盧佳宇,王 輝,歐陽(yáng)贊
低鹽再生水灌溉對(duì)亞熱帶紅壤水力特性及微觀結(jié)構(gòu)的影響
盧佳宇,王 輝※,歐陽(yáng)贊
(湖南農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,長(zhǎng)沙 410128)
低鹽再生水是一種回用潛力巨大的替代性水源,為探究其灌溉亞熱帶紅壤的適宜性,該研究以校園生活污水為再生水水源,設(shè)置再生水單一灌溉(WW)、再生水與蒸餾水交替灌溉(AWW)兩種灌水模式,并以蒸餾水單一灌溉(CK)為對(duì)照。通過(guò)室外模擬土柱試驗(yàn),研究了低鹽再生水不同灌溉模式下紅壤的鹽堿度、微觀結(jié)構(gòu)及水力特性,并探討了三者之間的相互作用關(guān)系。結(jié)果表明:1)低鹽再生水灌溉降低了紅壤的持水能力和導(dǎo)水能力;2)與CK處理相比,低鹽再生水灌溉導(dǎo)致紅壤田間持水率和凋萎系數(shù)降低,有效水在WW處理下增加6.33%,在AWW處理下減小27.85%;3) 大孔隙含量均增加,而有效孔隙、微小孔隙含量在WW處理下增加,分別為16.1%、11.0%,在AWW 處理下減小,分別為10.5%、4.9%;4)與CK處理相比,低鹽再生水灌溉使紅壤電導(dǎo)率(Electrical Conductivity,EC)和Na+含量顯著提高,而交換性陽(yáng)離子總量(Cation Exchange Capacity,CEC)顯著降低(<0.05)。再生水兩種灌溉模式中,AWW處理下土壤交換性鈉百分比(Exchangeable Sodium Percentage,ESP)和鈉吸附比(Sodium Adsorption Ratio,SAR)分別顯著高于WW處理142.4%、120.3%(<0.05),從而引起更強(qiáng)烈的土壤黏粒分散;5)田間持水率、凋萎系數(shù)、有效水及有效孔隙和微小孔隙比例均與交換性Na+、ESP、SAR呈顯著負(fù)相關(guān),與CEC呈顯著正相關(guān)。綜上,低鹽再生水灌溉亞熱帶紅壤宜選擇單一灌溉模式,且應(yīng)定期監(jiān)測(cè)土壤SAR和ESP等指標(biāo)。研究結(jié)果可為再生水水質(zhì)標(biāo)準(zhǔn)和灌溉制度制定提供參考。
灌溉;再生水;鹽堿度;土壤水分特征曲線;水分常數(shù);紅壤
隨著工農(nóng)業(yè)及城市用水量不斷增加,水資源供需矛盾日益突出,非常規(guī)水利用已成為一種行之有效的節(jié)水途徑[1]。大量城鎮(zhèn)廢污水經(jīng)適當(dāng)處理并再生利用,不僅能夠有效緩解水資源短缺,優(yōu)化供水結(jié)構(gòu),同時(shí)能夠降低再生水排放引發(fā)的生態(tài)環(huán)境污染[2-3]。然而,再生水水源較為復(fù)雜,包括生活污水、部分工業(yè)廢水和截流的雨水等[4],且因處理成本過(guò)高,污水處理廠降低了鹽分去除率,導(dǎo)致再生水中鹽分濃度通常較高[5-7]。美國(guó)鹽土實(shí)驗(yàn)室根據(jù)電導(dǎo)率(Electrical Conductivity,EC)作為劃分灌溉用水危害等級(jí)的指標(biāo)之一[8]。經(jīng)過(guò)處理后EC值在100~250S/cm之間的再生水為低鹽再生水;EC值高于750S/cm的再生水則屬于高鹽再生水[9]。已有大量研究中采用的再生水均為高鹽再生水,灌溉后易引起土壤鹽堿化,改變土壤物理結(jié)構(gòu)和水力性質(zhì),加重土壤退化風(fēng)險(xiǎn)[10-14]。高校人員構(gòu)成較為單一,生活習(xí)慣和需求相似,故不同地區(qū)的高校生活污水有其共性,具有來(lái)源單一穩(wěn)定,可生化性好,含鹽量低,但化學(xué)需氧量(Chemical Oxygen Demand,COD)高等特點(diǎn)[15-16],因其產(chǎn)生量大、處理成本低,這種低鹽再生水勢(shì)必被廣泛灌溉利用,從而實(shí)現(xiàn)綠色校園、綠色社區(qū)的內(nèi)部水循環(huán)。
由于再生水中鹽分濃度和鹽離子類型、土壤理化性質(zhì)及灌溉模式等存在差異,導(dǎo)致再生水灌溉對(duì)土壤結(jié)構(gòu)及水力性質(zhì)的作用效果出現(xiàn)明顯異同。唐勝?gòu)?qiáng)等[17]認(rèn)為灌溉水中微量鹽分能夠促進(jìn)土壤團(tuán)粒形成,增強(qiáng)土壤導(dǎo)水能力,但也有學(xué)者認(rèn)為低鹽使土壤顆粒分散并堵塞土壤孔隙[18]。李法虎等[19]發(fā)現(xiàn)隨著灌溉水鹽濃度提高,土壤飽和水力傳導(dǎo)度增大。再生水灌溉改善了土壤中大孔隙連通情況,提高了小于130m孔隙占比,且土壤持水能力和非飽和導(dǎo)水率均降低[20]。另外,再生水中COD較高表示有機(jī)污染物多,能夠促進(jìn)微生物生長(zhǎng)和繁殖,使生物膜厚度增加,堵塞土壤孔隙,從而降低土壤導(dǎo)水率,影響田間水分循環(huán)[21-22]。除灌溉水質(zhì)外,再生水灌溉周期內(nèi)較好水質(zhì)(雨水等)的介入也會(huì)影響土壤水力性質(zhì)的改變。Blum等[23]發(fā)現(xiàn)再生水灌溉后土壤交換性鈉百分率(Exchangeable Sodium Percentage,ESP)提高,導(dǎo)致土壤黏粒分散,但隨著降雨的產(chǎn)生,土壤中Na+發(fā)生淋失,土壤結(jié)構(gòu)逐漸恢復(fù)。也有研究表明,較好水質(zhì)介入的影響是負(fù)面的,這是由于土壤溶液中的鹽濃度被稀釋,土壤崩解分散作用增強(qiáng),土壤導(dǎo)水能力降低[24]。
目前,大多數(shù)關(guān)于再生水灌溉對(duì)土壤結(jié)構(gòu)及水力性質(zhì)的影響研究主要集中在干旱、半干旱地區(qū),且采用的灌溉水中鹽含量較高[7,11],而低鹽再生水不同灌溉模式下亞熱帶紅壤微觀結(jié)構(gòu)及水力性質(zhì)改變的研究鮮有報(bào)道。另外,紅壤具有鹽分含量低、酸性強(qiáng)、陽(yáng)離子交換量和交換性鹽基總量低等特點(diǎn),再生水灌溉后可能具備特有的鹽分累積和水力性質(zhì)變化特性[18]。因此,本文以處理后的校園生活污水為低鹽再生水水源,設(shè)置再生水單一灌溉(WW)、再生水-蒸餾水交替灌溉(AWW)兩種灌水模式,并以蒸餾水灌溉為對(duì)照(CK),探究低鹽再生水灌溉后紅壤鹽分變化規(guī)律及其對(duì)土壤微觀結(jié)構(gòu)和水力性質(zhì)的作用機(jī)制,以期為亞熱帶紅壤區(qū)非常規(guī)水灌溉提供一定的科學(xué)參考。
