張微微,張 靜,孟 德,呂日琴,顧海洋,孫艷輝
三維熒光技術(shù)結(jié)合化學計量學檢測青貯微生物生長量
張微微,張 靜,孟 德,呂日琴,顧海洋,孫艷輝※
(滁州學院生物與食品工程學院,滁州 239000)
青貯中微生物的數(shù)量是影響青貯料質(zhì)量的關(guān)鍵因素。為了高效監(jiān)控青貯微生物的生長情況,該研究以青貯乳酸菌、乙酸菌和丁梭菌等作為指示菌株,考察菌株生長過程0、2、4、8、12、24和48 h共7個不同時間點共105個樣本的三維熒光光譜、微生物菌落數(shù)和吸光值,通過平行因子法和BP神經(jīng)網(wǎng)絡等化學計量學建立微生物生長量預測模型。三維熒光光譜圖顯示指示菌株有2個熒光峰,波峰分別在225和275 nm附近,主要是微生物內(nèi)源熒光酪氨酸和色氨酸類物質(zhì)。隨著微生物培養(yǎng)時間的增加,熒光強度逐漸增強,熒光波峰位置紅移,峰寬增加。利用平行因子法對三維熒光光譜進行降維,獲取組分數(shù)為6,特征波長差Δ為50 nm時,微生物生長熒光信息差異顯著。以該二維光譜數(shù)據(jù)作為BP神經(jīng)網(wǎng)絡模型輸入值,分別以微生物菌落數(shù)和吸光值作為模型輸出值,對不同檢測方法的微生物生長量進行建模訓練。試驗結(jié)果表明兩種不同方法對應的訓練集、驗證集、測試集模型決定系數(shù)2均接近1.0,均方誤差均很小,說明該模型能較好預測微生物生長量。研究結(jié)果顯示三維熒光光譜技術(shù)結(jié)合化學計量學對青貯中微生物生長量監(jiān)測是可行的,項目為快速判定青貯發(fā)酵階段提供了一種新的技術(shù)途徑。
三維熒光;青貯;微生物生長量;化學計量學;平行因子分析
青貯是一種能降低飼料成本、提高適口性同時還可以減少環(huán)境污染的儲藏技術(shù)[1]。青貯技術(shù)主要利用乳酸菌發(fā)酵產(chǎn)酸使得有害微生物處于穩(wěn)定的被抑制的狀態(tài),從而達到青綠飼料進行長期保存的目的[2-3],發(fā)酵過程中伴隨著一系列微生物的繁殖代謝[4-5]。青貯過程中微生物生長對青貯品質(zhì)起著決定性的作用,尤其有害微生物如梭菌、乙酸菌、酵母菌等的增殖,不僅直接影響青貯品質(zhì),浪費作物資源,還會對反芻動物生產(chǎn)造成威脅[6-8]。因此實時監(jiān)控青貯微生物的生長至關(guān)重要。青貯微生物的測定主要是檢測發(fā)酵過程乳酸菌、梭菌、酵母菌等菌落數(shù)量。目前,實驗室中生長檢測方法以平板計數(shù)法和比濁法使用最為廣泛,此類方法具有步驟繁瑣、耗時長和響應速率慢等缺點,不能及時準確表征青貯微生物生長狀態(tài)[9-10],導致不良青貯發(fā)酵。因此,探究一種高效、便捷、實時監(jiān)測微生物生長量的方法成為檢測新需求。
熒光光譜技術(shù)作為一種新興的無損檢測技術(shù),具有低能、高效、快捷等優(yōu)點,在食品成分檢測、摻假[11-12]與土壤、水環(huán)境有機質(zhì)研究[13-15]等方面應用前景廣闊。微生物體內(nèi)固有的氨基酸,如色氨酸、酪氨酸等物質(zhì)在紫外或可見光的激發(fā)下,會產(chǎn)生出特征的熒光反射[16-17],使得熒光光譜法檢測微生物成為可能,目前已有相關(guān)研究。但這些內(nèi)源氨基酸物質(zhì)部分存在熒光峰重疊現(xiàn)象[18],區(qū)別與常規(guī)熒光光譜技術(shù),三維熒光光譜技術(shù)具有較高的選擇性。Dartnell等[19]基于對生物體內(nèi)色氨酸熒光光譜的檢測,開發(fā)了一個手持式微生物快速檢測裝備,可實現(xiàn)臨床醫(yī)療保健環(huán)境或設(shè)備是否受細菌污染的快速甄別。許瑞等[20]指出利用三維熒光光譜技術(shù)結(jié)合平行因子法可以實時在線監(jiān)測微生物凈化黑臭水的治理情況。宋曉康等[21]研究指出三維熒光光譜結(jié)合平行因子分析法能夠快速測定細胞培養(yǎng)基中多種代謝類熒光組分的含量,在細胞能量和物質(zhì)代謝檢測中具有良好的應用前景。為了進一步增強熒光光譜技術(shù)對目標物質(zhì)預測精確度,充分發(fā)揮機器學習技術(shù)對利用熒光技術(shù)的定量分析起到了較好的支撐作用。BP神經(jīng)網(wǎng)絡屬于機器學習領(lǐng)域中的一種技術(shù),因其強大的非線性分析能力被廣泛應用于物質(zhì)定量分析[22-24]。
