”Journal of Climate28: 365–380.

    Hu, Z., C. Zhang, Q. Hu, and H. Tian. 2014. “Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets.”Journal of Climate27 (3): 1143–1167.

    Huang, A., Y. Zhou, Y. Zhang, D. Huang, Y. Zhao, and H. Wu. 2014.“Changes of the Annual Precipitation over Central Asia in the Twenty-First Century Projected by Multimodels of CMIP5.”Journal of Climate27 (17): 6627–6646.

    Huang, W., J. H. Chen, X. Zhang, S. Feng, and F. Chen. 2015.“De finition of the Core Zone of the ‘Westerlies–Dominated Climatic Regime’, and Its Controlling Factors during the Instrumental Period.”Science China. Earth Sciences58 (5): 676.doi:10.1007/s11430-015-5057-y.

    Huang, J., H. Yu, A. Dai, Y. Wei, and L. Kang. 2017. “Drylands Face Potential Threat under 2 °C Global Warming Target.”Nature Climate Change7 (6): 417.

    Hulme, M. 2016. “1.5 °C and Climate Research After the Paris Agreement.”Nature Climate Change6: 222–224.

    King, A. D., D. J. Karoly, and B. J. Henley. 2017. “Australian Climate Extremes at 1.5 °C and 2 °C of Global Warming.”Nature Climate Change7: 412–416.

    Kitoh, A., H. Endo, K. Krishna Kumar, I. F. A. Cavalcanti, P.Goswami, and T. Zhou. 2013. “Monsoons in a Changing World: A Regional Perspective in a Global Context.”Journal of Geophysical Research: Atmospheres118: 3053–3065.doi:10.1002/jgrd.50258.

    Li, B., Y. Chen, and X. Shi. 2012. “Why Does the Temperature Rise Faster in the Arid Region of Northwest China?”Journal of Geophysical Research: Atmospheres117 (D16): 115.doi:10.1029/2012JD017953.

    Li, D. H., T. Zhou, L. Zou, W. Zhang, and L. Zhang. 2018. “Extreme High Temperature Events over East Asia in 1.5 °C and 2 °C Warmer Futures: Analysis of NCAR CESM Low-Warming Experiments.”Geophysical Research Letters45: 1541–1550.doi:10.1002/2017GL076753.

    Li, D. H., L. W. Zou, and T. Zhou. 2017. “Changes of Extreme Indices over China in Response to 1.5 °C Global Warming Projected by a Regional Climate Model.”Advances in Earth Science32(4): 446–457. doi:10.11867/j.issn.1001-8166.2017.04.0446. (in Chinese).

    Mariotti, A. 2007. “How ENSO Impacts Precipitation in Southwest Central Asia.”Geophysical Research Letters34 (16): 370–381.doi:10.1029/2007GL030078.

    Mitchell, D., R. James, P. M. Forster, R. A. Betts, H. Shiogama, and M. Allen. 2016. “Realizing the Impacts of a 1.5 °C Warmer World.”Nature Climate Change6: 735–737.

    Peng, D. D., and T. Zhou. 2017. “Why Was the Arid and Semiarid Northwest China Getting Wetter in the Recent Decades?”Journal of Geophysical Research: Atmosphere122: 9060–9075.doi:10.1002/2016JD026424.

    Peng, D. D., T. Zhou, L. Zou, L. Zhang, and X. Chen. 2016.“The FGOALS–G2 Simulation of Global Monsoon Extreme Precipitation and Future Projection.”Chinese Journal of Atmospheric Sciences40 (5): 1059–1072. doi:10.3878/j.issn.1006-9895.1512.15243. (in Chinese).

    Schleussner, C. F., T. K. Lissner, E. M. Fischer, J. Wohland, M.Perrette, A. Golly, J. Rogelj, et al. 2016a. “Differential Climate Impacts for Policy–Relevant Limits to Global Warming: The Case of 1.5 °C and 2 °C.”Earth System Dynamics7: 327–351.

    Schleussner, C. F., J. Rogelj, M. Schaeffer, T. Lissner, R. Licker, E. M.Fischer, R. Knutti, A. Levermann, K. Frieler, and W. Hare. 2016b.“Science and Policy Characteristics of the Paris Agreement Temperature Goal.”Nature Climate Change6: 827–835.

    Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An Overview of CMIP5 and the Experiment Design.”Bulletin of the American Meteorological Society93: 485–498.