供試土壤為第四紀(jì)紅黏土發(fā)育而成的旱地紅壤(113o7'33"E,28o11'45"N),廣泛分布于亞熱帶地區(qū)。采用隨機(jī)、多點(diǎn)(10個(gè)點(diǎn))法采集表層0~40 cm土壤,自然風(fēng)干,除去根、石塊等雜物,粉碎過(guò)5 mm篩,充分混勻后備用。供試土壤顆粒組成采用比重計(jì)法測(cè)定,砂粒(>0.02~0.2 mm)質(zhì)量百分?jǐn)?shù)為12%,粉砂粒(0.002~0.02 mm)質(zhì)量百分?jǐn)?shù)為32%,黏粒(<0.002 mm)質(zhì)量百分?jǐn)?shù)為56%,根據(jù)國(guó)際制分類標(biāo)準(zhǔn)土壤質(zhì)地為黏土;土壤EC、pH值采用梅特勒—托利多Seven ExcellenceTM多參數(shù)測(cè)試儀(S470-B)測(cè)定;交換性陽(yáng)離子總量(Cation Exchange Capacity,CEC)采用乙酸銨-EDTA交換法測(cè)定;交換性鉀、鈉采用火焰光度計(jì)測(cè)定;交換性鈣、鎂采用原子吸收分光光度計(jì)(TAS-990)測(cè)定,結(jié)果見(jiàn)表1。
試驗(yàn)灌溉用水取自長(zhǎng)沙市某高校附近的污水處理廠入河排污口,水源主要為校園生活污水。由于水質(zhì)波動(dòng)較大,每次取水后均進(jìn)行測(cè)試,結(jié)果見(jiàn)表2,水質(zhì)指標(biāo)符合國(guó)家污水綜合排放標(biāo)準(zhǔn)(GB8978—1996)和城市污水再生利用農(nóng)田灌溉用水水質(zhì)(GB200922—2007),其中EC< 250S/cm、鈉吸附比(Sodium Adsorption Ratio,SAR)小于10,根據(jù)美國(guó)鹽土實(shí)驗(yàn)室發(fā)表的灌溉水質(zhì)分類[8],灌溉用水為低鹽再生水。
表1 試驗(yàn)土壤基本化學(xué)性質(zhì)
注:EC為土壤電導(dǎo)率;CEC為陽(yáng)離子交換量。下同。
Note: EC represents soil electric conductivity; CEC represents cation exchange capacity. Same as below.
表2 灌溉用水基本理化指標(biāo)
注:SAR為鈉吸附比;TSS為總懸浮物;COD為化學(xué)需氧量。下同。
Note: SAR represents sodium adsorption ratio; TSS represents total suspended solids; COD represents chemical oxygen demand. Same as below.
亞熱帶紅壤區(qū)降雨量大且時(shí)空分布不均,低鹽再生水灌溉過(guò)程中易出現(xiàn)雨水等較好水質(zhì)介入的情況。因此,本文模擬研究了低鹽再生水與較好水質(zhì)的水反復(fù)作用對(duì)紅壤水力性質(zhì)和微觀結(jié)構(gòu)的影響,并且為了突出二者交互作用效果,選用了與雨水相比化學(xué)物質(zhì)含量更低的蒸餾水作為交替灌溉用水,設(shè)置再生水-蒸餾水交替灌溉模式(AWW)。另外,設(shè)置了再生水單一灌溉模式(WW),并以蒸餾水灌溉作為對(duì)照(CK)。每個(gè)處理設(shè)置3個(gè)重復(fù)。
采用高32 cm、直徑26 cm的塑料桶裝填土壤,進(jìn)行室外模擬土柱試驗(yàn),桶底打孔使空氣流動(dòng),并讓多余的灌溉水排出。桶底鋪設(shè)兩層紗網(wǎng),然后均勻裝填5 cm厚石英砂,再在石英砂表面放置一層紗網(wǎng)后進(jìn)行土柱裝填。土壤裝填容重為1.2 g/cm3,分3次裝填,每次裝填5 cm,并將層與層之間打毛,考慮土壤沉降多裝填2 cm,土柱總高度為17 cm。土壤裝填完成后,3個(gè)處理中分別選取1個(gè)土柱埋設(shè)張力計(jì),埋設(shè)位置在土柱中部,埋深10 cm。為了加快再生水對(duì)紅壤的作用過(guò)程和強(qiáng)度,使再生水與土壤充分接觸,設(shè)計(jì)每個(gè)土柱每次灌水量均為6 L,使土壤飽和且土柱上方有5 cm左右的水層以測(cè)定入滲率。為了使土壤與灌溉水充分接觸,灌溉開(kāi)始前先將塑料桶底部孔洞堵住再進(jìn)行灌水,24 h后打開(kāi)底部孔洞,使桶內(nèi)多余水分流出,同時(shí)記錄土柱上部水層入滲一定距離所需的時(shí)間,并根據(jù)式(1)計(jì)算入滲率,然后將土柱自然風(fēng)干并進(jìn)行遮雨處理。待張力計(jì)讀數(shù)約為80 kPa(土壤含水率約為田間持水量的60%)時(shí),再次進(jìn)行灌水,反復(fù)進(jìn)行干濕循環(huán)處理。待最后3次的入滲率基本穩(wěn)定時(shí)終止灌水試驗(yàn),累積灌溉8次,歷時(shí)1 a。WW和CK處理每次分別灌溉再生水和蒸餾水,AWW處理則根據(jù)灌水次數(shù)輪流灌溉再生水和蒸餾水,兩種水質(zhì)各灌溉4次。由于表層土壤受灌溉水質(zhì)的影響較大[19],試驗(yàn)結(jié)束后,用環(huán)刀采集灌溉土柱表層(0~5 cm)土樣并測(cè)定土壤水分特征曲線,其余表層土壤充分混合后用于測(cè)定土壤鹽分離子、顆粒形態(tài)等理化指標(biāo)。
式中為入滲速率,cm/min;為積水入滲深度,cm;為入滲時(shí)間,min。
土壤顆粒形態(tài)采用FEI Nova Nano SEM 230場(chǎng)發(fā)射掃描電子顯微鏡觀測(cè),用導(dǎo)電膠將風(fēng)干并過(guò)60目篩(孔徑0.25 mm)的土壤顆粒粘貼在金屬載物臺(tái)上,并對(duì)其進(jìn)行導(dǎo)電處理(噴金),然后將處理好的樣品放入掃描電鏡的觀察室,在真空條件下進(jìn)行檢測(cè)。