綜上所述,三維熒光結(jié)合化學計量學方法是一種強有力的分析策略。本研究利用平行因子法對不同生長時間點的微生物三維熒光光譜圖進行解析,獲取特征光譜,聯(lián)合BP神經(jīng)網(wǎng)絡建立微生物生長量預測模型,并使用模型進行樣本預測,驗證方法準確性。該項目的開展為快速判別青貯發(fā)酵階段提供參考。
青貯乳酸菌、乙酸菌、丁梭菌,本學院食品學院微生物實驗室青貯料篩選備用;MRS培養(yǎng)基、MRS肉湯培養(yǎng)基、丁梭菌增殖培養(yǎng)基、醋酸菌基礎(chǔ)培養(yǎng)基,青島海博生物技術(shù)有限公司;無水乙醇、生理鹽水,國藥集團化學試劑(上海)有限公司。
UV-5500PC紫外可見分光光度計,上海元析儀器有限公司;Cary Eclipse熒光分光光度計,美國瓦里安有限公司;H1850臺式高速離心機,湖南湘儀離心機儀器有限公司;DHP-9272B電熱恒溫培養(yǎng)箱,上海一恒科學儀器有限公司。
1.2.1 樣品制備
乳酸菌、丁梭菌和乙酸菌在對應液體培養(yǎng)中置于37 ℃,180 r/min恒溫搖床培養(yǎng)至生長后期階段。在生長過程中(0、2、4、8、12、24、48 h)定點無菌取樣,每個時間點設(shè)置5個平行,用于光譜數(shù)據(jù)采集、吸光值測定(OD600)和微生物平板培養(yǎng)計數(shù)。
1.2.2 微生物光譜信息采集
參考Dartnell等[19]研究對本研究中菌懸液制備及光譜方法稍做改變,具體方法如下:
菌懸液制備:在0、2、4、8、12、24、48 h定點采集的樣品,取5 mL各時間點菌液放入到10 mL離心管中,用離心機3 000 r/min離心10 min,無菌吸管吸除上層液體,加入5 mL生理鹽水,獲得菌懸液。菌懸液用于熒光光譜檢測。
三維熒光光譜掃描條件:激發(fā)波長(Ex)為200~600 nm,增量為1 nm,通過同時掃描激發(fā)單色儀和發(fā)射單色儀,在10~180 nm范圍內(nèi)以10 nm恒定的波長間隔(Δ),掃描速度為1 200 nm/min,采集每個樣品的同步熒光光譜。所有樣品光譜采集記錄3次并保存光譜數(shù)據(jù),繪制熒光強度、Δ、激發(fā)波長三維圖譜。
1.2.3 樣品吸光值與菌落數(shù)測定
對采集熒光光譜數(shù)據(jù)的樣品同時進行微生物吸光值和菌落總數(shù)測定。以空白樣為對照,利用紫外分光光度計測定同一培養(yǎng)時間點的每一菌懸液的OD600值。將每一菌懸液稀釋到適宜水平采用傾注法平行制作3個平板,倒置于37 ℃電熱恒溫培養(yǎng)箱,培養(yǎng)24 h后選取可計數(shù)范圍稀釋度進行平板菌落計數(shù),并依據(jù)稀釋倍數(shù)換算出菌液濃度,參照GB 4789.2—2016《食品安全國家標準食品微生物學檢測菌落總數(shù)測定》[25]。
1.2.4 光譜數(shù)據(jù)處理方法
1)平行因子法(Parallel Factor analysis,PARAFAC)
使用PARAFAC分析時,必需預先創(chuàng)建樣品數(shù)據(jù)集。設(shè)定Ex數(shù)為,Δ數(shù)為,分別采集個多組分樣本的熒光光譜圖,獲得三維熒光光譜數(shù)據(jù),多個樣本數(shù)據(jù)次序疊加,獲得××的三維響應矩陣,該法將分解為3個載荷矩陣、、,數(shù)學表達式如下
式(1)中X為三維數(shù)據(jù)矩陣的一個元素;A、B、C分別為中的元素;E為誤差矩陣;代表模型因子數(shù),也為對應模型的最佳組分數(shù)。
平行因子分析法求解過程是確定建模的組分數(shù),對矩陣、和,采用交替最小二乘方法[26],且要殘差平方和最小,逐次迭代重復直至收斂。該法在MATLAB 2014a中的DOMFluor工具箱環(huán)境下運行。
2)BP神經(jīng)網(wǎng)絡分析法