    UNFCCC (United Nations Framework Convention on Climate Change). 2015. “Adoption of the Paris Agreement.” Conference of the Parties, Paris, France, November 30–December 11.

    Wang, Y. J., B. T. Zhou, D. H. Qin, J. Wu, R. Gao, and L. C. Song.2017. “Changes in Mean and Extreme Temperature and Precipitation over the Arid Region of Northwestern China:Observation and Projection.”Advances in Atmospheric Sciences34 (3): 289–305. doi:10.1007/s00376-016-6160-5.

    Wei, W., R. Zhang, M. Wen, and S. Yang. 2017. “Relationship between the Asian Westerly Jet Stream and Summer Rainfall over Central Asia and North China: Roles of the Indian Monsoon and the South Asian High.”Journal of Climate30 (2):537–552. doi:10.1175/JCLI-D-15-0814.1.

    Xu, Y., B. T. Zhou, J. Wu, Z. Y. Han, Y. X. Zhang, and J. Wu. 2017. “Asian Climate Change under 1.5–4 °C Warming Targets.”Advances in Climate Change Research8 (2): 99–107. (in Chinese).

    Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T.C. Peterson, B. Trewin, and F. W. Zwiers. 2011. “Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data.”Wiley Interdisciplinary Reviews:Climate Change2 (6): 851–870.

    Zhao, Y., M. Z. Wang, A. N. Huang, H. J. Li, W. Huo, and Q. Yang.2014. “Relationships between the West Asian Subtropical Westerly Jet and Summer Precipitation in Northern Xinjiang.”Theoretical & Applied Climatology116 (3–4): 403–411.

    Zou, L. W., and T. J. Zhou. 2015. “Asian Summer Monsoon Onset in Simulations and CMIP5 Projections Using Four Chinese Climate Models.”Advances in Atmospheric Sciences32 (6):794–806. doi:10.1007/s00376-014-4053-z.

    Zou, L., and T. Zhou. 2016. “Future Summer Precipitation Changes over CORDEX–East Asia Domain under the RCP8.5 Scenario Downscaled by a Regional Ocean–Atmosphere Coupled Model: A Comparison to the Stand–Alone RCM.”Journal of Geophysical Research – Atmospheres121: 2691–2704. doi:10.1002/2015JD024519.

