遲 宇,郭艷嬌,馮 涵,李 寒,鄭永軍,3
采用多源信息融合的妊娠豬舍環(huán)境質(zhì)量評價方法
遲 宇1,郭艷嬌1,馮 涵1,李 寒2,鄭永軍1,3※
(1. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;3. 現(xiàn)代農(nóng)業(yè)裝備與設(shè)施教育部工程研究中心,北京 100083)
妊娠豬舍作為養(yǎng)殖場豬只繁育的基礎(chǔ)條件,其環(huán)境質(zhì)量對母豬的生產(chǎn)性能有顯著影響。為合理評價妊娠豬舍環(huán)境質(zhì)量,該研究提出一種基于模擬退火的粒子群算法(Simulated Annealing-Particle Swarm Optimization,SA-PSO)、套索算法(Least Absolute Shrinkage and Selection Operator,LASSO)和反向傳播(Back Propagation,BP)神經(jīng)網(wǎng)絡(luò)的環(huán)境質(zhì)量評價模型。利用卡爾曼濾波和分批估計自適應(yīng)加權(quán)融合算法,實現(xiàn)多節(jié)點環(huán)境數(shù)據(jù)的時間與空間序列融合;構(gòu)建豬舍環(huán)境質(zhì)量非線性評價模型,采用LASSO算法,篩選得出與環(huán)境質(zhì)量強(qiáng)相關(guān)的特征參數(shù),實現(xiàn)輸入降維;融合SA-PSO算法實現(xiàn)網(wǎng)絡(luò)初始權(quán)值和閾值的優(yōu)化,形成SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)評價模型。通過對數(shù)據(jù)采集系統(tǒng)獲取的實際妊娠豬舍環(huán)境數(shù)據(jù)進(jìn)行驗證,結(jié)果表明:提出的環(huán)境質(zhì)量評價模型決定系數(shù)為0.918、總準(zhǔn)確率為95.85%,相比單純使用BP神經(jīng)網(wǎng)絡(luò),加入LASSO和SA-PSO算法后決定系數(shù)與總準(zhǔn)確率分別提高了37.43%、11.09個百分點,具有更高的評價精度和性能,可更好地擬合復(fù)雜環(huán)境參數(shù)與環(huán)境質(zhì)量間的非線性關(guān)系,為妊娠豬舍環(huán)境質(zhì)量評價提供參考。
模型;環(huán)境;妊娠豬舍;環(huán)境質(zhì)量;BP神經(jīng)網(wǎng)絡(luò);LASSO算法;SA-PSO算法
在生豬養(yǎng)殖集約化、規(guī)模化發(fā)展的過程中,母豬的繁殖性能和健康作為影響?zhàn)B殖企業(yè)經(jīng)濟(jì)效益的關(guān)鍵因素,受到妊娠豬舍內(nèi)環(huán)境質(zhì)量(適宜性或舒適度)的直接影響[1-3]。因此建立可監(jiān)測特征環(huán)境參數(shù)與舒適度之間的關(guān)系、及時準(zhǔn)確地評價妊娠豬舍環(huán)境質(zhì)量,是改善環(huán)境調(diào)控措施、實現(xiàn)豬舍環(huán)境舒適度精準(zhǔn)調(diào)控的重要前提,對于減輕母豬生長與繁育過程中受到的環(huán)境脅迫、提高養(yǎng)殖效益有實際意義。
目前,對于豬舍環(huán)境質(zhì)量評價主要分為2類:模糊綜合評價模型與機(jī)器學(xué)習(xí)模型。由于豬舍環(huán)境是一個由多環(huán)境參數(shù)共同作用所形成的復(fù)雜非線性時變系統(tǒng),且環(huán)境參數(shù)間相互影響,因此舍內(nèi)環(huán)境質(zhì)量與環(huán)境參數(shù)間的關(guān)系難以使用準(zhǔn)確的數(shù)學(xué)模型進(jìn)行映射。模糊綜合評價法[4-6]作為豬舍環(huán)境質(zhì)量常用的評價方法,雖然能夠有效解決多環(huán)境參數(shù)的不確定性和模糊邊界問題,但未能挖掘環(huán)境參數(shù)間的耦合關(guān)系和環(huán)境參數(shù)與環(huán)境質(zhì)量間的非線性關(guān)系,存在欠學(xué)習(xí)的問題。由此,程捷等[7]提出一種基于改進(jìn)D-S(Dempster-Shafer)證據(jù)理論的數(shù)據(jù)融合算法,能夠兼顧各環(huán)境參數(shù)的數(shù)據(jù)特征和內(nèi)在聯(lián)系,有效地識別豬舍環(huán)境狀態(tài)??紤]到環(huán)境參數(shù)與環(huán)境適宜性之間的非線性關(guān)系,孫聰[8]利用改進(jìn)CS(Cuckoo Search)算法優(yōu)化的BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)構(gòu)建豬舍環(huán)境適宜度評價模型;朱保釧[9]通過改進(jìn)的C4.5算法實現(xiàn)對育肥豬舍環(huán)境適宜性的預(yù)測;陳沖等[10]提出了一種基于MSCCS-LSSVR(Mutative Scale Chaos Cuckoo Search-Least Square Support Vector Regression)模型的哺乳母豬舍環(huán)境舒適度評價預(yù)測方法。由于豬舍內(nèi)環(huán)境受到舍外環(huán)境、地理位置等因素影響,不同豬舍內(nèi)環(huán)境參數(shù)的變化范圍和變化趨勢存在實際差異。以上方法雖能擬合豬舍環(huán)境參數(shù)與適宜性之間的非線性關(guān)系,但未對參數(shù)選取原則與其對環(huán)境質(zhì)量的影響程度作深入分析,模型存在應(yīng)用普適性和泛化性差的問題。
BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋型網(wǎng)絡(luò)模型,具有高度的自學(xué)習(xí)和非線性映射能力,已在畜禽舍內(nèi)環(huán)境參數(shù)評估預(yù)測方面取得良好的效果[11-12]。因此本文采用BP神經(jīng)網(wǎng)絡(luò)構(gòu)建非線性評價模型,但其性能易受初始權(quán)值和閾值隨機(jī)性的影響,仍需采用優(yōu)化算法對其初始參數(shù)進(jìn)行優(yōu)化[12-13],進(jìn)一步提升網(wǎng)絡(luò)性能和預(yù)測精度。針對妊娠豬舍內(nèi)環(huán)境質(zhì)量的特征參數(shù)選擇與BP神經(jīng)網(wǎng)絡(luò)參數(shù)優(yōu)化問題,采用LASSO(Least Absolute Shrinkage and Selection Operator)算法篩選特征參數(shù),簡化多環(huán)境參數(shù)結(jié)構(gòu);利用SA-PSO(Simulated Annealing-Particle Swarm Optimization)算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值,構(gòu)建SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)模型,實現(xiàn)妊娠豬舍環(huán)境質(zhì)量的可靠評價,為后續(xù)環(huán)境質(zhì)量精準(zhǔn)調(diào)控提供決策支持。