BP神經(jīng)網(wǎng)絡屬于機器學習技術(shù)中的人工神經(jīng)網(wǎng)絡技術(shù),在數(shù)據(jù)分析和處理中被廣泛應用[27-28]。BP神經(jīng)網(wǎng)絡層主要包括輸入層、隱藏層與輸出層,使用BP神經(jīng)網(wǎng)絡建立擬合關(guān)系中,神經(jīng)擬合應用程序?qū)椭x擇數(shù)據(jù),隨機獲取試驗數(shù)據(jù)和目標數(shù)據(jù),即輸入數(shù)據(jù)和輸出數(shù)據(jù)。按照比例劃分訓練集、校正集、驗證集,通過創(chuàng)建和訓練一個網(wǎng)格,使用Levenberg-Marquardt反向傳播算法(trainlm)進行訓練,并評估其性能使用均方誤差和回歸分析,直至選定高擬合能力模型,再進行數(shù)據(jù)仿真操作[29-30]。該方法利用神經(jīng)網(wǎng)絡擬合Neural Net Fitting工具箱在MATLAB 2014a環(huán)境下運行。
青貯丁梭菌、乳酸菌和乙酸菌在0和24 h的菌懸液的原始三維熒光圖譜如圖1顯示。細菌在不同時間點組分變化存在顯著差異。微生物0和24 h在200~300 nm間有2個特征熒光峰,與Dartnell等[19]結(jié)果相同。第一個在200~250 nm(峰值在225 nm附近);第二個峰在250~300 nm(峰值在275 nm附近),此二峰的產(chǎn)生主要與微生物體內(nèi)固有的類蛋白質(zhì)有關(guān),分別對應酪氨酸和色氨酸類物質(zhì)[31-33]。熒光光譜顏色的鮮艷程度與熒光強度成正向相關(guān)。微生物培養(yǎng)24 h后,2個特征熒光峰的熒光強度顯著增強,最強熒光峰位置稍向長波方向移動,峰寬變大,此現(xiàn)象主要是微生物生長過程菌體大量繁殖,體內(nèi)固有物質(zhì)增多[17]。結(jié)果表明三維熒光光譜技術(shù)可以定性反饋不同時期微生物生長量,與平板計數(shù)法和比濁法測定結(jié)果呈現(xiàn)一致。
PARAFAC法是處理多維多向數(shù)據(jù)集的有力工具,主要通過交替最小二乘法確定模型因子數(shù)實現(xiàn)三維熒光光譜矩陣的有效分解,提取微生物特征熒光光譜信息,解析樣本顯著信息[34]。圖2中誤差平方和大小明顯顯示組分6和組分7為PARAFAC中較適合的成分數(shù),基于模型計算過擬合現(xiàn)象問題考慮,選定組分6。當組分數(shù)為6時,樣本不同Δ的載荷值見圖3。Δ的載荷值越高,說明該波長下對應樣本間的差異越顯著,區(qū)分效果越好[26]。由圖可知,產(chǎn)生樣本間差異顯著的最高載荷值的Δ為50 nm,該波長為微生物特征熒光光譜。
圖1 乙酸菌、丁梭菌和乳酸菌0和24 h三維熒光光譜圖
圖2 不同組分數(shù)誤差平方和
圖3 不同波長間隔(Δλ)載荷值
Δ為50 nm對應特征波長下的微生物生長二維熒光光譜如圖4所示。圖4顯示微生物在生長過程中在250~300 nm呈現(xiàn)特征熒光峰(峰值275 nm附近),且隨著培養(yǎng)時間增長,總體熒光強度呈現(xiàn)顯著增強,峰寬變大。該現(xiàn)象與三維熒光光譜現(xiàn)象一致,說明平行因子分析法能較好解析三維熒光光譜,且方法是適當?shù)?。?10~360、370~390 nm處出現(xiàn)2個微弱的熒光峰(峰值340和380 nm附近),研究發(fā)現(xiàn)是微生物代謝產(chǎn)物或者某種帶有熒光基團的酸類物質(zhì)[35-36],且380 nm附近的自然熒光峰的強度與培養(yǎng)時間呈現(xiàn)正相關(guān)。由此可知,平行因子分析獲取的二維熒光光譜能更多的獲取熒光組分信息[16],更準確的說明微生物生長過程物質(zhì)的變化。
基于判定利用三維熒光光譜預測微生物生長量的合理性,項目利用PARAFAC法選取菌株對應Δ為50 nm波長光譜數(shù)據(jù)作為BP神經(jīng)網(wǎng)絡模型輸入層神經(jīng)元,比濁法和平板計數(shù)法的結(jié)果分別作為模型輸出層神經(jīng)元,對青貯微生物生長量進行數(shù)據(jù)建模訓練[37]。以隨機抽取的方式,所有的數(shù)據(jù)按照60∶20∶20分別作為訓練集、驗證集與測試集,隱含層為1,隱含層神經(jīng)元數(shù)量為10,得到BP神經(jīng)網(wǎng)絡預測模型,模型參數(shù)見表1。表1顯示,這兩種方法與特征波長熒光強度通過BP神經(jīng)網(wǎng)絡擬合,獲得決定系數(shù)(2)值> 0.99(接近1),均方誤差(Mean Square Error,MSE)值均很小,表明該方法建立模型相關(guān)性較好。
圖4 不同微生物生長時間的二維熒光光譜
表1 微生物生長量智能預測模型相關(guān)性分析