土壤EC值,交換性鉀、鈉、鈣、鎂,CEC含量的測(cè)試方法見(jiàn)1.1。交換性鈉百分比(Exchangeable Sodium Percentage,ESP)、SAR及鉀吸附比(Potassium Adsorption Ratio,PAR)是判斷土壤鹽堿度的重要參數(shù),根據(jù)測(cè)得的交換性鉀、鈉、鈣、鎂以及土壤CEC含量分別計(jì)算ESP、SAR及PAR,計(jì)算方法見(jiàn)式(2)~式(4)。
1.4.1 土壤水分特征曲線測(cè)定及擬合
土壤水分特征曲線測(cè)定采用壓力膜儀法(WD 58-1500F1,SM Company,Arizona,USA),分別測(cè)定土壤吸力為1、15、33、80、280、500、1 000、1 500 kPa時(shí)土壤含水率,并繪制土壤水分特征曲線。運(yùn)用van Genuchten模型(VG模型)[25]對(duì)測(cè)得的土壤水分特征曲線進(jìn)行擬合,得到模型參數(shù),計(jì)算式如下:
式中為土壤體積含水率,cm3/cm3;θ為土壤殘余體積含水率,cm3/cm3;θ為土壤的飽和體積含水率,cm3/cm3;為負(fù)壓,cm;為進(jìn)氣值的倒數(shù),1/cm;、為形狀參數(shù),=1-1/。
1.4.2 非飽和導(dǎo)水率及水分?jǐn)U散度模型
根據(jù)VG模型擬合的水分特征曲線參數(shù),進(jìn)一步計(jì)算土壤非飽和導(dǎo)水率(K)和水分?jǐn)U散度(D)[26],計(jì)算式如下:
式中K為土壤飽和導(dǎo)水率;K為土壤非飽和導(dǎo)水率;D為水分?jǐn)U散度,為土壤體積含水率,cm3/cm3,其余符號(hào)同式(4),其中K采用定水頭法測(cè)定,CK、WW、AWW處理下K分別為3.31、2.11、2.43 cm/min。
1.4.3 土壤當(dāng)量孔徑計(jì)算
土壤當(dāng)量孔徑累積曲線和微分曲線計(jì)算過(guò)程如下:若將土壤中的孔隙設(shè)想為各種孔徑的圓形毛管,那么土壤水吸力和毛管直徑的關(guān)系可表示為
=4/(8)
式中為水的表面張力系數(shù),室溫條件下一般取75×10-5N/cm,為當(dāng)量孔徑。
若土壤水吸力的單位為Pa,當(dāng)量孔徑以mm計(jì),則當(dāng)量孔徑與吸力的關(guān)系可以用=300/表示[27]。為了便于計(jì)算VG模型中不同土壤水吸力對(duì)應(yīng)的當(dāng)量孔徑,將式中的單位由Pa換算成cm,得到=3/。由上式可得吸力S對(duì)應(yīng)的當(dāng)量孔徑d,并根據(jù)土壤水分特征曲線得到吸力為S時(shí)土壤含水率θ及土壤飽和含水率θ。土壤水分特征曲線脫濕曲線為大孔隙先排水,當(dāng)土壤中含水率為θ時(shí),排水孔隙對(duì)應(yīng)含水率變化為θ-θ,因此土壤中大于某孔徑d的孔隙所占體積與總孔隙體積之比可表示為(θ-θ) /θ。由此,得到大于某孔徑的孔隙體積占總孔隙體積比例的關(guān)系曲線,即累積曲線,對(duì)累積曲線求導(dǎo)得到某孔徑孔隙體積占總孔隙體積比例的關(guān)系曲線,即微分曲線,進(jìn)而根據(jù)這兩條曲線分析土壤孔隙大小分布狀況。由于實(shí)際土壤孔隙直徑主要位于10-6~5 mm之間,根據(jù)有效含水率的基質(zhì)勢(shì)吸力范圍為33~1 500 kPa,對(duì)應(yīng)的當(dāng)量孔徑范圍為0.0 002~0.009 mm[28]。為了便于分析,將當(dāng)量孔徑0.009 mm以上的孔隙稱為大孔隙,當(dāng)量孔徑范圍為>0.0 002~0.009 mm的孔隙稱為有效孔隙,當(dāng)量孔徑10-6~0.000 2 mm的孔隙稱為微小孔隙。
使用Excel 2003處理數(shù)據(jù),利用SPSS 21進(jìn)行Pearson相關(guān)性分析、差異顯著性分析以及主成分分析,采用Origin 8.5繪圖,應(yīng)用RETC軟件進(jìn)行土壤水分特征曲線模型參數(shù)擬合。
表3所示為低鹽再生水不同灌溉模式下表層土壤(0~5 cm)鹽堿度指標(biāo)變化情況。低鹽再生水灌溉導(dǎo)致土壤鹽分增加,CEC含量降低,WW和AWW處理下土壤EC值分別顯著高于CK處理約84.7%、82.0%(<0.05),土壤CEC分別顯著低于CK處理4.8%、7.7%(<0.05)。再生水灌溉后土壤Ca2+、K+、Mg2+變化較小,僅WW處理下Ca2+、K+與CK組存在顯著性差異(<0.05),分別變化-12.3%、195.6%,而土壤Na+濃度在WW和AWW處理下分別顯著高于CK處理116.3%、408.3%(<0.05)。土壤PAR在WW處理下顯著高于CK處理212.5%(<0.05),而AWW處理下與CK組無(wú)顯著差異。
表3 兩種低鹽再生水灌溉模式下土壤化學(xué)指標(biāo)變化
注:CK為蒸餾水對(duì)照處理;WW為再生水單一灌溉;AWW為再生水-蒸餾水交替灌溉。ESP為土壤交換性鈉百分率。PAR為鉀吸附比。下同。表中結(jié)果均為3個(gè)處理的平均值±標(biāo)準(zhǔn)差;同行不同小寫(xiě)字母表示不同處理間差異顯著(<0.05)。
Note: CK represents distilled water treatment; WW represents continuous reclaimed water irrigation; AWW represents alternating reclaimed water and distilled water irrigation. ESP represents exchangeable sodium percentage. PAR represents potassium adsorption ratio. Same as below. Each value is the mean of three replicates ± standard error. Different letters in the same row indicate significant difference between different treatments (<0.05).