采集現(xiàn)場為湖南省株洲某生豬養(yǎng)殖基地。該基地是一個典型的集生豬培育、種豬繁殖于一體的集約化生豬養(yǎng)殖基地,本研究所選豬舍為密閉環(huán)境,長40 m、寬14 m、高3 m,內(nèi)部為4列式豬欄結(jié)構(gòu),如圖1a所示。該豬舍內(nèi)限位欄長2.2 m、寬0.65 m、高1 m,共養(yǎng)殖228頭長白豬。依據(jù)國家標(biāo)準(zhǔn)[14],豬舍環(huán)境評價主要包括豬舍空氣、豬舍通風(fēng)、豬舍采光、豬舍噪聲等4個方面,且每方面均包含多個環(huán)境參數(shù)。其中溫度、相對濕度、NH3質(zhì)量濃度、CO2質(zhì)量濃度、H2S質(zhì)量濃度、PM2.5質(zhì)量濃度、PM10質(zhì)量濃度、光照強(qiáng)度、噪聲等9個指標(biāo)是豬舍環(huán)境質(zhì)量的主要影響因素[15-17],均可通過傳感器直接獲得。經(jīng)預(yù)檢測,將傳感器安裝于距離地面2 m處,數(shù)值波動較小且可避免豬舍噴水、清潔等管理工作對傳感器造成的損壞。試驗采用的多種傳感器組成1個采集節(jié)點,布置見圖1b,實現(xiàn)數(shù)據(jù)的可持續(xù)監(jiān)測。各傳感器及參數(shù)指標(biāo)見表1。
圖1 豬舍結(jié)構(gòu)及采集節(jié)點布置
表1 傳感器參數(shù)
利用Arduino Mega 2560作為控制核心建立數(shù)據(jù)采集系統(tǒng),總體結(jié)構(gòu)如圖2所示。該系統(tǒng)的10個采集節(jié)點每間隔10 min對環(huán)境數(shù)據(jù)進(jìn)行1次采集,并通過WIFI模塊將各傳感器采集的環(huán)境數(shù)據(jù)傳輸至物聯(lián)網(wǎng)監(jiān)測平臺數(shù)據(jù)中心,實現(xiàn)數(shù)據(jù)的存儲與遠(yuǎn)程監(jiān)控。采集周期為2021年10月1日至2021年12月31日(92 d)。
圖2 數(shù)據(jù)采集系統(tǒng)
1.2.1 單一傳感器時間序列數(shù)據(jù)融合
由于環(huán)境參數(shù)傳感器在工作過程中易受到妊娠豬舍日常生產(chǎn)與管理工作的干擾而產(chǎn)生噪聲。采用卡爾曼濾波算法[17]對原始數(shù)據(jù)進(jìn)行濾波處理,能夠有效地抑制系統(tǒng)與環(huán)境噪聲,減小隨機(jī)誤差的影響,較好地實現(xiàn)時間序列數(shù)據(jù)融合。以下以溫度傳感器數(shù)據(jù)為例,說明數(shù)據(jù)預(yù)處理過程。
本文對2021年10月1日至2日豬舍內(nèi)一個溫度傳感器連續(xù)采集的288個數(shù)據(jù)進(jìn)行預(yù)處理。為填補(bǔ)無線傳輸丟包造成的缺失數(shù)據(jù),將同一時刻其他同質(zhì)傳感器采集數(shù)據(jù)的平均值作為本傳感器缺失的時點數(shù)據(jù)。采集到的原始溫度時序數(shù)據(jù)經(jīng)卡爾曼濾波平滑后消除了峰值突變(圖3),實現(xiàn)異常數(shù)據(jù)修正與環(huán)境噪聲實時動態(tài)計算和補(bǔ)償。濾波前后溫度數(shù)據(jù)的方差分別為1.49和1.43,濾波后數(shù)據(jù)的方差較濾波前下降了4.03%,數(shù)據(jù)波動性降低,確保了數(shù)據(jù)的準(zhǔn)確性和有效性。
圖3 卡爾曼濾波結(jié)果
1.2.2 多源同質(zhì)傳感器空間序列數(shù)據(jù)融合
單一傳感器時間序列數(shù)據(jù)融合后,需要對10個采集節(jié)點的同質(zhì)傳感器數(shù)據(jù)進(jìn)行空間序列融合。本研究以分批估計自適應(yīng)加權(quán)融合算法[18]為核心,首先利用等分法將單一傳感器連續(xù)采集的10個數(shù)據(jù)劃分為2組,根據(jù)分批估計理論分別求取2組數(shù)據(jù)的局部方差;再采用自適應(yīng)加權(quán)融合算法計算多源同質(zhì)傳感器數(shù)據(jù)的整體方差,獲得各傳感器數(shù)據(jù)的加權(quán)因子,從而實現(xiàn)多源同質(zhì)傳感器空間序列融合。
為驗證分批估計自適應(yīng)加權(quán)融合算法的可行性,首先分別對妊娠豬舍內(nèi)布置的10個采集節(jié)點獲得的原始溫度數(shù)據(jù)進(jìn)行卡爾曼濾波,再對同一時刻不同溫度傳感器數(shù)據(jù)進(jìn)行空間序列融合,融合數(shù)據(jù)的均方誤差(Mean Square Error,MSE)與算術(shù)平均法和自適應(yīng)加權(quán)融合算法對比,結(jié)果如圖4所示。
注:本文算法為分批估計自適應(yīng)加權(quán)融合算法。
由圖4可知,利用算術(shù)平均法對傳感器數(shù)據(jù)進(jìn)行空間融合,MSE分布于0.455~2.358,使用自適用應(yīng)權(quán)融合算法融合數(shù)據(jù)的MSE分布于0.006~0.141,而分批估計自適應(yīng)加權(quán)融合算法融合數(shù)據(jù)的MSE最大值僅為0.055。本文采用的分批估計自適應(yīng)加權(quán)融合算法效果最優(yōu),融合數(shù)據(jù)的MSE較算術(shù)平均法下降了92.14%以上,有效提高了融合精度,減少了數(shù)據(jù)冗余。
按以上缺失時點數(shù)據(jù)同質(zhì)均值補(bǔ)償、卡爾曼濾波、分批估計自適應(yīng)加權(quán)等流程對所有傳感器的數(shù)據(jù)融合預(yù)處理后,進(jìn)行歸一化處理,統(tǒng)一于[0,1]區(qū)間,消除各項參數(shù)的量綱與數(shù)值差異。
由于豬舍環(huán)境是一個由多種環(huán)境參數(shù)共同作用所形成的時變系統(tǒng),為挖掘環(huán)境參數(shù)間的耦合關(guān)系、擬合環(huán)境參數(shù)與環(huán)境質(zhì)量之間的非線性關(guān)系,本研究采用BP神經(jīng)網(wǎng)絡(luò)對環(huán)境質(zhì)量進(jìn)行評價。通過LASSO算法對特征環(huán)境參數(shù)進(jìn)行篩選,重置BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)參數(shù),確定BP神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),進(jìn)一步提高環(huán)境質(zhì)量評價精度;利用SA-PSO算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值,提高BP神經(jīng)網(wǎng)絡(luò)的收斂速度與收斂精度,最終形成的SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)算法流程如圖 5所示。
圖5 SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)算法流程圖
參考國家標(biāo)準(zhǔn)GB/T 17824.3—2008《規(guī)模豬場環(huán)境參數(shù)及環(huán)境管理》,將環(huán)境質(zhì)量識別框架分為3級:1級(適宜)、2級(較適宜)、3級(不適宜),并確定9種環(huán)境因素在3種環(huán)境質(zhì)量識別框架下的特征值范圍,構(gòu)建妊娠豬舍環(huán)境質(zhì)量評價標(biāo)準(zhǔn)(表2)。
表2 環(huán)境質(zhì)量評價標(biāo)準(zhǔn)
注:其他情況為9種環(huán)境參數(shù)處于不同環(huán)境質(zhì)量評價等級特征值范圍。
Note: Other conditions indicate that nine environmental parameters are in the range of characteristic values of different environmental quality evaluation grades.