為了更好檢驗建立模型對樣本的預測能力,重新采集青貯乳酸菌、丁酸菌、乙酸菌、酵母菌等共91個樣本,并使用建立模型進行預測,不同方法BP神經(jīng)網(wǎng)絡預測結(jié)果如圖5所示。由圖5可清晰看到BP神經(jīng)網(wǎng)絡具有較高的擬合能力。綜上可知,三維熒光光譜法結(jié)合平行因子及BP神經(jīng)網(wǎng)絡法監(jiān)測青貯過程中微生物的生長情況是可行的,且操作便捷,數(shù)據(jù)可靠。
圖5 不同方法BP神經(jīng)網(wǎng)絡預測結(jié)果
本文以青貯細菌乳酸菌、乙酸菌、丁梭菌為研究對象,采集不同生長時間點的微生物三維熒光光譜數(shù)據(jù),利用比濁法和平板計數(shù)法測定微生物生長量,基于平行因子法和BP神經(jīng)網(wǎng)絡方法構(gòu)建預測模型。結(jié)果表明:
1)利用三維同步熒光光譜測定3種指示菌株在225和275 nm左右呈現(xiàn)特征高強度波峰,主要是類蛋白物質(zhì)相關(guān),分別為酪氨酸和色氨酸。
2)利用平行因子法解析三維同步熒光光譜數(shù)據(jù),得到菌株的特征波長差Δ值(50 nm),以此對應光譜數(shù)據(jù)通過BP神經(jīng)網(wǎng)絡建立預測模型,通過相關(guān)系數(shù)和均方誤差都說明BP神經(jīng)網(wǎng)絡具有較強的擬合能力,可快速預測微生物生長量,判別微生物生長狀態(tài)。
本研究利用三維熒光光譜結(jié)合化學計量學建立微生物生長量預測模型,為青貯發(fā)酵微生物生長量檢測提供了新思路與方法。該模型與傳統(tǒng)方法相比較大幅度降低勞動時間,提高了操作效率,但針對于青貯質(zhì)量評定,需要更為特異性組分指標進行相關(guān)解析。下一步工作計劃可以擴充青貯品質(zhì)指標,在數(shù)據(jù)分析和模型構(gòu)建部分引入機器學習模型進行進一步的信息挖掘和提取,從而增強模型的預測能力,為提高青貯質(zhì)量提供更為直觀的針對性策略。
[1] 蘇嘉琪,辛杭書,張廣寧,等. 國內(nèi)外青貯飼料原料來源、品質(zhì)評價及影響因素的研究進展[J/OL]. 動物營養(yǎng)學報:1-10[2022-10-08]. http: //kns. cnki. net/kcms/detail/11. 5461. S. 20220926. 1830. 012. html
Su Jiaqi, Xin Hangshu, Zhang Guangning, et al. Research progress on sources, quality evaluation and influencing factors of silages feed at home and abroad[J]. Chinese Journal of Animal Nutrition: 1-10[2022-10-08]. http: //kns. cnki. net/kcms/detail/11. 5461. S. 20220926. 1830. 012. html (in Chinese with English abstract)
[2] Gollop N, Zakin V, Weinberg Z G. Antibacterial activity of lactic acid bacteria included in inoculants for silage and in silages treated with these inoculants[J]. Journal of Applied Microbiology, 2005, 98(3): 662-666.
[3] Park R S, Stronge M D. Silage production and utilisation[C]. Belfast, Northern,Ireland: Wageningen academic, 2005.
[4] 黃峰,張露,周波,等. 青貯微生物及其對青貯飼料有氧穩(wěn)定性影響的研究進展[J]. 動物營養(yǎng)學報,2019,31(1):82-89.