綜上,與CK處理比,低鹽再生水灌溉使土壤鹽分增加,交換性鹽基離子中Na+變化最大,其次是K+和Ca2+,從而影響土壤ESP、SAR、PAR等指標(biāo),WW、AWW處理下SAR分別高于CK處理126.5%、399.0%,ESP則分別高于CK處理127.6%、540.0%,且AWW處理下土壤ESP、SAR分別顯著高于WW處理142.4%、120.3%(<0.05),而PAR則反之。
2.2.1 低鹽再生水灌溉模式對(duì)土壤水分特征曲線和導(dǎo)水性能的影響
土壤水分特征曲線、非飽和導(dǎo)水率和水分?jǐn)U散度能夠反映土壤水力特性,對(duì)研究土壤孔隙的大小和分布、土壤水分的可利用性、持水性及導(dǎo)水性等具有重要作用[29]。低鹽再生水不同灌溉模式下土壤水分特征曲線及水力傳導(dǎo)度變化如圖1所示。由圖1a,相對(duì)于CK,WW和AWW處理下土壤水分特征曲線左移,其中AWW處理變化較大。通過(guò)對(duì)比土壤水分特征曲線的擬合曲線中多個(gè)相同吸力下的土壤含水率差值可以得出,與CK處理相比,WW處理下的土壤含水率平均下降3.5%,而AWW處理下的含水率平均下降20.1%,說(shuō)明低鹽再生水灌溉會(huì)導(dǎo)致紅壤持水能力下降,且交替灌溉加劇了持水性能退化。此外,根據(jù)圖1b、圖1c可知,低鹽再生水灌溉導(dǎo)致紅壤導(dǎo)水能力也下降,其中非飽和導(dǎo)水率在WW處理下降低幅度較大,而水分?jǐn)U散度曲線在兩種再生水灌溉模式下幾乎重合。
圖1 低鹽再生水灌溉下土壤水分特征曲線和水力傳導(dǎo)度變化
2.2.2 低鹽再生水灌溉模式對(duì)VG模型參數(shù)的影響
利用RETC軟件中的van Genuchten(VG)模型對(duì)灌溉后的紅壤水分特征曲線進(jìn)行擬合,擬合結(jié)果較好(2>0.99),擬合參數(shù)結(jié)果如表4所示。與CK相比,WW、AWW處理下θ分別降低43.3%、25.2%;低鹽再生水灌溉使土壤θ增加,其中AWW處理下增加較多,與CK相比增加4.7%;θ和θ的差值越大表示該土壤所能吸持的水量越多,與CK相比,WW和AWW處理分別提高了35.1%、24.6%,說(shuō)明低鹽再生水灌溉提高了紅壤的吸持水量;擬合參數(shù)數(shù)值上為進(jìn)氣值倒數(shù),它反映土壤初始排水時(shí)的難易程度[30],值越大越易排水,說(shuō)明AWW處理下的土壤最易排水;再生水灌溉后參數(shù)減小,其中WW處理下的較小,即土壤基質(zhì)勢(shì)降低時(shí),土壤不易失水[31]。
表4 兩種低鹽再生水灌溉模式下VG模型擬合參數(shù)
注:θ為土壤殘余體積含水率;θ為土壤的飽和體積含水率;為進(jìn)氣值的倒數(shù);為形狀參數(shù)。表中同列不同小寫(xiě)字母表示不同處理間差異顯著(<0.05),下同。
Note:θis the residual volume water content of soil.θis the saturated volume water content of soil.is the reciprocal of the intake value.is the shape parameter. Different lowercase letters in the same column in the table indicate significant difference between different treatments (<0.05), same as below.
2.2.3 低鹽再生水灌溉模式對(duì)土壤水分常數(shù)的影響
通過(guò)土壤水分特征曲線分別計(jì)算出田間持水率、凋萎系數(shù)、重力水、有效水及有效水比例,其中土壤水吸力為33 kPa時(shí)的土壤含水率為田間持水率,土壤水吸力為1 500 kPa時(shí)的土壤含水率為凋萎系數(shù),飽和含水率與田間持水率的差值為重力水,田間持水率與凋萎系數(shù)的差值為有效水,有效水占飽和含水率的比值即為有效水比例。由表5可知,低鹽再生水灌溉導(dǎo)致土壤田間持水率和凋萎系數(shù)降低,其中AWW處理下降幅較大,分別低于CK處理21.8%、19.9%。與CK相比,WW、AWW處理下重力水分別增加13.3%、48.7%。低鹽再生水兩種灌溉模式下有效水變化出現(xiàn)相反趨勢(shì),其中在WW處理下增加6.33%,而AWW處理下則減少27.85%。低鹽再生水灌溉導(dǎo)致無(wú)效水減少,且AWW處理下減少程度較大,達(dá)19.9%??梢?jiàn),低鹽再生水灌溉降低了紅壤田間持水率和凋萎系數(shù),提高了重力水,降低了無(wú)效水,且AWW處理下的變化程度大于WW處理。有效水在WW處理下增加,而在AWW處理下降低。
表5 兩種低鹽再生水灌溉模式下壤水分常數(shù)變化
2.3.1 低鹽再生水灌溉模式對(duì)紅壤當(dāng)量孔徑的影響
干濕交替過(guò)程中土壤結(jié)構(gòu)的變化取決于當(dāng)量孔徑的穩(wěn)定與形成[32],土壤孔隙又決定著土壤的通透性和持水性。圖2所示為不同處理下土壤當(dāng)量孔徑累積曲線和微分曲線。由圖2a可知,CK處理下土壤當(dāng)量孔徑大于10-6mm的累積孔隙含量為58.2%,低鹽再生水兩種灌溉模式處理下累積曲線均位于CK處理上方,WW和AWW處理下土壤當(dāng)量孔徑大于10-6mm的累積孔隙含量分別高于CK處理17.5%、18.3%,說(shuō)明再生水灌溉會(huì)增加孔徑大于10-6mm的孔隙體積。結(jié)合圖2b可知,低鹽再生水灌溉導(dǎo)致孔隙含量最多的土壤孔徑增大,其中以AWW處理增大較多。CK處理下土壤大孔隙、有效孔隙、微小孔隙含量分別為37.4%、14.8%、6.0%。相對(duì)于CK,WW處理下大孔隙、有效孔隙、微小孔隙含量均增加,孔隙含量分別為41.3%、16.1%、11.0%。然而,相對(duì)于CK,AWW處理下土壤大孔隙增加,有效孔隙、微小孔隙減少,孔隙含量分別為53.4%、10.5%、4.9%。綜上所述,低鹽再生水單一灌溉增加了大孔隙、有效孔隙和微小孔隙含量,但交替灌溉則使大孔隙含量增加,有效孔隙和微小孔隙含量減少。
圖2 兩種低鹽再生水灌溉模式下土壤當(dāng)量孔徑累積曲線和微分曲線
2.3.2 低鹽再生水灌溉模式對(duì)紅壤顆粒形態(tài)的影響
圖3所示為低鹽再生水不同灌溉模式下土壤顆粒的SEM圖像。與CK相比,低鹽再生水灌溉后土壤顆粒變得更為模糊,形成了較為粗糙的表面,且該現(xiàn)象在AWW處理下更明顯,說(shuō)明再生水灌溉后Na+等鹽離子累積使土壤黏粒分散,該結(jié)果與Marchuk等[33]的研究結(jié)果一致。
土壤水力性質(zhì)受土壤中鹽離子類型和濃度影響[34]。因此,為了更準(zhǔn)確了解再生水灌溉后土壤水分常數(shù)、當(dāng)量孔徑分布、土壤水分特征曲線的擬合參數(shù)與土壤鹽分之間的相關(guān)程度,利用SPSS統(tǒng)計(jì)軟件進(jìn)行雙變量Pearson相關(guān)分析,結(jié)果如表6所示。田間持水率、凋萎系數(shù)及有效水等土壤水分常數(shù)與交換性Na+、ESP、SAR呈顯著負(fù)相關(guān)。大孔隙比例與Na+、ESP、SAR呈極顯著正相關(guān),與CEC呈顯著負(fù)相關(guān),而有效孔隙和微小孔隙比例則與Na+、ESP、SAR呈極顯著負(fù)相關(guān),與CEC呈顯著正相關(guān)。模型擬合參數(shù)θ、主要與EC、K+、PAR顯著相關(guān),而參數(shù)θ、主要與EC、Na+、CEC、ESP、SAR顯著相關(guān)。
圖3 兩種低鹽再生水灌溉模式下土壤顆粒形態(tài)
表6 土壤水力參數(shù)與化學(xué)指標(biāo)間相關(guān)性分析
注:**表示在0.01水平(雙側(cè))上極顯著相關(guān);*表示在0.05水平(雙側(cè))上顯著相關(guān)。
Note: ** is significantly correlated at 0.01 level (bilateral); * is significantly correlated at 0.05 level (bilateral).