當(dāng)9種環(huán)境參數(shù)均滿足同一等級的特征值要求時,可直接確定其對應(yīng)的等級。對同一時刻環(huán)境參數(shù)處于不同等級特征值范圍的情況,當(dāng)其中某一項環(huán)境參數(shù)嚴(yán)重超標(biāo)時,采用“一項否決”策略評價為3級;否則,通過層次分析法和梯形隸屬度函數(shù)計算確定豬舍環(huán)境質(zhì)量等級[4]。
基于數(shù)據(jù)采集系統(tǒng)獲得的92 d數(shù)據(jù),預(yù)處理后選取3種環(huán)境質(zhì)量識別框架下的傳感器數(shù)據(jù)共5 110組。采用上述評價標(biāo)準(zhǔn)進(jìn)行環(huán)境質(zhì)量等級評定,最終獲得1等級樣本數(shù)據(jù)1 566組,2等級樣本數(shù)據(jù)1 785組,3等級樣本數(shù)據(jù)1 759組,可作為特征選擇、環(huán)境質(zhì)量評價模型構(gòu)建優(yōu)化的數(shù)據(jù)訓(xùn)練集與測試集。
在采用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行豬舍環(huán)境質(zhì)量評價時,若將9種環(huán)境參數(shù)均作為輸入量會增加模型結(jié)構(gòu)的復(fù)雜性,降低模型的性能和泛化能力;若輸入特征參數(shù)不足,則會降低模型的評價精度。因此,本文采用LASSO算法[19]對9種環(huán)境參數(shù)進(jìn)行特征選擇,優(yōu)化輸入?yún)?shù)量。該方法在回歸系數(shù)縮減的過程中,將特征性較弱的環(huán)境參數(shù)的回歸系數(shù)縮減為0,從而達(dá)到“變量選擇”的目的,其目標(biāo)函數(shù)為
式中為樣本數(shù)量;為環(huán)境因素個數(shù);y為第個樣本對應(yīng)的環(huán)境質(zhì)量等級;β為第個環(huán)境因素對應(yīng)的回歸系數(shù);x為第個樣本對應(yīng)的第個影響因素;為懲罰因子。
隨機(jī)從預(yù)處理后的各等級環(huán)境數(shù)據(jù)中抽取700組數(shù)據(jù),共獲得2 100組樣本數(shù)據(jù)。為提高模型的泛化能力和特征選擇的準(zhǔn)確性,采用十折交叉驗證,按照9∶1的比例從2 100組樣本數(shù)據(jù)中每種等級隨機(jī)抽取數(shù)據(jù),共獲得1 890組訓(xùn)練集和210組測試集,求解得到不同值下對應(yīng)的均方根誤差(Root Mean Squared Error,RMSE)如圖6所示。由圖6可知,當(dāng)處于0.1~0.2時,均方根誤差存在最小值。考慮交叉驗證是隨機(jī)分組,為保證模型的泛化性和魯棒性,選取10次交叉驗證結(jié)果的平均值作為LASSO算法最佳懲罰因子,即0.147。
圖6 不同λ取值下的均方根誤差
圖7為LASSO算法分析后各環(huán)境參數(shù)所對應(yīng)的回歸系數(shù)軌跡圖,由圖7可知,隨著值的增加,環(huán)境參數(shù)的標(biāo)準(zhǔn)化回歸系數(shù)逐漸收斂。當(dāng)= 0.147時,溫度、相對濕度、NH3質(zhì)量濃度、CO2質(zhì)量濃度的標(biāo)準(zhǔn)化回歸系數(shù)分別為0.57、-0.097、0.138、0.185,H2S質(zhì)量濃度、PM2.5質(zhì)量濃度、PM10質(zhì)量濃度、光照強(qiáng)度、噪聲的標(biāo)準(zhǔn)化回歸系數(shù)均為0,在特征選擇的過程中被淘汰。因此,本文選取溫度、相對濕度、NH3質(zhì)量濃度、CO2質(zhì)量濃度4種環(huán)境參數(shù)作為BP神經(jīng)網(wǎng)絡(luò)模型的輸入量。
圖7 9種環(huán)境參數(shù)的標(biāo)準(zhǔn)化回歸系數(shù)
妊娠豬舍2021年11月24日—2021年11月30日特征環(huán)境參數(shù)的分布如圖8所示。由圖可知妊娠豬舍溫度于14:00—15:00達(dá)到峰值,然后隨時間逐漸下降,在08:00—09:00達(dá)到最低,然后逐漸升高;相反,相對濕度、CO2質(zhì)量濃度和NH3質(zhì)量濃度于08:00—09:00達(dá)到峰值而后逐漸下降,于14:00—15:00降至最低值后波動上升。妊娠豬舍內(nèi)溫度、相對濕度、NH3質(zhì)量濃度、CO2質(zhì)量濃度呈現(xiàn)出明顯的非線性變化趨勢,且具有一定的周期性和相關(guān)性。
對特征環(huán)境參數(shù)進(jìn)行Pearson相關(guān)性分析,分析結(jié)果如表3所示。由表3可知,溫度與相對濕度、NH3質(zhì)量濃度、CO2質(zhì)量濃度之間的相關(guān)系數(shù)分別為-0.637、-0.871、-0.737,說明溫度與其他特征環(huán)境參數(shù)間存在顯著負(fù)相關(guān)關(guān)系(<0.01);此外,相對濕度與NH3質(zhì)量濃度、CO2質(zhì)量濃度之間的相關(guān)系數(shù)為0.330、0.723,表明相對濕度與NH3質(zhì)量濃度、CO2質(zhì)量濃度間存在顯著正相關(guān)關(guān)系(<0.01),與圖8中各環(huán)境參數(shù)的變化規(guī)律一致。這是因為溫度的上升加速了舍內(nèi)水分的蒸發(fā),從而導(dǎo)致相對濕度下降;隨著溫度的持續(xù)升高,豬在行為上表現(xiàn)出精神萎靡、呼吸深度變淺、采食量減退等現(xiàn)象[20],機(jī)體的排泄量也隨之減少[21],舍內(nèi)CO2質(zhì)量濃度和NH3質(zhì)量濃度降低。因此,溫度、相對濕度、NH3質(zhì)量濃度、CO2質(zhì)量濃度呈現(xiàn)出此種變化趨勢和相關(guān)關(guān)系。
由于豬舍特征環(huán)境參數(shù)呈非線性變化趨勢,且各參數(shù)間存在相關(guān)關(guān)系,因此難以使用準(zhǔn)確的數(shù)學(xué)模型描述環(huán)境參數(shù)與環(huán)境質(zhì)量之間的關(guān)系。BP神經(jīng)網(wǎng)絡(luò)作為一種多層前饋型網(wǎng)絡(luò)模型,具有高度的自學(xué)習(xí)、自適應(yīng)和泛化能力,較強(qiáng)的非線性映射能力[22],能夠充分挖掘環(huán)境參數(shù)間的耦合關(guān)系,擬合復(fù)雜環(huán)境參數(shù)與環(huán)境質(zhì)量之間的非線性關(guān)系,從而達(dá)到良好的識別與分類目的。因此,本研究使用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行建模,實現(xiàn)妊娠豬舍環(huán)境質(zhì)量的可靠性評價。
注:7d,2021-11-24至2021-11-30;1d,2021-11-24。
表3 特征環(huán)境參數(shù)間的相關(guān)系數(shù)
注(Note): *,<0.01.