Huang Feng, Zhang Lu, Zhou Bo, et al. Research process in silage microorganism and its effect on silage aerobic stability[J]. Chinese Journal of Animal nutrition, 2019, 31(1): 82-89. (in Chinese with English abstract)
[5] Li M H, Shan G L, Zhou H Y, et al. CO2production, dissolution and pressure dynamics during silage production: Multi-sensor-based insight into parameter interactions[J]. Scientific Reports, 2017, 7(1): 181-188.
[6] Ogunade I M, Jiang Y, Kim D H, et al. Fate ofO157:H7and bacterial diversity in corn silage contaminated with the pathogen and treated with chemical or microbial additives[J]. Journal of Dairy Science, 2017, 100(3): 1780-1794.
[7] 張適,常杰,胡宗福,等. 青貯飼料有害微生物及其抑制措施[J]. 動物營養(yǎng)學報,2017,29(12):4308-4314.
Zhang Shi, Chang Jie, Hu Zongfu, et al. Harmful microorganism in silage and their suppression measures[J]. Chinese Journal of Animal nutrition, 2017, 29(12): 4308-4314. (in Chinese with English abstract)
[8] Wambacq E, Vanhoutie I, Audenaert K, et al. Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: A review[J]. Journal of the Science of Food and Agriculture, 2016, 96(7): 2284-2302.
[9] Shao J, Xiang J D, Axner O, et al. Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth[J]. Applied Optics, 2016, 55(9): 2339-2345.
[10] 項金冬. 基于光譜技術(shù)的微生物生長檢測研究[D]. 金華:浙江師范大學,2016.
Xiang Jindong. Research on Microbial Growth Detection Based on Spectral Technique[D]. Jinhua: Zhejiang Normal University, 2016. (in Chinese with English abstract)
[11] 李楊,孫禹凡,趙城彬,等. 體外模擬消化過程中大豆分離蛋白拉曼光譜和熒光光譜分析[J]. 中國食品學報,2019,19(2):266-272.
Li Yang, Sun Yufan, Zhao Chengbin, et al. Analysis of raman spectroscopy and fluorescence spectroscopy for soy protein isolate during vitro simulated digestion process[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(2): 266-272. (in Chinese with English abstract)
[12] Olgun C, Cihat I N, Zeki D M. Rapid detection of adulteration of milks from different species using Fourier Transform Infrared Spectroscopy (FTIR)[J]. The Journal of Dairy Research, 2018, 85(2): 222-225.