通過(guò)主成分分析,進(jìn)一步判斷土壤鹽堿度對(duì)水力性質(zhì)的影響,載荷圖如圖4所示。由圖4a可知,各指標(biāo)影響水分常數(shù)的權(quán)重從大到小依次為Na+、 ESP、SAR、CEC,其中Na+、ESP、SAR對(duì)土壤水分常數(shù)主要起負(fù)向作用,而CEC則反之。第一主成分包括Na+、ESP、SAR、凋萎系數(shù)、有效水、田間持水率、CEC;第二主成分包括PAR、K+、Ca2+、EC。圖4b反映了各指標(biāo)對(duì)土壤孔隙分布的影響,Na+、ESP、SAR、CEC、EC等指標(biāo)對(duì)孔隙分布的作用效果依次減小,其中Na+、ESP、SAR、EC對(duì)大孔隙起促進(jìn)作用,CEC則起抑制作用,對(duì)有效孔隙和微小孔隙的影響則反之。第一主成分包括微小孔隙、Na+、大孔隙、有效孔隙、ESP、SAR、CEC、EC;第二主成分包括PAR、K+、Ca2+。圖4c反映了鹽分指標(biāo)對(duì)VG模型擬合參數(shù)的影響,影響VG模型擬合參數(shù)的主要指標(biāo)為EC、CEC、Na+、ESP、SAR等,其作用效果依次減小,其中EC、Na+、ESP、SAR等指標(biāo)對(duì)θ、起正向作用,CEC對(duì)θ、起負(fù)向作用,而對(duì)θ、的影響則反之。第一主成分包括EC、θ、CEC、θ、、Na+、ESP、SAR、;第二主成分包括Ca2+、PAR、K+。綜上說(shuō)明,土壤水分常數(shù)、孔隙分布、VG模型擬合參數(shù)主要受Na+、ESP、SAR、CEC、EC等指標(biāo)的影響。
注:F1、F2表示提取兩個(gè)主成分;有向線段表示土壤水分常數(shù)、土壤孔隙和擬合參數(shù)指標(biāo),若有向線段指向某鹽分指標(biāo)所在象限則表示該鹽分指標(biāo)對(duì)其有正向作用,反之則起負(fù)向作用;圓形標(biāo)記點(diǎn)到原點(diǎn)的距離在坐標(biāo)軸上的投影越大表示其所示指標(biāo)與對(duì)應(yīng)的主成分相關(guān)度越高。
土壤中離子絡(luò)合、交換、吸附的反應(yīng)速度較快,時(shí)間尺度在微秒至月之間[35],所以低鹽再生水灌溉1 a紅壤鹽分和鹽離子含量即發(fā)生改變。WW、AWW處理下紅壤EC、交換性Na+、K+、Mg2+濃度均高于CK處理(表 3),這是由于再生水中鹽離子在灌溉過(guò)程中在土壤中累積所導(dǎo)致[36]。值得注意的是,與CK相比,WW和AWW兩種灌溉模式下Na+分別增加116.3%、408.3%,ESP則分別增加127.6%、451.7%,可見(jiàn)AWW處理下紅壤Na+含量和ESP值均高于WW處理,另外,Ca2+含量也在AWW處理下較高。這可能是由于WW處理下交換性K+、Na+、Ca2+、Mg2+被H+和Al3+所替換并發(fā)生淋失,特別是紅壤中在高溫多雨、干濕交替明顯的氣候條件下,風(fēng)化淋溶作用強(qiáng)烈,尤其是Na+、Ca2+淋失更甚,故導(dǎo)致這兩種離子濃度較低。然而,在AWW處理下,蒸餾水灌溉時(shí)土壤表面的H+解離和水解并發(fā)生淋失[37],從而導(dǎo)致置換Na+和Ca2+的能力降低,使鹽離子吸附在土壤中的可交換絡(luò)合物上,再進(jìn)行灌溉時(shí)也難以將其淋洗出來(lái)。AWW處理下土壤pH值低于WW和CK處理(表3),也說(shuō)明AWW處理下土壤中H+濃度降低。另一方面,由于該試驗(yàn)采用重新裝填的土柱,土壤結(jié)構(gòu)不穩(wěn)定,累積的Na+易引起土壤黏粒分散和膨脹,導(dǎo)致比表面積增加,土壤吸附鹽離子的能力進(jìn)一步增強(qiáng)。由此可見(jiàn),低鹽再生水灌溉提高了土壤鹽堿度,但土壤中鹽基離子累積程度并不一定隨著再生水施入量增加而增大,而與灌溉水質(zhì)及土壤中鹽分吸附、解吸、置換和遷移特性有關(guān)。
由表3可知,紅壤EC值在再生水兩種灌溉模式下相近,但SAR在WW處理下較低,而在AWW處理下較高。土壤顆粒的穩(wěn)定性取決于SAR和EC的相對(duì)平衡[38],所以WW處理下土壤溶液中鹽分的絮凝作用可以削弱灌溉水引入的Na+對(duì)土壤黏粒的膨脹和分散,而AWW處理下土壤溶液中的鹽分則不足以阻止土壤黏粒發(fā)生分散。顯微鏡觀測(cè)的土壤顆粒形態(tài)(圖3)也可以看出,低鹽再生水灌溉導(dǎo)致土壤顆粒分散,AWW處理下分散作用比WW處理更明顯。
低鹽再生水灌溉改變了紅壤鹽堿度,從而影響土壤孔隙結(jié)構(gòu)和水力性質(zhì)。本研究發(fā)現(xiàn)再生水灌溉后紅壤持水性能下降,且與WW處理相比,AWW處理導(dǎo)致紅壤持水能力退化加劇。這是由于相對(duì)于WW處理,AWW處理下土壤中交換性Na+濃度和SAR較高(表3),土壤黏粒被分散,且該試驗(yàn)中土柱填裝高度僅15 cm,被分散的黏土顆粒向下遷移并流失,使土壤孔徑變大,從而導(dǎo)致土壤持水能力降低。Assouline等[39]也指出,再生水灌溉通過(guò)增加平均孔隙半徑,降低了一種黏土的持水能力。王輝等[14]采用與本文相同的供試土壤和試驗(yàn)方法探究了不同稀釋倍數(shù)再生水灌溉對(duì)土壤水力性質(zhì)的影響,發(fā)現(xiàn)與蒸餾水灌溉相比,單一灌溉條件下再生水原液和稀釋2倍再生水(EC:787~1 246S/cm;SAR:6.40~7.48)使紅壤持水能力提高,而稀釋4、6倍再生水(EC:312~467S/cm;SAR:4.12~5.15)則降低了持水能力,說(shuō)明低鹽再生水灌溉可能更易使紅壤持水性能退化。低鹽再生水灌溉引起的土壤大孔隙含量增多、土壤孔徑增大,并未提高紅壤K和D,反而使紅壤導(dǎo)水性能低于CK處理。這可能是由于低鹽再生水灌溉引起土壤斥水性、土壤顆粒膨脹及生物膜厚度增加等[21,40],從而改變孔隙分布和孔隙連通情況,使非飽和狀態(tài)下水力傳導(dǎo)性能下降,另外再生水中的懸浮物堵塞也會(huì)導(dǎo)致K和D降低,該結(jié)果與王輝等[14,41]的研究結(jié)果一致。