BP神經(jīng)網(wǎng)絡(luò)由輸入層、隱含層和輸出層組成,其中輸入層為特征選擇后的4種環(huán)境參數(shù)(4個節(jié)點),輸出層為對應(yīng)的環(huán)境質(zhì)量等級(1個節(jié)點),隱含層的節(jié)點數(shù)需進(jìn)行求解。目前,沒有固定的方法求解隱含層節(jié)點數(shù),但可依據(jù)Kolmogorov定理進(jìn)行隱含層節(jié)點數(shù)的經(jīng)驗估計,其經(jīng)驗公式[12, 23]為
式中為輸入層節(jié)點數(shù);為輸出層節(jié)點數(shù);為常數(shù),取值范圍為1~10。
在本研究中,= 4,= 1,最終計算得到隱含層節(jié)點數(shù)的取值范圍為4~12。
為確定隱含層節(jié)點具體數(shù)量,在I5-7300 HQ、2.5 GHz、8 GB內(nèi)存、Window 10系統(tǒng)集成開發(fā)環(huán)境下,使用MATLAB編寫相關(guān)程序。經(jīng)反復(fù)試驗確定輸入層到隱含層的傳遞函數(shù)為“tansig”,隱含層到輸出層的傳遞函數(shù)為“purelin”“trainlm”作為常用的訓(xùn)練函數(shù)之一,具有收斂速度快、誤差小、訓(xùn)練效果優(yōu)等特點[23],因此本文選取“trainlm”為訓(xùn)練函數(shù);同時,設(shè)置BP神經(jīng)網(wǎng)絡(luò)的迭代次數(shù)為1 000,學(xué)習(xí)率為0.01。在此基礎(chǔ)上,將2100組環(huán)境數(shù)據(jù)按照9∶1的比例劃分為訓(xùn)練集和測試集后,分別訓(xùn)練具有4~12個隱含層節(jié)點個數(shù)的BP神經(jīng)網(wǎng)絡(luò)。
為了對不同隱含層節(jié)點數(shù)量下模型的預(yù)測結(jié)果進(jìn)行定量分析,采用平均絕對誤差(Mean Absolute Error,MAE)、RMSE、決定系數(shù)(Coefficient of determination,2)、準(zhǔn)確率(Accuracy,ACC)作為評價指標(biāo),不同隱含層節(jié)點數(shù)量下BP神經(jīng)網(wǎng)絡(luò)的性能如圖9所示。由圖9可知,當(dāng)隱含層節(jié)點數(shù)為11時,BP神經(jīng)網(wǎng)絡(luò)的MAE、RMSE、2、ACC分別達(dá)到0.077、0.277、0.878、92.33%,均為最優(yōu)值。相較于其他模型,隱含層節(jié)點數(shù)為11的BP神經(jīng)網(wǎng)絡(luò)2與ACC至少提高了5.73%、2.50%,MAE與RMSE至少下降了3.75%、2.12%,具有更高的性能和評價精度。因此,本研究確定最佳隱含層節(jié)點數(shù)=11。
注:R2,決定系數(shù);ACC,準(zhǔn)確率,%。
基于單一BP神經(jīng)網(wǎng)絡(luò)對豬舍環(huán)境質(zhì)量進(jìn)行評價時,其性能受到網(wǎng)絡(luò)初始權(quán)值和閾值等參數(shù)的影響,存在收斂速度慢、易陷入局部極小值等問題,從而無法尋得全局最優(yōu)值。為提高妊娠豬舍環(huán)境質(zhì)量評價精度,本研究采用粒子群算法(Particle Swarm Optimization,PSO)對BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值進(jìn)行優(yōu)化,既保留神經(jīng)網(wǎng)絡(luò)的非線性擬合能力,又能夠發(fā)揮粒子群算法的全局尋優(yōu)能力,綜合提升BP神經(jīng)網(wǎng)絡(luò)的收斂速度和尋優(yōu)精度[24]。
PSO算法雖然收斂速度快,但存在易過早收斂、易陷入局部最優(yōu)等缺點[25],因此本文將模擬SA算法嵌入PSO算法中。參考文獻(xiàn)[25],在SA-PSO算法中,采用帶壓縮因子的方法選擇合適的參數(shù)提高PSO算法的收斂性;同時對PSO算法的最優(yōu)解進(jìn)行優(yōu)化,讓粒子有較大的概率接受非最優(yōu)解,從而跳出局部最優(yōu)解。假設(shè)在維空間內(nèi),粒子的種群規(guī)模為,第個粒子在第維空間的位置、速度分別為x和v,在算法迭代過程中,每個粒子根據(jù)個體極值P和全局極值G來更新自己的速度和位置
式中v+1為粒子第+1次的速度;x+1為粒子第+1次的位置;v為粒子第次的速度;x為粒子第次的位置; P為粒子第次的個體極值;G’為粒子第次的全局極值;為慣性權(quán)重;1、2為學(xué)習(xí)因子;1、2為隨機(jī)數(shù),1、2∈[0,1];為當(dāng)前迭代次數(shù);為壓縮因子,max為最大慣性權(quán)值,min為最小慣性權(quán)值,為最大迭代次數(shù)。
以上述特征選擇和環(huán)境質(zhì)量評價方法為基礎(chǔ),共選取3 010組環(huán)境數(shù)據(jù),1級、2級、3級3種質(zhì)量等級下的傳感器數(shù)據(jù)分別為866、1 085、1 059組,按照9∶1的比例劃分成2 709組訓(xùn)練集和301組測試集。經(jīng)過多次試驗測試,SA-PSO算法的初始參數(shù)設(shè)置如下:粒子的種群規(guī)模= 20,學(xué)習(xí)因子1=2= 2.05,最大慣性權(quán)值max= 0.9,最小慣性權(quán)值min= 0.4,退溫系數(shù)= 0.99,最大迭代次數(shù)= 1 000。
為驗證SA-PSO算法的優(yōu)化性能,選取遺傳算法(Genetic Algorithm,GA)、麻雀搜索算法(Sparrow Search Algorithm,SSA)、粒子群算法3種優(yōu)化算法進(jìn)行對比。試驗以RMSE為適應(yīng)度函數(shù),迭代終止條件為達(dá)到最大迭代次數(shù),4種算法的適應(yīng)度函數(shù)曲線如圖10所示。由圖10可知,隨著迭代次數(shù)的增加,適應(yīng)度函數(shù)曲線收斂。相較于GA、SSA算法,PSO算法的適應(yīng)度值更低,為0.194,尋優(yōu)效果更佳;加入SA算法后,SA-PSO算法的適應(yīng)度值進(jìn)一步降低,達(dá)到0.187,較PSO算法減小了3.61%。因此,通過SA算法對PSO算法進(jìn)行優(yōu)化,能夠更好地發(fā)揮PSO算法的全局尋優(yōu)能力,提高其尋優(yōu)精度,適合于BP神經(jīng)網(wǎng)絡(luò)初始權(quán)值和閾值的優(yōu)化。
注:GA,遺傳算法;SSA,麻雀搜索算法;PSO,粒子群算法;SA-PSO,模擬退火-粒子群算法。
為驗證SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)的性能,選取BP神經(jīng)網(wǎng)絡(luò)、LASSO-BP神經(jīng)網(wǎng)絡(luò)、GA-LASSO-BP神經(jīng)網(wǎng)絡(luò)、SSA-LASSO-BP神經(jīng)網(wǎng)絡(luò)、PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)等5種模型進(jìn)行對比。試驗采用MSE作為網(wǎng)絡(luò)誤差函數(shù),迭代終止條件網(wǎng)絡(luò)誤差目標(biāo)值設(shè)置為0.01,6種模型的3 010組訓(xùn)練集性能測試結(jié)果如表4所示。