[13] Chai L W, Huang M, Fan H, et al. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC)[J]. Chemosphere, 2019(220): 249-258.
[14] Liu D P, Yu H B, Gao H J, et al. Applying synchronous fluorescence and UV-vis spectra combined with two-dimensional correlation to characterize structural composition of DOM from urban black and stinky rivers[J]. Environmental Science and Pollution Research, 2021, 28(15): 19400-19411.
[15] 陳營營,鄭昭佩,楊芳,等. 同步熒光結(jié)合主成分與二維相關(guān)研究鹽堿性土溶解性有機質(zhì)組成與結(jié)構(gòu)特征[J]. 光譜學與光譜分析,2020,40(2):489-493.
Chen Yingying, Zheng Zhaopei, Yang Fang, et al. The composition and structure of dissolved organic matter in saline soil were studied by synchronous fluorescence spectroscopy combined with principal components and two-dimensional correlation[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 489-493. (in Chinese with English abstract)
[16] 蘇良湖,陳梅,孫旭,等. 谷類秸稈接種瘤胃液的厭氧消化性能和三維熒光光譜特征[J]. 生態(tài)與農(nóng)村環(huán)境學報,2018,34(11):1034-1041.
Su Lianghu, Chen Mei, Sun Xu, et al. The anaerobic digestion performance of cereal straw inoculated with rumen fluid and its three-dimensional excitation emission matrix fluorescence spectroscopic characteristics[J]. Journal of Ecology and Rural Environment, 2018, 34(11): 1034-1041. (in Chinese with English abstract)
[17] 劉璐. 微生物代謝產(chǎn)物的三維熒光光譜分析[J]. 化學工程與裝備,2010(2):144-146,137.
Liu Lu. Three-dimensional fluorescence spectrometric analysis of microbial metabolism[J]. Chemical engineering and equipment, 2010(2): 144-146, 137 (in Chinese with English abstract)
[18] 張為,曹玉珍,劉振宇,等. 平行因子算法用于酪氨酸、色氨酸和苯丙氨酸的同時定性與定量測定[J]. 化學通報,2002(6):418-421.
Zhang Wei, Cao Yuzhen, Liu Zhenyu, et al. Parallel factor algorithm for simultaneous qualitative and quantitative determination of tyrosine, Tryptophan and L-Phenylalanine[J]. Chemistry, 2002(6): 418-421. (in Chinese with English abstract)
[19] Dartnell L R, Roberts T A, Moore G, et al. Fluorescence characterization of clinically-important bacteria[J]. Plos One, 2013, 8(9): 1-13.
[20] 許瑞,王勝楠,陳樂,等. 基于三維熒光光譜技術(shù)解析不同微生物法凈化黑臭水體的效果[J]. 環(huán)境工程學報,2020,14(1):123-132.
Xu Rui, Wang Shengnan, Chen Le, et al. Effect of different microbial methods on purifying black-odor water based on three-dimensional fluorescence spectroscopy[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 123-132. (in Chinese with English abstract)
[21] 宋曉康,趙強,張元志,等. 利用三維熒光光譜與平行因子分析法測定細胞培養(yǎng)基中多類代謝成分的含量[J]. 中國激光,2022,49(9):28-39.
Song Xiaokang, Zhao Qiang, Zhang Yuanzhi, et al. Utilizing three dimensional fluorescence spectra and parallel factor analysis algorithm to quantify the concentration of multiple metabolic fluorophores in the cell culture medium[J]. Chinese Journal of Lasers, 2022, 49(9): 28-39. (in Chinese with English abstract)
[22] 王書濤,陳東營,侯培國,等. 基于熒光光譜技術(shù)和GA-BP神經(jīng)網(wǎng)絡的對羥基苯甲酸甲酯鈉含量的測定[J]. 光譜學與光譜分析,2015,35(6):1606-1610.
Wang Shutao, Chen Dongying, Hou Peiguo, et al. Determination of the sodium methylparaben content based on spectrum fluorescence spectral technology and GA-BP neural network[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1606-1610. (in Chinese with English abstract)
[23] 陳東營. 基于優(yōu)化BP神經(jīng)網(wǎng)絡的防腐劑熒光檢測技術(shù)研究[D]. 秦皇島:燕山大學,2016.