本研究采用的再生水中有機(jī)污染物濃度較高(COD:(125.56±30.42)mg/L),這些物質(zhì)能夠促進(jìn)微生物生長(zhǎng)和繁殖[16],加之灌溉水中懸浮物的輸入,可能會(huì)引起土壤孔隙生物和物理堵塞[42]。然而,研究結(jié)果表明與CK處理相比,低鹽再生水灌溉導(dǎo)致土壤孔徑增大,這是由于土壤堿化度提高,土壤顆粒發(fā)生分散并流失,從而導(dǎo)致土壤孔徑增大,說(shuō)明低鹽再生水灌溉條件下化學(xué)作用對(duì)土壤孔隙的影響可能大于生物和物理作用。與CK處理相比,WW處理提高了大孔隙、有效孔隙和微小孔隙含量,從而降低了紅壤田間持水率和凋萎系數(shù),提高重力水,降低無(wú)效水,增加了有效水含量,說(shuō)明WW處理下土壤孔隙向更有利的方向發(fā)展,提高了紅壤的抗旱能力。Tunc等[43]也發(fā)現(xiàn)再生水灌溉后一種壤土的微孔體積增加,從而導(dǎo)致田間持水率和有效水量也增加。然而,AWW處理使土壤大孔隙比例增加,有效孔隙和微小孔隙減少,從而使有效水低于CK處理27.8%。結(jié)合王輝等[14]的研究結(jié)果:再生水與蒸餾水交替灌溉條件下,再生水原液處理下有效水低于CK處理9.9%,稀釋2、4、6倍再生水處理下則分別低23.3%、26.5%、16.9%,可知與鹽分含量較高的再生水相比,低鹽再生水交替灌溉可能更易導(dǎo)致紅壤有效水含量降低。
綜上所述,低鹽再生水灌溉使紅壤鹽堿度提高,與單一灌溉相比,低鹽再生水-蒸餾水交替灌溉更易引起紅壤堿化,從而加劇土壤黏粒分散,使土壤孔徑增大,土壤水力性能退化。可見(jiàn),低鹽再生水灌溉紅壤過(guò)程中蒸餾水的介入反而加劇了對(duì)土壤的破壞作用。因此,亞熱帶紅壤區(qū)利用低鹽再生水灌溉時(shí)宜選擇單一灌溉模式,同時(shí)應(yīng)特別注意土壤SAR和ESP等指標(biāo)的監(jiān)測(cè)。
1)低鹽再生水灌溉使紅壤持水性能和導(dǎo)水性能均降低,且再生水與蒸餾水交替灌溉(AWW)處理下持水能力下降程度高于再生水單一灌溉(WW)處理。與CK處理相比,WW處理使有效水增加6.33%,而AWW處理使有效水降低27.85%。這說(shuō)明與AWW處理相比,WW處理能夠減小低鹽再生水對(duì)紅壤持水能力的影響,提高水分有效性。
2)低鹽再生水灌溉導(dǎo)致土壤孔徑增大。與CK處理相比,WW處理下大孔隙、有效孔隙和微小孔隙含量均增加,而AWW處理使大孔隙含量增加,有效孔隙和微小孔隙減少。
3)低鹽再生水灌溉使紅壤鹽堿度提高。與WW處理相比,AWW處理更易引起紅壤Na+含量和鈉吸附比增加,從而引起更強(qiáng)烈的土壤黏粒分散。土壤中鹽離子累積不一定隨著再生水施入量增加而增大,而與灌溉水質(zhì)和土壤中鹽基離子的吸附、解吸、置換和遷移特性有關(guān)。
4)低鹽再生水灌溉后紅壤鹽堿度變化是影響土壤微觀結(jié)構(gòu)和水力性質(zhì)變化的重要因素。土壤水分常數(shù)、孔隙分布、VG模型擬合參數(shù)主要受Na+、鈉吸附比、交換性鈉百分率、陽(yáng)離子交換量及電導(dǎo)率等指標(biāo)的影響。
[1] 彭世彰,程勝,徐俊增,等.劣質(zhì)水安全利用研究綜述[J].水資源保護(hù),2014,30(4):1-6.
Peng Shizhang, Cheng Sheng, Xu Junzeng, et al. Advances in safe utilization of poor-quality water[J]. Water Resources Protection, 2014, 30(4): 1-6. (in Chinese with English abstract)
[2] Bhattacharjee A, Jana B B, Mandal S K, et al. Assessing phosphorus removal potential of laterite soil for water treatment and eco-technological application[J]. Ecological Engineering, 2021, 166: 106245.
[3] Chauhan J S, Kumar S. Wastewater ferti-irrigation: an eco-technology for sustainable agriculture[J]. Sustainable Water Resources Management, 2020, 6(3): 1-11.
[4] 師榮光,王德榮,趙玉杰,等.城市再生水用于農(nóng)田灌溉的水質(zhì)控制指標(biāo)[J].中國(guó)給水排水,2006,22(18):100-104.
Shi Rongguang,, Wang Derong, Zhao Yujie, et al. Water quality control indexes of reclaimed municipal wastewater for farmland irrigation[J]. China Water&Wastewater, 2006, 22(18): 100-104. (in Chinese with English abstract)
[5] Gon?alves R A B, Folegatti M V, Gloaguen T V, et al. Hydraulic conductivity of a soil irrigated with treated sewage effluent[J]. Geoderma, 2007, 139(1/2): 241-248.