表4 不同神經(jīng)網(wǎng)絡(luò)模型性能
由表4可知,對于收斂速度,BP神經(jīng)網(wǎng)絡(luò)迭代766次時完成訓(xùn)練,而LASSO-BP神經(jīng)網(wǎng)絡(luò)模型迭代537次完成訓(xùn)練,迭代次數(shù)下降了29.90%,說明LASSO算法能夠降低BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的復(fù)雜性和訓(xùn)練壓力,從而提高網(wǎng)絡(luò)的收斂速度;通過4種優(yōu)化算法改進(jìn)的LASSO-BP神經(jīng)網(wǎng)絡(luò)的迭代次數(shù)分別為374、192、79、36次,運(yùn)行時間分別為2.65、1.93、1.45、1.20 s,其中建立的SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)的迭代次數(shù)最少、運(yùn)行時間最短,相較于PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)迭代次數(shù)減少了54.43%、運(yùn)行時間加快了17.24%,具有更快的收斂速度。
對于收斂精度,BP神經(jīng)網(wǎng)絡(luò)在誤差為0.090時停止訓(xùn)練,LASSO-BP神經(jīng)網(wǎng)絡(luò)在誤差為0.074時停止訓(xùn)練,網(wǎng)絡(luò)誤差下降了17.78%,驗證了LASSO算法能夠提高BP神經(jīng)網(wǎng)絡(luò)輸入?yún)?shù)的特征性,提高網(wǎng)絡(luò)的收斂精度;通過4種優(yōu)化算法改進(jìn)的LASSO-BP神經(jīng)網(wǎng)絡(luò)的誤差值分別為0.040、0.037、0.036、0.033,本文所提出模型的誤差值最低,較PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)誤差下降了8.33%,具有更高的評價精度和性能。
模型訓(xùn)練后,以301組樣本測試6種神經(jīng)網(wǎng)絡(luò)模型的評價效果,結(jié)果如表5所示。由表5可知,SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)的MAE、RMSE、2、總準(zhǔn)確率分別為0.037、0.176、0.918、95.85%,與其他5種模型相比,效果最優(yōu)。相比單純使用BP神經(jīng)網(wǎng)絡(luò),加入LASSO和SA-PSO算法2與總準(zhǔn)確率分別提高了37.43%、11.09個百分點,MAE與RMSE分別下降了79.10%、44.83%。因此,SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)通過LASSO算法對9種環(huán)境參數(shù)進(jìn)行特征選擇,有效地提高了BP神經(jīng)網(wǎng)絡(luò)的評價性能;其次,采用SA-PSO算法優(yōu)化網(wǎng)絡(luò)的初始權(quán)值和閾值,更充分地挖掘了環(huán)境參數(shù)間的耦合關(guān)系,更好地擬合了妊娠豬舍環(huán)境參數(shù)與環(huán)境質(zhì)量間的非線性關(guān)系,大幅度增強(qiáng)網(wǎng)絡(luò)的評價效率,提高環(huán)境質(zhì)量評價精度。
表5 不同神經(jīng)網(wǎng)絡(luò)模型評價結(jié)果
通過實際數(shù)據(jù)訓(xùn)練結(jié)果可知,與現(xiàn)有文獻(xiàn)中常用的模糊綜合評價法[4-6]相比,采用的BP神經(jīng)網(wǎng)絡(luò)充分挖掘了環(huán)境參數(shù)間的耦合關(guān)系,擬合復(fù)雜環(huán)境參數(shù)與環(huán)境質(zhì)量間的非線性關(guān)系,可以有效解決模糊綜合評價存在的欠學(xué)習(xí)問題?,F(xiàn)有文獻(xiàn)中的機(jī)器學(xué)習(xí)方法[7-10]進(jìn)行豬舍環(huán)境質(zhì)量評價時,未對環(huán)境參數(shù)選取原則與其對環(huán)境質(zhì)量的影響程度作深入分析,未能考慮不同豬舍內(nèi)環(huán)境參數(shù)受外環(huán)境、地理位置等因素影響所產(chǎn)生的變化范圍和趨勢的實際差異。運(yùn)用LASSO算法選擇特征環(huán)境參數(shù),解決機(jī)器學(xué)習(xí)存在的普適性和泛化性差等問題,同時實現(xiàn)了BP神經(jīng)網(wǎng)絡(luò)模型輸入的降維,有效降低了網(wǎng)絡(luò)結(jié)構(gòu)的復(fù)雜程度。由于BP神經(jīng)網(wǎng)絡(luò)本身容易受到初始權(quán)值和閾值等參數(shù)的影響,存在收斂速度慢、易陷入局部極小值等不足,使用SA-PSO算法對BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值進(jìn)行優(yōu)化,有效地提高了網(wǎng)絡(luò)的收斂速度與收斂精度。
本研究提出的SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)模型,通過LASSO和SA-PSO算法對BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與參數(shù)進(jìn)行優(yōu)化,達(dá)到了提高BP神經(jīng)網(wǎng)絡(luò)預(yù)測精度與性能的目的,實現(xiàn)妊娠豬舍環(huán)境質(zhì)量的可靠評價。采用的特征選擇和BP神經(jīng)網(wǎng)絡(luò)模型,是在現(xiàn)有實際數(shù)據(jù)基礎(chǔ)上構(gòu)建的具有較佳效果的模型,可以進(jìn)一步嘗試采用DEFS(Differential Evolution Feature Selection)算法[13]、LightGBM(Light gradient boosting machine)算法[26]進(jìn)行特征參數(shù)篩選,采用SVM(Support Vector Machine,SVM)[27]、ELM(Extreme Learning Machine,ELM)[28]等方法構(gòu)建評價模型。
此外,計算流體力學(xué)(Computational Fluid Dynamics ,CFD)近年來被廣泛應(yīng)用于豬舍送風(fēng)降溫[29]、排風(fēng)換氣[30]系統(tǒng)的設(shè)計,以及環(huán)境調(diào)控[31]、通風(fēng)效果[32]的評價。因此,在后續(xù)的研究中可利用CFD對妊娠豬舍通風(fēng)降溫系統(tǒng)進(jìn)行優(yōu)化設(shè)計,結(jié)合本文所提出的豬舍環(huán)境質(zhì)量評價方法,分析不同通風(fēng)風(fēng)速、通風(fēng)溫度等條件下舍內(nèi)的通風(fēng)效果,制定通風(fēng)、溫控等設(shè)備的調(diào)控策略,以滿足豬舍適宜性控制的應(yīng)用要求。