    别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久午夜电影| 午夜福利高清视频| 欧美一区二区精品小视频在线| 99久久久亚洲精品蜜臀av| 国内精品美女久久久久久| 插逼视频在线观看| 香蕉av资源在线| 久久欧美精品欧美久久欧美| 日韩中字成人| av免费在线看不卡| av卡一久久| 在线看三级毛片| 国产精品永久免费网站| 国产视频内射| 毛片一级片免费看久久久久| 午夜免费激情av| 欧美成人a在线观看| 最新在线观看一区二区三区| 在线播放国产精品三级| 国产成人a区在线观看| 亚洲性久久影院| 成年版毛片免费区| 精品久久久久久久久亚洲| 97在线视频观看| 18禁在线无遮挡免费观看视频 | 精品福利观看| 午夜a级毛片| a级毛片a级免费在线| 夜夜爽天天搞| 国产美女午夜福利| 成熟少妇高潮喷水视频| 搞女人的毛片| av在线蜜桃| 搡老岳熟女国产| 国产伦精品一区二区三区视频9| 美女大奶头视频| 日本撒尿小便嘘嘘汇集6| 久久久久免费精品人妻一区二区| 精品少妇黑人巨大在线播放 | 国产精品99久久久久久久久| 国产精品一区二区性色av| 男女啪啪激烈高潮av片| 国产蜜桃级精品一区二区三区| 午夜a级毛片| 日韩强制内射视频| 99国产精品一区二区蜜桃av| 啦啦啦啦在线视频资源| 免费观看精品视频网站| 国产黄片美女视频| 亚洲av中文av极速乱| 亚洲av美国av| 久久天躁狠狠躁夜夜2o2o| 蜜桃亚洲精品一区二区三区| 人人妻人人看人人澡| 色5月婷婷丁香| 国产视频一区二区在线看| 国产精品无大码| 国产欧美日韩精品亚洲av| 校园人妻丝袜中文字幕| 亚洲成人久久爱视频| 成熟少妇高潮喷水视频| 午夜视频国产福利| 亚洲av二区三区四区| 婷婷精品国产亚洲av在线| 日韩制服骚丝袜av| 最近视频中文字幕2019在线8| 亚州av有码| 男女边吃奶边做爰视频| 成人漫画全彩无遮挡| 亚洲国产色片| 国产精品永久免费网站| 又黄又爽又免费观看的视频| 三级国产精品欧美在线观看| 日韩制服骚丝袜av| 在线观看美女被高潮喷水网站| 国产美女午夜福利| 成人综合一区亚洲| 国产午夜福利久久久久久| 99久久精品热视频| 校园人妻丝袜中文字幕| 在线看三级毛片| 亚洲中文日韩欧美视频| 老熟妇仑乱视频hdxx| 丰满人妻一区二区三区视频av| 岛国在线免费视频观看| 国产日本99.免费观看| 国产激情偷乱视频一区二区| 亚洲人成网站在线播放欧美日韩| 搡老岳熟女国产| 舔av片在线| 熟女人妻精品中文字幕| 午夜精品在线福利| 国产av一区在线观看免费| 一本精品99久久精品77| 久久久久免费精品人妻一区二区| 一区二区三区高清视频在线| 精品人妻视频免费看| 久久久精品94久久精品| 一本一本综合久久| 一本精品99久久精品77| 欧美绝顶高潮抽搐喷水| 日韩欧美 国产精品| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩卡通动漫| 国产美女午夜福利| 欧美最黄视频在线播放免费| 99视频精品全部免费 在线| 嫩草影视91久久| 日本精品一区二区三区蜜桃| videossex国产| 久久久国产成人精品二区| 亚洲欧美日韩高清在线视频| av天堂中文字幕网| 国产午夜精品久久久久久一区二区三区 | 一个人看的www免费观看视频| 嫩草影视91久久| 亚洲内射少妇av| 一个人观看的视频www高清免费观看| 久久精品夜色国产| 久久人妻av系列| 亚洲精华国产精华液的使用体验 | 亚洲色图av天堂| av在线蜜桃| 亚洲国产精品sss在线观看| 精品久久久久久久久av| 岛国在线免费视频观看| 麻豆成人午夜福利视频| 在线播放国产精品三级| 国产精品1区2区在线观看.| 蜜臀久久99精品久久宅男| 国产男人的电影天堂91| 欧美性猛交╳xxx乱大交人| 日日干狠狠操夜夜爽| 麻豆精品久久久久久蜜桃| 亚洲成人久久爱视频| 精品午夜福利视频在线观看一区| av在线老鸭窝| 少妇的逼水好多| 国产精品国产高清国产av| 久久热精品热| 国产精品,欧美在线| 欧美性猛交╳xxx乱大交人| 熟女人妻精品中文字幕| 午夜福利成人在线免费观看| 日日摸夜夜添夜夜添小说| 99视频精品全部免费 在线| 亚洲内射少妇av| 国产精品一二三区在线看| 国产精品国产高清国产av| 亚洲一级一片aⅴ在线观看| 亚洲国产色片| 亚洲av二区三区四区| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 看免费成人av毛片| 久久精品影院6| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 18禁在线播放成人免费| 国产成人a区在线观看| 久久欧美精品欧美久久欧美| 卡戴珊不雅视频在线播放| 一本精品99久久精品77| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| 免费观看人在逋| 男插女下体视频免费在线播放| 女的被弄到高潮叫床怎么办| 日日摸夜夜添夜夜添av毛片| 老熟妇仑乱视频hdxx| 日韩欧美三级三区| 亚洲精品国产av成人精品 | 91久久精品电影网| 精品久久久久久久久av| 国产欧美日韩一区二区精品| 蜜桃久久精品国产亚洲av| 久久久久久久久久成人| 亚洲真实伦在线观看| 日本爱情动作片www.