[6] 商放澤,楊培嶺,任樹(shù)梅.再生水灌溉對(duì)深層包氣帶土壤鹽分離子的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(7):98-106+97.
Shang Fangze, Yang Peiling, Ren Shumei. Effects of reclaimed Water Irrigation on Soil Salinity in Deep Vadose Zone[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 98-106, 97. (in Chinese with English abstract)
[7] 劉春成,崔丙健,胡超,等.微咸水與再生水混灌對(duì)土壤特性的影響與灌溉效應(yīng)評(píng)估[J].水土保持學(xué)報(bào),2022,36(1):255-262.
Liu Chuncheng, Cui Bingjian, Hu Chao, et al. Effect of mixed irrigation of brackish water and reclaimed water on soil properties and irrigation effect evaluation[J]. Journal of Soil and Water Conservation, 2022, 36(1): 255-262. (in Chinese with English abstract)
[8] Regional Salinity Laboratory (US). Diagnosis and improvement of saline and alkali soils[M]. Washington: US Department of Agriculture, 1954.
[9] Alobaidy A H M J, Al-Sameraiy M A, Kadhem A J, et al. Evaluation of treated municipal wastewater quality for irrigation[J]. Journal of Environmental Protection, 2010, 1(3): 216.
[10] Muyen Z, Moore G A, Wrigley R J. Soil salinity and sodicity effects of wastewater irrigation in South East Australia[J]. Agricultural Water Management, 2011, 99(1): 33-41.
[11] Bourazanis G, Katsileros A, Kosmas C, et al. The effect of treated municipal wastewater and fresh water on saturated hydraulic conductivity of a clay-loamy soil[J]. Water Resources Management, 2016, 30(8): 2867-2880.
[12] Halliwell D J, Barlow K M, Nash D M. A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems[J]. Soil Research, 2001, 39(6): 1259-1267.
[13] Lado M, Ben-Hur M. Treated domestic sewage irrigation effects on soil hydraulic properties in arid and semiarid zones: A review[J]. Soil and Tillage Research, 2009, 106(1): 152-163.
[14] 王輝,黃正忠,譚帥,等.再生水灌溉對(duì)紅壤水力特性的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):120-127.
Wang Hui, Huang Zhengzhong, Tan Shuai, et al. Effects of irrigation with reclaimed water on hydraulic characteristics of red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 120-127. (in Chinese with English abstract)
[15] 俞果,馬建初,蔣萍萍,等.新型植物景觀墻處理高校生活污水研究[J].水處理技術(shù),2020,46(3):101-104,109.
Yu Guo, Ma Jianchu, Jiang Pingping, et al. Study on new plant landscape wall for campus domestic sewage treatment[J]. Technology of Water Treatment, 2020, 46(3): 101-104, 109. (in Chinese with English abstract)
[16] 王燕,程?hào)|會(huì),檀文炳,等.土壤微生物群落結(jié)構(gòu)對(duì)生活源和工業(yè)源再生水灌溉的差異化響應(yīng)[J].環(huán)境科學(xué),2020,41(9):4253-4261.
Wang Yan, Cheng Donghui, Tan Wenbing, et al. Different responses of soil microbial community structure to irrigation with treated wastewater from domestic and industrial sources[J]. Environmental Science, 2020, 41(9): 4253-4261. (in Chinese with English abstract)
[17] 唐勝?gòu)?qiáng),佘冬立.灌溉水質(zhì)對(duì)土壤飽和導(dǎo)水率和入滲特性的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(10):108-114.
Tang Shengqiang, She Dongli. Influence of water quality on soil saturated hydraulic conductivity and infiltration properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 108-114. (in Chinese with English abstract)
[18] Oster J D, Shainberg I. Soil responses to sodicity and salinity: challenges and opportunities[J]. Soil Research, 2001, 39(6): 1219-1224.
[19] 李法虎,閆紅,龐昌樂(lè),等.華北地區(qū)微咸水應(yīng)用對(duì)土壤水力傳導(dǎo)性能的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(2):73-80.
Li Fahu, Yan Hong, Pang Changle, et al. Soil hydraulic conductivity affected by slight saline water irrigation in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 73-80. (in Chinese with English abstract)
[20] Leuther F, Schlüter S, Wallach R, et al. Structure and hydraulic properties in soils under long-term irrigation with treated wastewater[J]. Geoderma, 2019, 333: 90-98.
[21] Zhou H, Xu G. Integrated effects of temperature and COD/N on an up-flow anaerobic filter-biological aerated filter: Performance, biofilm characteristics and microbial community[J]. Bioresource technology, 2019, 293: 122004.
[22] Volk E, Iden S C, Furman A, et al. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm[J]. Water Resources Research, 2016, 52(8): 5813-5828.
[23] Blum J, Herpin U, Melfi A J, et al. Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil[J]. Agricultural Water Management, 2012, 115(19): 203-216.
[24] Bagarello V, Iovino M, Palazzolo E, et al. Field and laboratory approaches for determining sodicity effects on saturated soil hydraulic conductivity[J]. Geoderma, 2006, 130(1/2): 1-13.
[25] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[26] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water resources research, 1976, 12(3): 513-522.
[27] D'Hollander E H. Estimation of the pore size distribution from the moisture characteristic[J]. Water Resources Research, 1979, 15(1): 107-112.
[28] Chaudhari S K, Somawanshi R B. Effect of water quality on moisture retention characteristics of different texture soils[J]. Journal of Maharashtra Agricultural Universities, 2000, 25(2): 128-133.
[29] 陳俊英,柴紅陽(yáng),Leionid Gillerman,等.再生水水質(zhì)對(duì)斥水和親水土壤水分特征曲線的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(11):121-127.
Chen Junying, Chai Hongyang, Leionid Gillerman, et al. Impact of treated waste water quality on repellent and wettable soil water characteristic curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 121-127. (in Chinese with English abstract)
[30] van Genuchten M T, Leij F J, Yates S R. The RETC code for quantifying the hydraulic functions of unsaturated soils[R]. Riverside: U.S. Salinity Laboratory, USDA ARS, Washington, 1991.
[31] Ma D H, Shao M A, Zhang J B, et al. Validation of an analytical method for determining soil hydraulic properties of stony soils using experimental data[J]. Geoderma, 2010, 159(3/4): 262-269.
[32] Newman A C D, Thomasson A J. Rothamsted studies of soil structure III: Pore size distributions and shrinkage processes[J]. Journal of Soil Science, 1979, 30(3): 415-439.
[33] Marchuk S, Marchuk A. Effect of applied potassium concentration on clay dispersion, hydraulic conductivity, pore structure and mineralogy of two contrasting Australian soils[J]. Soil and Tillage Research, 2018, 182: 35-44.
[34] Xing X, Ma X. Differences in loam water retention and shrinkage behavior: Effects of various types and concentrations of salt ions[J]. Soil and Tillage Research, 2017, 167: 61-72.
[35] Aharoni C, Sparks D L. Kinetics of soil chemical reactions-a theoretical treatment[J]. Rates of Soil Chemical Processes, 1991, 27: 1-18.