為合理地評價妊娠豬舍環(huán)境質(zhì)量,本研究提出一種基于SA-PSO-LASSO-BP(Simulated Annealing-Particle Swarm Optimization-Least Absolute Shrinkage and Selection Operator-Back Propagation)的環(huán)境質(zhì)量評價模型。利用卡爾曼濾波和分批估計自適應(yīng)加權(quán)融合算法對環(huán)境數(shù)據(jù)進(jìn)行預(yù)處理,采用LASSO算法篩選特征環(huán)境參數(shù),使用SA-PSO算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值,得到如下結(jié)論:
1)利用卡爾曼濾波和分批估計自適應(yīng)加權(quán)融合算法對多采集節(jié)點的原始環(huán)境數(shù)據(jù)進(jìn)行預(yù)處理,單一傳感器時間序列數(shù)據(jù)融合結(jié)果的方差較濾波前下降了4.03%;多源同質(zhì)傳感器時間序列數(shù)據(jù)融合結(jié)果的方差較算術(shù)平均法至少下降了92.14%,能夠有效地抑制噪聲干擾、降低環(huán)境數(shù)據(jù)的冗余性。
2)采用LASSO算法對預(yù)處理后的環(huán)境數(shù)據(jù)進(jìn)行特征選擇,較全環(huán)境參數(shù)模型,LASSO-BP神經(jīng)網(wǎng)絡(luò)模型迭代次數(shù)下降了29.90%,網(wǎng)絡(luò)誤差降低了17.78%。SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)模型的迭代次數(shù)為36次,運(yùn)行時間為1.20 s,網(wǎng)絡(luò)誤差為0.033,相較于GA-LASSO- BP神經(jīng)網(wǎng)絡(luò)模型迭代次數(shù)減少了54.43%,運(yùn)行時間加快了17.24%,網(wǎng)絡(luò)誤差下降了8.33%,網(wǎng)絡(luò)收斂精度和收斂速度顯著提高。
3)采用實際妊娠豬舍環(huán)境數(shù)據(jù)作為測試樣本對SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)模型及其他5模型的評價效果進(jìn)行驗證,結(jié)果表明:SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)模型的平均絕對誤差為0.037、均方根誤差為0.176、決定系數(shù)為0.918、總準(zhǔn)確率為95.85%,相比單純使用BP神經(jīng)網(wǎng)絡(luò),加入LASSO和SA-PSO算法之后決定系數(shù)與總準(zhǔn)確率分別提高了37.43%、11.09個百分點,平均絕對誤差與均方根誤差分別下降了79.10%、44.83%,具有更高的評價精度和性能。
本文提出基于SA-PSO-LASSO-BP神經(jīng)網(wǎng)絡(luò)模型的豬舍環(huán)境質(zhì)量評價方法,可充分挖掘環(huán)境參數(shù)間的耦合關(guān)系,更好地擬合復(fù)雜環(huán)境因素與環(huán)境質(zhì)量間的非線性關(guān)系,為豬舍環(huán)境提供有效的質(zhì)量評價手段。
[1] 李修松,葉章穎,李國銘,等. 規(guī)?;i場妊娠母豬舍改進(jìn)濕簾降溫系統(tǒng)的環(huán)境特性[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(20):238-245.
Li Xiusong, Ye Zhangying, Li Guoming, et al. Environmental characteristics of a swine gestation barn with an innovative cooling pad system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 238-245. (in Chinese with English abstract)
[2] 韓戰(zhàn)強(qiáng),銀嶺,馬亞姣,等. 飼養(yǎng)模式、新型飼料添加劑、豬舍溫?zé)岘h(huán)境對母豬繁殖性能的影響[J]. 養(yǎng)豬,2021(6):35-38.
Han Zhanqiang, Yin Ling, Ma Yajiao, et al. Research progress on the effects of feeding pattern, feed additives and warm and hot environment on sow reproductive performance[J]. Swine Production, 2021(6): 35-38. (in Chinese with English abstract)
[3] Li J, Han Q. Effects of environment and breed on growth performance and meat quality of fattening pigs[J]. Animal Welfare, 2020, 29(2): 177-184.
[4] 謝秋菊,蘇中濱,劉超吉,等. 豬舍環(huán)境適宜性模糊綜合評價[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(16):198-205.
Xie Qiuju, Su Zhongbin, Liu Chaoji, et al. Fuzzy synthetic assessment of swine house environmental adaptability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 198-205. (in Chinese with English abstract)
[5] 沈翠鳳. 基于物聯(lián)網(wǎng)的畜禽舍環(huán)境遠(yuǎn)程監(jiān)控和評判系統(tǒng)研究[J]. 中國農(nóng)機(jī)化學(xué)報,2020,41(12):112-118.
Shen Cuifeng. Research on remote monitoring and evaluation system of livestock and poultry house environment based on Internet of Things[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 112-118. (in Chinese with English abstract)
[6] 梁帆,劉振濤. 豬舍環(huán)境控制評價指標(biāo)體系構(gòu)建與分析:以河北省規(guī)模豬場為例[J]. 豬業(yè)科學(xué),2021,38(8):86-91.