在线观看 | 久久精品综合一区二区三区| 久久久久久久久久久丰满| 欧美日韩综合久久久久久| av免费在线看不卡| 成人漫画全彩无遮挡| 最近的中文字幕免费完整| 最近最新中文字幕大全电影3| 婷婷亚洲欧美| 国产高清激情床上av| 欧美激情在线99| 国产91av在线免费观看| 精品少妇黑人巨大在线播放 | av黄色大香蕉| 中文亚洲av片在线观看爽| 男女做爰动态图高潮gif福利片| 日韩av在线大香蕉| 老司机福利观看| 亚洲国产精品合色在线| 成人三级黄色视频| 淫秽高清视频在线观看| 麻豆乱淫一区二区| 97超碰精品成人国产| 国产精品久久久久久亚洲av鲁大| 久久久久久久午夜电影| 一区二区三区免费毛片| 精品久久久久久久久久免费视频| 国产午夜精品久久久久久一区二区三区 | 国产亚洲91精品色在线| 俺也久久电影网| 亚洲欧美日韩高清在线视频| 不卡一级毛片| 日本精品一区二区三区蜜桃| 国产精品嫩草影院av在线观看| 最近最新中文字幕大全电影3| .国产精品久久| 国产真实伦视频高清在线观看| 中国国产av一级| 欧美成人免费av一区二区三区| 欧美激情久久久久久爽电影| 国产真实伦视频高清在线观看| 午夜亚洲福利在线播放| 国产v大片淫在线免费观看| 少妇熟女aⅴ在线视频| 免费看a级黄色片| av在线天堂中文字幕| 97超级碰碰碰精品色视频在线观看| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区av在线 | 国产精品久久久久久av不卡| 亚洲不卡免费看| 国产视频一区二区在线看| 国产精品久久久久久精品电影| 国产人妻一区二区三区在| 91在线观看av| 精品久久久久久久久亚洲| 男女之事视频高清在线观看| 麻豆一二三区av精品| 在线观看av片永久免费下载| 97在线视频观看| 一级黄片播放器| 国产精品亚洲美女久久久| 一级a爱片免费观看的视频| 午夜福利在线观看吧| 久久人妻av系列| 日韩av不卡免费在线播放| 国产高清视频在线观看网站| 热99re8久久精品国产| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 一边摸一边抽搐一进一小说| 日韩大尺度精品在线看网址| 日韩精品青青久久久久久| 国产真实伦视频高清在线观看| 国产精品不卡视频一区二区| 97人妻精品一区二区三区麻豆| 久久韩国三级中文字幕| 级片在线观看| 两个人的视频大全免费| 男女边吃奶边做爰视频| 国产69精品久久久久777片| 日本黄色视频三级网站网址| 国产精品久久久久久av不卡| 看免费成人av毛片| 超碰av人人做人人爽久久| 淫妇啪啪啪对白视频| 最新中文字幕久久久久| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 99久久精品热视频| 18禁裸乳无遮挡免费网站照片| 91精品国产九色| av在线亚洲专区| 久久中文看片网| 精品日产1卡2卡| 人人妻,人人澡人人爽秒播| 一本久久中文字幕| 亚洲成人av在线免费| 噜噜噜噜噜久久久久久91| 国产精品一区二区免费欧美| av免费在线看不卡| 欧美高清性xxxxhd video| 成年女人看的毛片在线观看| 国产高清视频在线观看网站| 久久午夜亚洲精品久久| 国产 一区 欧美 日韩| 黄色日韩在线| 岛国在线免费视频观看| 欧美人与善性xxx| 成年女人永久免费观看视频| 99热精品在线国产| 99久久中文字幕三级久久日本| 成人亚洲精品av一区二区| 蜜臀久久99精品久久宅男| 麻豆成人午夜福利视频| 1000部很黄的大片| 日本欧美国产在线视频| 国产毛片a区久久久久| 一进一出好大好爽视频| 最近中文字幕高清免费大全6| 如何舔出高潮| 日本成人三级电影网站| 成人特级av手机在线观看| 极品教师在线视频| 伊人久久精品亚洲午夜| 九色成人免费人妻av| 欧美色欧美亚洲另类二区| 中文资源天堂在线| 欧美+亚洲+日韩+国产| 国产亚洲av嫩草精品影院| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 