[36] Zalacáin D, Martínez-Pérez S, Bienes R, et al. Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)[J]. Agricultural Water Management, 2019, 213: 468-476.
[37] 胡傳旺,王輝,武蕓,等.再生水鹽分在亞熱帶不同土壤中的遷移特性及其差異[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):99-107.
Hu Chuanwang, Wang Hui, Wu Yun, et al. Migration characteristics and its differences of reclaimed water salinity in different subtropical soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 99-107. (in Chinese with English abstract)
[38] Obaidy A, Al-Sameraiy M A, Kadhem A J, et al. Evaluation of treated municipal wastewater quality for irrigation[J]. Journal of Environmental Protection, 2010, 1(3):216-225.
[39] Assouline S, Narkis K. Effects of long-term irrigation with treated wastewater on the hydraulic properties of a clayey soil[J]. Water Resources Research, 2011, 47(8): 2924-2930.
[40] 胡廷飛,王輝,胡傳旺,等.灌溉水質(zhì)和灌水方式對(duì)紅壤斥水性及其理化性質(zhì)的影響[J].排灌機(jī)械工程學(xué)報(bào),2018,36(8):651-655,661.
Hu Tingfei, Wang Hui, Hu Chuanwang, et al. Effects of different water quality and irrigation methods on red soil water repellency and physical-chemical properties[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(8): 651-655, 661. (in Chinese with English abstract)
[41] 胡傳旺,王輝,盧佳宇,等. 亞熱帶土壤導(dǎo)水特征對(duì)鈉鹽溶液濃度的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):86-91.
Hu Chuanwang, Wang Hui, Lu Jiayu, et al. Response of soil hydraulic property to sodium salt solution concentration in subtropical zone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 86-91. (in Chinese with English abstract)
[42] Ozcoban M S, Cetinkaya N, Celik S O, et al. Hydraulic conductivity and removal rate of compacted clays permeated with landfill leachate[J]. Desalination and Water Treatment, 2013, 51(31-33): 6148-6157.
[43] Tunc T, Sahin U. The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters[J]. Agricultural Water Management, 2015, 158: 213-224.
Effects of low-salinity reclaimed wastewater irrigation on the hydraulic properties and microstructure of subtropical red soil
Lu Jiayu, Wang Hui※, Ouyang Zan
(,,410128,)
Domestic wastewater is characterized by a single and stable source, good biodegradability, and low salinity, but high Chemical Oxygen Demand (COD) in densely populated areas, such as campuses and communities. Therefore, there is a great potential to reuse, due to the low cost of treatment. A sustainable water recycling system can be expected to effectively alleviate the seasonal drought and water shortage with high quality in South China. However, accumulative irrigation with low-salinity reclaimed wastewater can cause a change in soil structure and hydraulic properties, and then result inirreversible damage to the soil. This study aims to explore the effects of low-salinity reclaimed wastewater irrigation on the hydraulic properties and microstructures in subtropical red soil. The campus's domestic wastewater was also treated for irrigation. Two irrigation modes were applied, including continuous reclaimed wastewater irrigation (WW), and alternating reclaimed wastewater and distilled water irrigation (AWW). In addition, the distilled water continuous irrigation was set as the control treatment (CK). An outdoor simulated soil column test was carried out to determine the soil salinity and sodicity, while the microstructure and hydraulic properties were under the irrigation modes. The interaction mechanism was proposed between the soil salinization, structure, and hydraulic properties. The results showed that: 1) Low-salinity reclaimed wastewater irrigation led to the decrease of water holding capacity and hydraulic conductivity of the red soil. Specifically, the water holding capacity under the WW treatment was higher than that under the AWW treatment, whereas, the unsaturated hydraulic conductivities were on the contrary. There was a small difference in water diffusivities under the two low-salinity reclaimed wastewater irrigation modes. 2) The low-salinity reclaimed wastewater decreased the field water holding capacity and wilting coefficient of the red soil, compared with the CK treatment. The available water increased by about 6.33% under the WW treatment, but decreased by 27.85% under the AWW treatment. 3) The low-salinity reclaimed wastewater increased the proportion of macropores. The proportion of effective pores and micropores increased under the WW treatment, which were 16.1% and 11.0% respectively. The proportion of effective pores and micropores decreased under the AWW treatment, which were 10.5% and 4.9%, respectively. 4) Low-salinity reclaimed wastewater irrigation significantly increased the Electrical Conductivity (EC) value and Na+concentration of the red soil (<0.05), but significantly decreased the Cation Exchangeable Capacity (CEC) (<0.05), compared with the CK treatment. The soil Exchangeable Sodium Percentage (ESP) and Sodium Adsorption Ratio (SAR) under the AWW treatment were significantly higher by 142.4% and 120.3%, respectively (<0.05) than that of the WW treatment, resulting in stronger clay dispersion. The soil particle morphology was also confirmed by scanning an electron microscope. 5) Principal component and Pearson correlation analysis were used to analyze the interaction between the soil structure, hydraulic properties, as well as soil salinity and sodicity. The field water holding capacity, wilting coefficient, available water, the proportion of effective pores, and micropores were significantly negatively correlated with the exchangeable Na+, ESP, and SAR, but significantly positively correlated with the CEC. The water with good quality (rainwater) can be involved in the process of low-salinity reclaimed wastewater irrigation, due to the high rainfall variability in subtropical regions, thus intensifying the destruction of reclaimed wastewater on the red soil. Therefore, much attention should be paid to monitoring the soil SAR, ESP, reclaimed water quality, and irrigation mode. The findings can provide a strong reference to formulate the reclaimed wastewater irrigation schedules in subtropical red soil areas.
irrigation; reclaimed water; salinity and sodicity; soil water characteristic curve; moisture constant; red soil
10.11975/j.issn.1002-6819.2022.18.011
S152.7;S278
A
1002-6819(2022)-18-0103-10
盧佳宇,王輝,歐陽(yáng)贊. 低鹽再生水灌溉對(duì)亞熱帶紅壤水力特性及微觀結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(18):103-112.doi:10.11975/j.issn.1002-6819.2022.18.011 http://www.tcsae.org
Lu Jiayu, Wang Hui, Ouyang Zan. Effects of low-salinity reclaimed wastewater irrigation on the hydraulic properties and microstructure of subtropical red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 103-112. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.18.011 http://www.tcsae.org
2022-07-27
2022-09-12
國(guó)家自然科學(xué)基金項(xiàng)目(41471185);湖南省戰(zhàn)略性新興產(chǎn)業(yè)科技攻關(guān)與重大科技成果轉(zhuǎn)化項(xiàng)目(2020NK2003);湖南省水利科技項(xiàng)目重大項(xiàng)目(XSKJ2021000-02)
盧佳宇,博士生,研究方向?yàn)橥寥牢锢砼c農(nóng)業(yè)水土環(huán)境。Email:lujiayujy@126.com
王輝,博士,教授,博士生導(dǎo)師,研究方向?yàn)橥寥牢锢砼c農(nóng)業(yè)水土環(huán)境。Email:wanghuisb@126.com