Chen Dongying. Theoretical Study on Fluorescence Detection Technology of Preservative Based on Optimized BP Neural Network[D]. Qinhuangdao: Yanshan University, 2016. (in Chinese with English abstract)
[24] 張艷. BP神經(jīng)網(wǎng)絡結(jié)合FANWE與三維熒光光譜法測量美白面膜中的熒光增白劑[D]. 秦皇島:燕山大學,2020.
Zhang Yan. BP Neural Network Combined with FANWE and Three-dimensional Fluorescence Spectroscopy to Measure the Fluorescent Whitening Agent in Whitening Mask[D]. Qinhuangdao: Yanshan University, 2020. (in Chinese with English abstract)
[25] 國家食品藥品監(jiān)督管理總局,國家安全和計劃生育委員會. 食品安全國家標準食品微生物學檢測菌落總數(shù)測定:GB 4789. 2-2016[S]. 北京:中國標準出版社,2016:1-7.
[26] Murphy K R, Stedmon C A, Graeber D, et al. Fluorescence spectroscopy and multi-way techniques PARAFAC[J]. Anal Methods, 2013, 5: 6557-6566.
[27] 張馳,郭媛,黎明. 人工神經(jīng)網(wǎng)絡模型發(fā)展及應用綜述[J]. 計算機工程與應用,2021,57(11):57-69.
Zhang Chi, Guo Yuan, Li Ming. Review of development and application of artificial neural network models[J]. Computer Engineering and Application, 2021, 57(11): 57-69. (in Chinese with English abstract)
[28] 孫少杰,吳門新,莊立偉,等. 基于CNN卷積神經(jīng)網(wǎng)絡和BP神經(jīng)網(wǎng)絡的冬小麥縣級產(chǎn)量預測[J]. 農(nóng)業(yè)工程學報,2022,38(11):151-160.
Sun Shaojie, Wu Menxin, Zhuang Liwei, et al. Forecasting winter wheat yield at county level using CNN and BP neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 151-160. (in Chinese with English abstract)
[29] Sen J, Das A. K. Artificial neural network model for forecasting the stock price of indian IT company[J]. Advances in Intelligent Systems and Computing, 2014, 236: 1153-1159.
[30] 邢旋旋. 基于BP神經(jīng)網(wǎng)絡及其改進算法的基坑變形預測研究[D]. 開封:河南大學,2022.
Xing Xuanxuan. Research on Deformation Predicition of Foundation Pit Based on BP Neural Network and Its Improved Algorithm[D]. Kaifeng: Henan University, 2022. (in Chinese with English abstract)
[31] Leblanc L, Dufour E. Monitoring the identity of bacteria using their intrinsic fluorescence[J]. FEMS Microbiology Letters, 2002, 211(2): 147-153.
[32] 劉雪茹,李欣,殷勇,等. 黃瓜貯藏中微生物信息三維熒光判別及其數(shù)量監(jiān)控模型構(gòu)建[J]. 食品科學,2021,42(5):32-38.
Liu Xueru, Li Xin, Yin Yong, et al. 3D fluorescence discrimination of microbial information and monitoring model establishment of the microbial quantity in cucumber storage[J]. Food Science, 2021, 42(5): 32-38. (in Chinese with English abstract)
[33] Pons M N, Swbatien L B, Potier O. Spectral analysis and fingerprinting for biomedia characterisation[J]. Journal of Biotechnology, 2004, 113(1): 211-230.
[34] Airado-Rodríguez D, Dura Nmera S I, Diaz Galeano T, et al. Front-face fluorescence spectroscopy: A new tool for control in the wine industry[J]. Journal of Food Composition and Analysis, 2010, 24(2): 257-264.
[35] Estes C, Duncan A, Wade B, et al. Reagentless detection of microorganisms by intrinsic fluorescence[J]. Biosensors and Bioelectronics, 2003, 18(5): 511-519.
[36] Dartnell L R, Storrie-Lombardi M C, Ward J M. Complete fluorescent fingerprints of extremophilic and photosynthetic microbes[J]. International Journal of Astrobiology, 2010, 9(4): 245-257.