Liang Fan, Liu Zhentao. Construction and analysis of evaluation index system of piggery environmental control: A case study of large-scale pig farms in Hebei Province[J]. Swine Industry Science, 2021, 38(8): 86-91. (in Chinese with English abstract)
[7] 程捷,馮天玉,黃世明,等. 基于D-S證據(jù)理論的豬舍環(huán)境狀態(tài)識別研究[J]. 中國農(nóng)機(jī)化學(xué)報,2021,42(6):50-54.
Cheng Jie, Feng Tianyu, Huang Shiming, et al. Research on recognition of piggery environmental state based on D-S evidence theory[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 50-54. (in Chinese with English abstract)
[8] 孫聰. 基于物聯(lián)網(wǎng)豬舍多參數(shù)測控系統(tǒng)設(shè)計及環(huán)境適宜度評價研究[D]. 鎮(zhèn)江:江蘇大學(xué),2019.
Sun Cong. Design and Environmental Suitability Evaluation of Multi-parameter Measurement and Control System in Pig House Based on Internet of Things[D]. Zhenjiang: Jiangsu University, 2019. (in Chinese with English abstract)
[9] 朱保釧. 基于物聯(lián)網(wǎng)豬舍參數(shù)測控及環(huán)境適宜度預(yù)測模型研究[D]. 鎮(zhèn)江:江蘇大學(xué),2020.
Zhu Baochuan. Research on the Prediction Model of Parameters Measurement and Control and Environmental Suitability of Piggery Based on Internet of Things[D]. Zhenjiang: Jiangsu University, 2020. (in Chinese with English abstract)
[10] 陳沖,劉星橋,劉超吉,等. 哺乳母豬舍環(huán)境舒適度評價預(yù)測模型優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2020,51(8):311-319.
Chen Chong, Liu Xingqiao, Liu Chaoji, et al. Optimization of evaluation and prediction model of environmental comfort in lactating sow house[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 311-319. (in Chinese with English abstract)
[11] 劉春紅,楊亮,鄧河,等. 基于ARMA和BP神經(jīng)網(wǎng)絡(luò)的豬舍氨氣濃度預(yù)測[J]. 中國環(huán)境科學(xué),2019,39(6):2320-2327.
Liu Chunhong, Yang Liang, DengHe, et al. Prediction of ammonia concentration in piggery based on ARIMA and BP neural network[J]. China Environmental Science, 2019, 39(6): 2320-2327. (in Chinese with English abstract)
[12] 楊斷利,李今,陳輝,等. 基于IPSO優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的蛋雞舍有害氣體監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2021,52(4):327-335.
Yang Duanli, Li Jin, Chen Hui, et al. Monitoring system of harmful gas in layer house based on improved Particle Swarm Optimization BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 327-335. (in Chinese with English abstract)
[13] 趙建輝,張晨陽,閔林,等. 基于特征選擇和GA-BP神經(jīng)網(wǎng)絡(luò)的多源遙感農(nóng)田土壤水分反演[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(11):112-120.
Zhao Jianhui, Zhang Chenyang, Min Lin, et al. Retrieval for soil moisture in farmland using multi-source remote sensing data and feature selection with GA-BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(11): 112-120. (in Chinese with English abstract)
[14] 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局,中國國家標(biāo)準(zhǔn)化管理委員會. GB/T 17824.3—2008 《規(guī)模豬場環(huán)境參數(shù)及環(huán)境管理》[S]. 北京:中國標(biāo)準(zhǔn)出版社,2008.
[15] 申仲健,吳中紅,張錦瑞,等. 新風(fēng)過濾和排風(fēng)除臭裝置條件下樓房豬舍夏季環(huán)境監(jiān)測[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(11):215-222.
Shen Zhongjian, Wu Zhonghong, Zhang Jinrui, et al. Environmental monitoring of a multi-floor pig building under the condition equipped with fresh air filters and exhaust deodorization devices in summer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 215-222. (in Chinese with English abstract)
[16] Chen C, Liu X Q. An intelligent monitoring system for a pig breeding environment based on a wireless sensor network[J]. International Journal of Sensor Networks, 2019, 29(4): 275-283.
[17] 杜鵬,包曉安,胡逸飛,等. 基于卡爾曼濾波的無線傳感網(wǎng)時空數(shù)據(jù)融合算法[J]. 電子科技,2022,35(6):21-27.
Du Peng, Bao Xiao'an, Hu Yifei, et al. Research on spatio-temporal data fusion algorithm of wireless sensor network based on Kalman filter[J]. Electronic Science and Technology, 2022, 35(6): 21-27. (in Chinese with English abstract)
[18] Wang H D, Wang D Y. An improved multiple wireless sensor data batch estimation adaptive weighted fusion algorithm[J]. Chinese Journal of Sensors and Actuators, 2015, 28(8): 1239-1243.
[19] Robert T. Regression Shrinkage and Selection Via the Lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 2018, 58(1): 267-288.
[20] 于瀟瀅,韓蕊,秦貴信. 環(huán)境溫度對豬生產(chǎn)性能、養(yǎng)分消化和產(chǎn)熱量的影響[J]. 黑龍江畜牧獸醫(yī),2017(17):136-138.
Yu Xiaoying, Han Rui, Qin Guixin. The effect of environmental temperature on growth performance, nutrient digestibility and heat production in pigs[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(17): 136-138. (in Chinese with English abstract)
[21] 田宗祥,郭志明,張玲清. 環(huán)境溫度對豬采食量的影響研究進(jìn)展[J]. 國外畜牧學(xué)(豬與禽),2017,37(9):38-39.
Tian Zongxiang, Guo Zhiming, Zhang Lingqing. Research progress of the effect of ambient temperature on feed intake of pigs[J]. Animal Science Abroad(Pigs and Poultry), 2017, 37(9): 38-39. (in Chinese with English abstract)
[22]王浩云,宋進(jìn),潘磊慶,等. 優(yōu)化BP神經(jīng)網(wǎng)絡(luò)提高高光譜檢測調(diào)理雞肉菌落總數(shù)精度[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(5):302-309.
Wang Haoyun, Song Jin, Pan Leiqing, et al. Improving hyperspectral detection accuracy of total bacteria in prepared chicken using optimized BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 302-309. (in Chinese with English abstract)
[23]陳嘯,王紅英,孔丹丹,等. 基于粒子群參數(shù)優(yōu)化和BP神經(jīng)網(wǎng)絡(luò)的顆粒飼料質(zhì)量預(yù)測模型[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(14):306-314.
Chen Xiao, Wang Hongying, Kong Dandan, et al. Quality prediction model of pellet feed basing on BP network using PSO parameters optimization method [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 306-314. (in Chinese with English abstract)
[24] 劉雪,李亞妹,劉嬌,等. 基于BP神經(jīng)網(wǎng)絡(luò)的鮮雞蛋貨架期預(yù)測模型[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2015,46(10):328-334.