亚洲成av人片在线播放无| 国产欧美日韩精品亚洲av| 国产又黄又爽又无遮挡在线| 香蕉av资源在线| 九九爱精品视频在线观看| 日本五十路高清| 禁无遮挡网站| 欧美人与善性xxx| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 中文在线观看免费www的网站| 欧美bdsm另类| 国产v大片淫在线免费观看| 国产三级在线视频| 日本黄色片子视频| 国产精品无大码| 一进一出抽搐动态| 国产精品国产高清国产av| 天堂√8在线中文| 麻豆成人午夜福利视频| 人妻丰满熟妇av一区二区三区| 亚洲精品在线观看二区| 我要看日韩黄色一级片| 男人狂女人下面高潮的视频| 成人av一区二区三区在线看| 国产真实乱freesex| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美精品免费久久| 精品不卡国产一区二区三区| 一边摸一边抽搐一进一小说| 夜夜看夜夜爽夜夜摸| 狠狠狠狠99中文字幕| 麻豆一二三区av精品| 精品国产三级普通话版| 国产精品嫩草影院av在线观看| 看黄色毛片网站| 欧美日本亚洲视频在线播放| 天美传媒精品一区二区| 免费黄网站久久成人精品| 亚洲精品一区av在线观看| 51国产日韩欧美| 精品一区二区三区人妻视频| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 午夜免费激情av| 99视频精品全部免费 在线| videossex国产| 免费av不卡在线播放| 一个人观看的视频www高清免费观看| 亚洲精华国产精华液的使用体验 | 亚洲欧美精品自产自拍| 国产国拍精品亚洲av在线观看| 国产人妻一区二区三区在| 白带黄色成豆腐渣| 亚洲精品粉嫩美女一区| 青春草视频在线免费观看| 十八禁网站免费在线| 日韩大尺度精品在线看网址| 国国产精品蜜臀av免费| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 小蜜桃在线观看免费完整版高清| 日韩强制内射视频| 搡老熟女国产l中国老女人| 中文字幕熟女人妻在线| 亚洲av中文字字幕乱码综合| 午夜a级毛片| 久久久久性生活片| 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 99在线视频只有这里精品首页| 婷婷亚洲欧美| 精品午夜福利在线看| 精品久久久噜噜| 日本精品一区二区三区蜜桃| 99精品在免费线老司机午夜| 哪里可以看免费的av片| 午夜日韩欧美国产| 欧美一区二区亚洲| 伊人久久精品亚洲午夜| 嫩草影院入口| 永久网站在线| 久久精品夜色国产| ponron亚洲| 欧美成人一区二区免费高清观看| 18+在线观看网站| 菩萨蛮人人尽说江南好唐韦庄 | 91在线观看av| 日本精品一区二区三区蜜桃| 中文字幕免费在线视频6| 日韩精品青青久久久久久| 日本一二三区视频观看| 99久久九九国产精品国产免费| 哪里可以看免费的av片| 国产麻豆成人av免费视频| 久久久久国产精品人妻aⅴ院| 我的女老师完整版在线观看| 成人鲁丝片一二三区免费| 在线天堂最新版资源| 亚洲国产精品成人综合色| 欧美最新免费一区二区三区| 一本一本综合久久| 久久欧美精品欧美久久欧美| 91精品国产九色| 自拍偷自拍亚洲精品老妇| 一进一出抽搐动态| 一本一本综合久久| 亚洲国产日韩欧美精品在线观看| www.色视频.com| 秋霞在线观看毛片| 成年女人看的毛片在线观看| 一区二区三区四区激情视频 | 午夜a级毛片| 亚洲欧美日韩高清专用| 久久久久久久久中文| 国产蜜桃级精品一区二区三区| 干丝袜人妻中文字幕| 亚洲精品亚洲一区二区| 插阴视频在线观看视频| 小说图片视频综合网站| 国产成人影院久久av| 1000部很黄的大片| 国产精品一二三区在线看| 婷婷色综合大香蕉| 国产综合懂色| 久久精品综合一区二区三区| 精品少妇黑人巨大在线播放 | 国产真实伦视频高清在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲专区国产一区二区| 亚洲高清免费不卡视频| 精品国内亚洲2022精品成人| www.