[37] Gu H Y, Sun Y H, Liu S L, et al. A Feasibility study of the rapid evaluation of oil oxidation using synchronous fluorescence spectroscopy[J]. Food Analytical Methods, 2018, 11(12): 3464-3470.
Detection of silage microbial growth by using three-dimensional fluorescence coupled with chemometrics
Zhang Weiwei, Zhang Jing, Meng De, Lyu Riqin, Gu Haiyang, Sun Yanhui※
(239000,)
Silage is a type of storage fodder from green foliage crops to reduce the cost of feed and environmental pollution. The silage can be preserved by fermentation to the point of acidification. Among them, microbial growth can dominate in the silage quality. Especially, the proliferation of harmful microorganisms has also posed a great threat to crop resources, and ruminantia production, such as clostridium, acetic acid bacteria, and yeast. However, the commonly-used plate counting and turbidimetry for microbial growth in the laboratory cannot accurately characterize the growth state of silage microorganisms in time, due to tedious steps, time-consuming, and slow response rate. This study aims to effectively monitor the growth of silage microorganisms (lactic acid bacteria, acetic acid bacteria, and clostridium butyricum) separating from the silage as the indicator strains. A systematic investigation was made for the three-dimensional fluorescence spectra, the number of microbial colonies, and the absorption of 105 samples at the seven growth time points (0, 2, 4, 8, 12, 24 and 48 h). The chemometrics analysis and spectroscopic techniques were combined for the rapid screening of microbial growth. Parallel factor analysis was applied to resolve the three-dimensional fluorescence data. Back Propagation (BP) neural network was also used in the material quantitative analysis in the field of machine learning, due to its powerful nonlinear ability. The three-dimensional Synchronous Fluorescence Spectra (SFS) showed that there were two strong fluorescence peaks at about 225 and 275 nm, respectively. The main fluorescence peaks were the microbial endogenous tyrosine and tryptophan. The fluorescence intensity increased gradually with the increasing culture time, where the position of the fluorescence peak shifted the red. Meanwhile, the width of the fluorescence peak increased significantly. The parallel factor analysis showed that there was a significant difference in fluorescence information, where the characteristic wavelength Δwas 50 nm with six components. In addition to the two characteristic peaks, there were two weak fluorescence peaks at 310-360 and 370-390 nm. The two wave peaks at 340 and 380 nm were the microbial metabolism products or acids. There was a positive correlation between the intensity of natural fluorescence peak at 380 nm during culture time. Outstandingly, there was more information on fluorescence components in the two-dimensional fluorescence spectra from the parallel factor analysis. In terms of two-dimensional spectral data, the number of microbial colonies, and the absorbance were taken as the input or the output values of the BP neural network model, respectively. The modeling was constructed for the microbial growth of different detection. The experimental results showed that the correlation coefficients of the two models were close to 1.0, and the Mean Square Error (MSE) was all very small. A very reliable model was achieved in the neural network with a high fitting ability. Therefore, the three-dimensional fluorescence spectroscopy combined with the chemometrics was feasible to monitor the microbial growth in the silage. The finding can also provide a new technical approach for the rapid determination of the fermentation silage stage.
three-dimensional fluorescence; silage; microbial growth; chemometrics; parallel factor analysis
10.11975/j.issn.1002-6819.2022.18.033
O433.4;S816.11
A
1002-6819(2022)-18-0302-06
張微微,張靜,孟德,等. 三維熒光技術(shù)結(jié)合化學計量學檢測青貯微生物生長量[J]. 農(nóng)業(yè)工程學報,2022,38(18):302-307.doi:10.11975/j.issn.1002-6819.2022.18.033 http://www.tcsae.org
Zhang Weiwei, Zhang Jing, Meng De, et al. Detection of silage microbial growth by using three-dimensional fluorescence coupled with chemometrics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 302-307. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.18.033 http://www.tcsae.org
2021-07-01
2022-09-01
國家自然科學基金項目(31701685);安徽省重點研究與開發(fā)計劃項目(202004a06020039);滁州學院博士后基金項目(2020BSH002);滁州市科技局指導性計劃(2021ZD025)
張微微,博士,副教授,研究方向為微生物,快速檢測。Email:249541998@qq.com
孫艷輝,博士,教授,研究方向為快速檢測。Email:1647608982@qq.com