Liu Xue, Li Yamei, Liu Jiao, et al. BP neural network based prediction model for fresh egg's shelf life[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 328-334. (in Chinese with English abstract)
[25] 李平. 基于SA-PSO的Plug-In混合動力汽車模糊控制策略優(yōu)化研究[D]. 濟(jì)南:山東大學(xué),2017.
Li Ping. Optimization Research on Fuzzy Control Strategy for a Plug-In Hybrid Vehicle Based on SA-PSO Algorithm[D]. Jinan: Shandong University, 2017. (in Chinese with English abstract)
[26] 尹航,呂佳威,陳耀聰,等. 基于LightGBM-SSA-ELM的新疆羊舍CO2濃度預(yù)測[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2022,53(1):261-270.
Yin Hang, Lu Jiawei, Chen Yaocong, et al. Prediction of CO2concentration in Xinjiang breeding environment of mutton sheep based on LightGBM-SSA-ELM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 261-270. (in Chinese with English abstract)
[27] 張?zhí)炝?,張東興,崔濤,等. 基于支持向量機(jī)和ReliefF算法的玉米品種抗倒伏預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(20):226-233.
Zhang Tianliang, Zhang Dongxing, Cui Tao, et al. Lodging resistance prediction of maize varieties based on support vector machine and ReliefF algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 226-233. (in Chinese with English abstract)
[28] 施珮,匡亮,袁永明,等. 基于改進(jìn)極限學(xué)習(xí)機(jī)的水體溶解氧預(yù)測方法[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(19):225-232.
Shi Pei, Kuang Liang, Yuan Yongming, et al. Dissolved oxygen prediction for water quality of aquaculture using improved ELM network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 225-232. (in Chinese with English abstract)
[29] 張校軍,王華,龍沈飛,等. 定點送風(fēng)降溫對母豬周圍溫度和對流換熱的影響[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(5):225-232.
Zhang Xiaojun, Wang Hua, Long Shenfei, et al. Effects of fixed-point air supply cooling system on airflow and temperature around sows and convective heat transfer of sows[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 225-232. (in Chinese with English abstract)
[30] 吳志東,房俊龍,巴文革,等. 冬季采暖保育豬舍送排風(fēng)管道組合換氣系統(tǒng)設(shè)計與評價[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(10):152-158.
Wu Zhidong, Fang Junlong, Ba Wenge, et al. Design and evaluation of combined ventilation system with air supply and exhaust ducts for a nursery heating piggery in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 152-158. (in Chinese with English abstract)
[31] 劉營芳,黃子碩. 基于輻射供熱和個性化送風(fēng)的分娩豬舍環(huán)境保障系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(2):260-268.
Liu Yingfang, Huang Zishuo. Thermal environment regulation and energy consumption of delivery pigsty based on radiation and personalized ventilation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(2): 260-268. (in Chinese with English abstract)
[32] Marco B, Enrica S, Alberto B, et al. Assessment of geometrical and seasonal effects on the natural ventilation of a pig barn using CFD simulations[J]. Computers and Electronics in Agriculture, 2022, 193: 106652.
Environmental quality evaluation method for swine gestation barns based on multi-source information fusion
Chi Yu1, Guo Yanjiao1, Feng Han1, Li Han2, Zheng Yongjun1,3※
(1.,,100083,; 2.,,100083,;3.(),100083,)
Environmental quality of swine gestation barns can bring a significant impact on the fertility of breeding sows. Therefore, it is crucial to accurately evaluate the environmental quality and then timely trim the conditions, particularly for high breeding efficiency under less environmental stress. In this study, an environmental quality evaluation model of swine gestation barns was proposed using the Simulated Annealing-Particle Swarm Optimization-Least Absolute Shrinkage and Selection Operator-Back Propagation (SA-PSO-LASSO-BP) Neural Network (NN). Firstly, nine parameters were identified using the Chinese National Criteria. A data collection system was then established to collect the environmental data. Secondly, a Kalman filter and a batch estimation adaptive weighted fusion algorithm were introduced to fuse the multi-node environmental data, in order to remove the errors and redundant data from the data collection. Thirdly, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model was selected for the feature selection. There were four feature factors that were closely related to environmental quality, including temperature, relative humidity, NH3concentration, and CO2concentration. Meanwhile, the structural parameters were optimized in the BP-NN , where the number of hidden layer nodes was determined to be 11. Finally, the initial weights and threshold values of the BP NN were optimized by the SA-PSO for the ultimate evaluation model. A comparison was made on the several NNs to verify the evaluation performance of the SA-PSO-LASSO-BP NN, including the BP, LASSO-BP, Genetic Algorithm-LASSO-BP (GA-LASSO-BP), Sparrow Search Algorithm-LASSO-BP (SSA-LASSO-BP), and the PSO-LASSO-BP NN. The training results proved that the convergence accuracy and rate of the SA-PSO-LASSO-BP network were significantly improved by the feature selection with the LASSO regression model. The number of iterations and the network errors of the LASSO-BP NN decreased by 29.9% and 17.78%, respectively, compared with the BP NN. In terms of feature selection, the SA-PSO algorithm implemented by the SA-PSO-LASSO-BP NN was utilized to optimize the initial weights and thresholds of the network, in order to further improve the convergence accuracy and rate of the model. Compared with the PSO-LASSO-BP NN, the number of iterations, running time, and network error were reduced by 54.43%, 17.24%, and 8.33%, respectively. The validation test indicated that the best performance of the model was achieved, with the coefficient of determination (2) of 0.918, an overall accuracy of 95.85%, the Mean Absolute Error (MAE) of 0.037, and the Root Mean Squared Error (RMSE) of 0.176. Consequently, the SA-PSO-LASSO-BP NN model can better fit the nonlinear relationship between complex environmental factors and environmental quality. The finding can serve as a strong reference for the environmental quality evaluation of swine gestation barns.
models; environment; swine gestation barns; environmental quality; BP neural network; Least Absolute Shrinkage and Selection Operator (LASSO) algorithm; Simulate Anneal-Particle Swarm Optimization (SA-PSO) algorithm
10.11975/j.issn.1002-6819.2022.18.023
TU264+. 3
A
1002-6819(2022)-18-0212-10
遲宇,郭艷嬌,馮涵,等. 采用多源信息融合的妊娠豬舍環(huán)境質(zhì)量評價方法[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(18):212-221.doi:10.11975/j.issn.1002-6819.2022.18.023 http://www.tcsae.org
Chi Yu, Guo Yanjiao, Feng Han, et al. Environmental quality evaluation method for swine gestation barns based on multi-source information fusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 212-221. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.18.023 http://www.tcsae.org
2022-08-05
2022-09-07
國家重點研發(fā)計劃項目(2016YFD0700204)
遲宇,研究方向為圖像與信息處理技術(shù)。Email:selivia0328@163.com
鄭永軍,博士,教授,博士生導(dǎo)師,研究方向為農(nóng)業(yè)智能技術(shù)與裝備。Email:zyj@cau.edu.cn