色视频.com| 午夜精品国产一区二区电影 | 精华霜和精华液先用哪个| 精品一区二区免费观看| 国产亚洲欧美98| 麻豆久久精品国产亚洲av| 亚洲va在线va天堂va国产| 欧美激情久久久久久爽电影| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 日本 av在线| 特大巨黑吊av在线直播| av在线观看视频网站免费| 中文字幕精品亚洲无线码一区| 高清午夜精品一区二区三区 | 淫秽高清视频在线观看| 成人av在线播放网站| 午夜久久久久精精品| 日韩精品青青久久久久久| 人妻少妇偷人精品九色| 成年女人看的毛片在线观看| 日本一二三区视频观看| 亚洲电影在线观看av| 欧美成人一区二区免费高清观看| 国产免费男女视频| 99国产精品一区二区蜜桃av| 中文亚洲av片在线观看爽| 熟女人妻精品中文字幕| 3wmmmm亚洲av在线观看| 国产乱人偷精品视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品大字幕| 深爱激情五月婷婷| 国产白丝娇喘喷水9色精品| 日韩高清综合在线| 久久欧美精品欧美久久欧美| 高清毛片免费看| 天堂√8在线中文| 国产亚洲精品av在线| 欧美激情在线99| 日本黄色视频三级网站网址| 99热这里只有是精品在线观看| 亚洲欧美成人综合另类久久久 | 精品欧美国产一区二区三| 免费看a级黄色片| 麻豆av噜噜一区二区三区| 在线观看av片永久免费下载| 免费观看的影片在线观看| 亚洲三级黄色毛片| 国产精品1区2区在线观看.| 一夜夜www| 欧美成人免费av一区二区三区| 国产色爽女视频免费观看| 91麻豆精品激情在线观看国产| 老女人水多毛片| 久久人人爽人人爽人人片va| 人妻丰满熟妇av一区二区三区| 欧美一区二区国产精品久久精品| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 亚洲无线观看免费| 男女之事视频高清在线观看| 色综合色国产| 一边摸一边抽搐一进一小说| 日本黄大片高清| 国产片特级美女逼逼视频| 1000部很黄的大片| 三级毛片av免费| 12—13女人毛片做爰片一| 99久国产av精品国产电影| 精品一区二区三区人妻视频| 好男人在线观看高清免费视频| 国产午夜福利久久久久久| 久久久色成人| ponron亚洲| 免费在线观看成人毛片| 精品人妻视频免费看| 极品教师在线视频| 精品一区二区免费观看| 中文字幕久久专区| 天堂√8在线中文| 亚洲精华国产精华液的使用体验 | 深爱激情五月婷婷| 国产成人freesex在线 | 国产高清不卡午夜福利| 亚洲精品国产av成人精品 | 中文字幕精品亚洲无线码一区| 在线观看av片永久免费下载| 日本黄色片子视频| 精品久久久久久久久亚洲| 女的被弄到高潮叫床怎么办| 人人妻人人澡欧美一区二区| 成人鲁丝片一二三区免费| 亚洲精品一区av在线观看| 久久久国产成人精品二区| 精华霜和精华液先用哪个| 99热这里只有精品一区| 久久婷婷人人爽人人干人人爱| 国产精品永久免费网站| 国产高清激情床上av| av黄色大香蕉| 麻豆国产97在线/欧美| 亚洲精华国产精华液的使用体验 | 亚洲婷婷狠狠爱综合网| 夜夜看夜夜爽夜夜摸| 欧美色视频一区免费| 久久精品国产鲁丝片午夜精品| 成人国产麻豆网| 欧洲精品卡2卡3卡4卡5卡区| 成人国产麻豆网| 丝袜喷水一区| 国产一区二区亚洲精品在线观看| 午夜日韩欧美国产| 日日干狠狠操夜夜爽| 99视频精品全部免费 在线| 别揉我奶头~嗯~啊~动态视频| 精品人妻偷拍中文字幕| aaaaa片日本免费| 欧美bdsm另类| 午夜久久久久精精品| 国产成人福利小说| 欧美日韩国产亚洲二区| 少妇猛男粗大的猛烈进出视频 | 婷婷亚洲欧美| 插阴视频在线观看视频| 日韩av不卡免费在线播放| 欧美成人免费av一区二区三区| 国产精品国产三级国产av玫瑰| 赤兔流量卡办理| 最近中文字幕高清免费大全6| 国产亚洲精品久久久久久毛片| 乱系列少妇在线播放| 亚洲乱码一区二区免费版| 亚洲美女搞黄在线观看 | 又黄又爽又刺激的免费视频.| 一级毛片电影观看 | 观看美女的网站| 波野结衣二区三区在线| 老司机影院成人| 99国产极品粉嫩在线观看| 久久99热6这里只有精品| 久久精品久久久久久噜噜老黄 | 精品久久国产蜜桃| 亚洲,欧美,日韩| 97热精品久久久久久| 成人av一区二区三区在线看| 麻豆精品久久久久久蜜桃| 看非洲黑人一级黄片| 国产精品一区www在线观看| 午夜视频国产福利| 成人漫画全彩无遮挡| 不卡视频在线观看欧美| 丝袜美腿在线中文| av福利片在线观看| 老司机影院成人| 波多野结衣高清无吗| 可以在线观看的亚洲视频| 国产精品久久久久久亚洲av鲁大| 麻豆av噜噜一区二区三区| 日韩制服骚丝袜av| 日韩大尺度精品在线看网址| 久久久精品94久久精品| 亚洲国产日韩欧美精品在线观看| 欧美成人a在线观看| 国产免费一级a男人的天堂| 中文字幕精品亚洲无线码一区| 一级a爱片免费观看的视频| 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 免费一级毛片在线播放高清视频| 国产精品爽爽va在线观看网站|